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CHARACTERISTIC OF SOME CLASSES
OF ALMOST HERMITIAN MANIFOLDS

GEORGI T. GANCEV

For an arbitrary almost Hermitian manifold a generalized curvature tensor of Kahler type
is found. For this tensor the associated Ricci and Bochner tensors are introduced. As a result
one gets characteristics of some special classes of almost Hermitian manifolds.

H. Mori [3] and M. Sitaramayya [4] gave a decomposition of cur-
vature tensors of Kihler type on a 2n-dimensional Hermitian vector space and
studied curvature tensors on a Kahler manifold.

In this paper we find a generalized curvature tensor of Kdahler type in an
almost Hermitian manifold and similarly to the case of a K#hler manifold
using the associated tensor of Bochner and the Ricci tensor we obtain some
special almost Hermitian manifolds. For these manifolds we give some charac-
teristics.

Let M be an almost Hermitian manifold with dim M- 2n, / an almost
complex structure ane denote the HHermitian inner product by (,). In what
follows ~ is the Levi-Civita connection and R its curvature tensor. For arbit-
rary vector fields X, Y, Z we consider the following tensors:

() R(X, Y)Z 3RX, V)Z+3RUX, JY)Z—R(Y, IZ)X+RUX, JZ)Y
LR(Y,JZ)IX R(X,JZ)]Y,
2) R*(X, Y)Z-(R(X, Y)Z—IR'(JX, JY)JZ)16.

Using the properties of R it is easy to verify the following proposition.

Proposition 1. The tensor (1) has the following properties:

2) R(X, Y)Z+R(Y, Z)X+R'(Z, X)Y ~0;

3) RJX,IVVZ R (X, Y)Z.

The tensor (2) has the following properties:

1) R*Y, X)Z- —R*(X\)Y )Z;

3) 2) R¥X, V) Z+R*(Y, 2)X+R*Z, X)Y 0;
T3 (RNX, V)2, U)  —(RYX, Y)U, Z);

4) (R*(X, Y)JZ, JU)=(R*X, Y)Z, U).

From the conditions (3) it follows that the tensor R* is a generalized cur-
vature tensor of Kihler type. The Ricci tensor S* of type (0, 2) associated
with R* is a symmetric bilinear function defined by S*X, Y)

-trace (Z —» R*(Z, X)Y). The Ricci tensor Q* of type (1,1) is defined by
/Q"(X), Y, -S*X, Y). From (3) is follows that S“*(JX JY) S*X, Y), Q*(JX)

JQ*(X). If X is a unit vector in the tangent space 7:M, then S*(X)=S*(X, X)
is called the Ricci curvature of X with respect to R*.
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Let H(X)—(R(X,JX)/X, X) be the holomorphic sectional curvature of a
2-plane determined by the unit vectors X and JX. It follows immediately from
(1) and (2) that (R*(X, JX)/X, X)=(R(X, JX)/X, X).

Now let M has a pointwise constant holomprphic sectional curvature, i. e.
H(X)=c(x) for an arbitrary unit vector X¢ 7.M, where ¢ does not depend
on X. We denote

2-1R (X, VNZ=Y, ) X—(X, Z)Y+JY, Z)JX (JX, Z)JY—2(JX, Y )JZ

This tensor has also the properties (3) [2]. Therefore the tensor
T(X, Y, Z,U) (RYX, Y)Z U)=8 (R /X, Y)Z, U)

has the following properties;

1) T(X, Y, Z,U)= —TY, X, Z, U);

) T(X, Y, Z,U)+TY,Z X, U)+T(Z X, Y,U)=0;
4) 3 TXY,ZU)--TIX,Y,U, 2);

4) T(X, Y, JZ,JU)-T(X, Y, Z, U);

5) 7(X, JX, JX, X)—-0.

From a well-known theorem [2] it follows that 7°--0. Conversely, if 7 0, then
H(X)~=c for an arbitrary unit vector X¢7,M. So we proved the following
proposition.

Proposition 2. The manifold M has a pointwise constant holomor-
phic sectional curvature c(x) if and only if the generalized curvature tensor
R* has the form

(5) R*(X, Y)Z=8""cRi (X, Y)Z.

For the generalized curvature tensor R* which satisfies the conditions (3)
we can apply the decomposition theorem of [3] and so we obtain the tensor
of Bochner associated with R* [1]:

B(X, Y)Z—R*(X, Y)Z——QOILQ—) Rl X, \Z 4o R(X, ¥V)Z.

8(n+1)(n+2)
Here S* is the scalar curvature corresponding to R* — the trace of the Ricci
tensor, and

Rses(X, Y)Z -~ S*Y, Z)X—SHX, Z)Y+S*(JY, Z)IX—S*(JX, Z)JY
OSHIX, Y)IZ+(Y, Z)QHX) (X, Z)Q*(Y)
FIY, ZYQHIX) (JX, ZYQ*IY)—2UX, Y)Q'(JZ).

We shall call an almost Hermitian manifold for which S$*(X) does not
depend on the unit vector X¢ 7'M, x¢M a generalized Einstein manifold.

Consider a quadrilinear mapping 7: T . M<X T MXTM>xT.M R satisfy-
ing the conditions 1) — 4) of (4) and denote (X, Y)=T7(X, Y, ¥, X). A 2-plane
E of T M is called holomorphic if JE- E and antiholomorphic if JE | E.

Proposition 3. If kX, JX) O for a basis of an arbitrary holomor-
phic 2-plane, then k(X,Y) O for a basis of an arbitrary antiholomorphic
2-plane. The inverse is also true by the condition n 3.
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Proof. The first part of the proposition follows directly from the condi-
tions (4) for 7.

For the inverse let X be an arbitrary unit vector in 7,M and X, Y be
a basis of an antiholomorphic 2-plane. Then (X+ Y)/V2,(JX—JY)/y2 and
(X—Y)V2, (JX+JY) V2 are bases of antiholomorphic 2-planes. Therefore

(6) R(X+Y)V2, (JX - JY)V2)=0, k(X—Y)/V2, (JX+JY)/V2)=0.
Adding the two equalities of (6) and using the properties of 7 we obtain

(7) k(X, JX)+k(Y, JY)=0.

If n=-3, we can take X, Y, Z as a basis of an antiholomorphic 3-plane and
similarly one has the equalities:

(8) R(X,JX)+R(Z, JZ)=0, R(Y,JY)+k(Z, JZ)=0.

From (7) and (8) we can conclude that k(X,/X)=0, which proves our as-
sertion.
Let M has a pointwise constant holomorphic sectional curvature /H(X)
c(x), XeT M, (X,X)—1 and denote K*(X,Y)=(R%X, Y)Y, X). Proposition
2 implies (5). Applying propostion 3 to the tensor 7=R*—(c/8)R;,r we obtain
that the conditions

9) H(X)=¢, 4K*(X, Y)=c

are equivalent if » -3. Here X, JX is a basis of an arbitrary holomorphic
2-plane and X, Y, is a basis of an arbitrary antiholomorphic 2-plane. In terms
of an adapted basis (u;, Ju)i -1,..., n the conditions (9) can be written in

the form
(10) Hi=c¢, 4K;— 4K =c, i+ ],
where ;- H(u;) = H(Ju,), K~ K*(u;, u)), Kij —=K*(u,;, Ju;). Using the formulae

(11) SoStw) X (K,~)'—%Kzi')+Hi;ir:1,--.,n;S*:2£S?
=1,/ =1

7 i=
and summing (10) we obtain
(12) c—=S8*/n(n+1).

So we proved the next proposition 4.

Proposition 4. If n=-3 an almost Hermitian manifold with a point-
wise constant holomorphic curvature is characterized by the conditions (9)
or (10).

Similarly, taking 7-- B we obtain also proposition 5.

Proposition 5. An almost Hermitian manifold with vanishing gene-
ralized tensor of Bochner is charac’erized by the conditions

13 oS —H S i :
(13) n+2%! ‘ (n+1)(n+2) " 7 ERRERL

4 Si+S; .4 S+ " s S
(14) niz 3 Ky iy g K=y
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More precisely: for n 2 (13) implies (14) and vice versa, for n -3 (14)
implies (13).

Corollary. Every almost Hermitian manifold with a pointwise con-
stant holomorphic sectional curvature has a vanishing generalized tensor of
Bochner and it is a generalized Einstein manifold.

In fact the first equality of (10) and (12) imnply

s S 4 & S*
Si=%9, aaSi—Hi inasy

The inverse is also true, i. e. if an almost Hermitian manifold is a gene-
ralized Finstein manifold and has a vanishing generalized tensor of Bochner,
then it has a pointwise constant holomorphic sectional curvature. This follows

directly from (13).
Now let us consider an almost Hermitian manifold M and suppose that in

every point x¢ M holds the condition

(15) ISHX) A+ uH(X)=¢, Xe TeM, (X, X)=1,

where ¢ does not depend on X and i, « are real parameters. We can write
(15) using an adapted basis in the form

(16) ASi +uH, ¢, i=1,...,n.

From (15) in a well-known way follows (see also [5])

b Rt (X, V)Z+uRNX, V) Z— § Rii(X, Y)Z

and from here

S,+S; S;+S; . .
(17) 2T udKy Sy udK ey i b =1,

Taking in account (11) from (17) follows

(18) (Mn—2)+4u)S; +i8%2 -2n+1)e, i 1,...,n.
Adding these equalities we obtain

(19) ¢ [(n+1)i+2u]/2n(n+1).

Substituting (19) in (18) the equality (16) gets the form ((n + 2)A- 4u)(S, —S* 2n) 0.
From the last equality applying the propositions 3, 4 and 5 we obtain the
following proposition 6.

Proposition 6. Let M be an almost Hermitian manifold satisfying
in each point the condition (15). Then

1. If (n+2)i+ 400, u=—1,4i=4/(n+2), then M has a vanishing gene-
ralized tensor of Bochner.

2. If (n+2)2+4u 0 and

2.1) u=0, then M is a generalized Einstein manifold ;

2.2) w0, then M has a pointwise constant holomorphic sectional cur-

vature.
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