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PARTIALLY MONOTONE INTERPOLATION
GEORGI L. ILIEV

Theorems are proved on interpolation and approximation (in Hausdorff and uniform dis-
tance) of piece-wise monotone functions by algebraic polynomials which follow the same mo-
notony pattern. The estimates for the degree of the interpolating polynomial and the orders
of approximation are exact.

1. During the last ten years an increasing number of publications have
appeared on the approximation or interpolation of functions with definite pro-
perties, where the approximating element is required to possess the same pro-
perties.

In the papers [1—14] a monotone or piece-wise monotone function f is
approximated by algebraic polynomials of degree not greater than n conserv-
ing entirely the monotony of the function f. A basic result in this area is
that the order of this approximation is a(f;n~"), where o(f;d) is the conti-
nuity modulus of the function f:

wo(f; 8)=sup{ fix)—Ax") :| x'—x" =4}

Let the points (x; yi), i=0, 1,..., m, x;—i/m, y;< yis1, ¥o=0, ym—1 be
given. Wolibner [15] and Young [16] proved that there exists an alge-
braic polynomial P, such that P(x)=y;, i=0, 1,..., m and P is monotone
in [0, 1] without giving, however, an estimate for the degree of the polyno-
mial. Nikoltcheva [17] makes this result more precise by showing that
this polynomial can be of degree cm Inm when Ay, =y —yi>m—, m<a<l.
This estimate for the degree of an interpolation monotone polynomial is exact.

In the present paper two theorems have been proved giving an exact
answer concerning the degree of the partially monotone interpolation poly-
nomial :

Theorem 1. Let the points (x,¥;), (X—iy—1), i=1,..., m, (x,=0,
Yo=0): xi=i/m, X_i=—ilm, Ym=Y-m=1, AY1=Yis1—Y:>0, Ay_i=y_i+1) —
y_i>0, i=0,..., m—1; A=max{dy,:1—m=i=m—1}, B~ min{dy;: 1 —m<
i=m—1} be given.

Let k=1 be an integer. If n satisfies kinn/n<1/8m,4m(A+ B)[n**.B<1,
then there exists an algebraic polynomial P.xH ., for which:

Por(X)=Yiy Parlx_i)=y_s i=1,..., m,
P, x(0)=0,
where H? is the class of algebraic polynomials P of degree not greater than
s, for which:
P(x)<0 for xt[—1,0], P(x)=0 for x¢[0,1].
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268 G. L. ILIEV

Theorem 2. For the notations of Theorem 1, let B~cm 5 m>f>1,
n=-m>max{8/c, e'}. If n>458minm, then there exists an algebraic polynomial
P H?, 18 for which Py(x,) ¥ Pax_0)—y s i 1,..., my Py0) O.

In the last part of this paper some corollaries have been obtained from
Theorem 1 and Theorem 2 for the partially monotone approximation of partial-
ly monotone functions with respect to the Hausdorff distance and the par-
tially monotone local approximations.

2. To prove Theorem 1 we need the following three lemmas that have
been proved in [17] and [18].

LLemma 1. For every positive integer k. 1<—k=n/21Inn, there exists an
algebraic polynomial A, xtHy, (H,={P:P(x)=a,x"+ ... ‘ta,x+a,, with the
properties

(1) Anr—0, x¢[—1,1]
(2) App(x)-2e4/n*=1, Ay x =1, where Ixn—kInn/n( - (klnn)/n),
Tk,
(3) [ Apk(x)dx 1.
~ik,n

Lemma 2. If |¢,,|<¢:;j,i=1,..., m and M>meA+ B)/B, A-max b,
l=—i<m}. B-min{b,:1=i m}, b;>0, i=1,..., m then the system

M-+eq, £1,2 . e El,m _E ‘xl ;—b17!
£, Mte2 . . . &2.m | | X2 | b, ‘
| i
| 1
- L | - I
| ema Em,2 e Miemm | Xm l bm ’

has a unique positive solution.
Lemma 3. For every n>1 and 4, 8lnn/n<d0=<1, there exists an alge-
braic polynomial o, s(x)¢Hy,, such that:

(4) [ 1 +ons(x)|=e " for x¢[—1, —d),

(5) 1 —ousx) - e ™4 for x¢[d, 1],

(6) 1=<0.4x) 1 for |x|<3,

(7) ons(X) 0 for x¢[ 1,0} ou4(x) =0 for x¢[0, 1].

We will prove the following
Lemma 4. If 3kinn'n—a 1 —(2kInn/n), then for any k, 8 kgn/2Inn,
there exists an algebraic polynomial Anx(x,a)cH,, with the properties;

(8) Ana(x, @)=0  for x¢[—1,0], Asx(x,a) 0 for x¢[0,1],

9 L Apa(x, @) - det/n*' far —1=X<a—2lxn

(10) CAps(x, @) —4e'/n*V for a4 20ga=x1; aa=klnnjn
a &-71k'n

(11) ,._‘{x Aa(x, a)dx=—=1—1/n*A.
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Proof. Take the polynomial A,((x—a)/2)o,s(x), where A, is the poly-
nomial from Lemma 1, o,, is the polynomial from Lemma 3, d=kInn/n.

By Lemma 1 and Lemma 3 it follows that

. Awx(x, @)=0 for x¢[—1, 0], Apa(x,«)=0 for x¢[0,1] since
Ana((x—a)/2)=0 for x¢|—1, 1], ons(x)=0for x¢[—1,0], 0ns(x)=0 for x€[0, 1).

2. Let x¢[—1,a—24s,]. Then (by Lemma 1):

(12) An,k( ,x,,;fa);23~ln—2k+l.

Since d =k Inn/n and a>3kInn/n, Lemma 3 yields

(13) ono(x)|=1+e™H=1+1/n*"
From (12) and (13) one gets

(14) | A, x(x, a)| = Anr((x—a)/2)| ona(X) | =2e'n—2%+1(1 + n—*4) < 4etn—2k+1,
3. For a+2ix,<x~1, again by Lemma 1 and Lemma 3, one obtains

Ana((x—a) 2) | =2e*n=2k+1 | 6, 4(X) |=1+n"H4,

or | Aua(x, @) —4etn—3*+1,
4. Lemma 1 and Lemma 3 and the mean values theorem yield:

at2i, o ‘ °+27:k,, e “*en X—a
[ Auax, adx= [ An(", ) ona(X)dx =05 [ A,,,(-T)dx,
u—?lk’n a—" kon o= k.n
where a—2i;,=&,~a+2iza Or
u+'.’/:.k'” Ian " kun
4 Ani(x, @)dx=20,,3) [ Ana(pdy=(1+r) [ Ass(y)dy,
a2, A pn T

where [z, — 1/n*4, p'hn A x(y)dy 1.

Thus, the Lemma is proved.

Lemma 5. /f 3klnn/n—a<1—2klnn/n, then for any k, 8=k=n/2lnn,
there exist an algebraic polynomial B (X, a)Hin41, with the properties

(15) Bni(x, a)<<0 for x¢[—1, 0],
Bna(x, a)=0 for x¢[0, 1),
(16) 0< Bax(x, a)=2/n** for —l1-—x=a 2ium
(17) ' Bpa(x,a)—N|=2/n*% for a+2ixn=x=1, Apn=—RkInn/n,
(18) 0- | Boa(x, @) | =N+2/n**  for a—2ixn=xsa+2lum

where N J"‘-" Ay =1,

R, n

(19) B, (0, a)=0.
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Proof. This Lemma follows from Lemma 4 for

x 1
Baa(x, a)= _jl An iy, a)dy "Of Anp(y, a)dy.

Proof of Theorem 1. Let é=0 be arbitrary and ¢=me(A+ B)/B.Con-
sider the polynomial

Am+i CB,,J(X, (21— l)/2m).
1

m m

Pn,k‘x) = .\_ am_,HL‘B,.,*(—x, (21‘— l)/?m)'f‘ :

=1 i=

Obviously, P, x(x)¢Hins1. We will show that the system
(20) Powx i)=Y, Parlxi)—Yyi;

has a positive solution with respect to {a, ™.
The condition of the Theorem klnn/n<1/8m and (16) and (17) imply

i—1,..., m,

Box(—j/m, (2i—1)2m) -2[n*4, 1 =j=m,

Boaljim, (2i—1)2m)<2/n*4, 1=j<i—1,
Bn,k(j/m’ (Qi B ])/2”1) 'N"*‘dk,m léjém,

where V-1 does not depend on i, j; |dxn =—2/n*".
But then the system (20) might be written as follows:

Ly, L, @ | ‘.»)’~u
; | 82 1J’~(m—l)‘
| o H ' .
l | B |
Ly Ly | ; Qo | {,Vm
M+’>|1 M‘f*l)l,z M+’5|,3 M+ 61.,,.-1 M+d|,,,
L g, M~+322 M+ 02 M+ 34.m1 M—+-69,m
11 . .. .. ... .. R
! Om—1.1 Om—12 Om-—1,3 MA4-Om1m—1 M+ im
|
| Om,1 Im,2 Om 3 Om.m-1 M4 8mm l
| B1,m 41 S1,m+2 S1,m+3 S1,2m—1 S1,2m Wl‘
S2.m i1 S2,m+2 d2,m+3 42,2m—1 02,2m
Ly, . ) ) ,
‘dm-l,mu 6m—l.m+2 dm 1,m+3 6»-—1,2»---1 d.,, 1,2m l
ildm.m+l dm.mﬂ»'l dm.m+3 dm.ZM—l dm.'uu _
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Om+11 Omi12 Oms1d - - - Omitm—1 Omiim
- Omi21 Omiz2 Oms23 - - - Omizm—1  Omizm
z I,
62m,l d?m,'_‘ 6?m.3 . e . (szm,m—l 62m,m !
M+ Omitmi1 Om+ 1 m+2 Om+1,m+3 . . Om+12m—1 Om+1,2m
L,. - ‘M+au+2.m+l dmo'.’,m+2 am-q—'z.nh 3 .. 6m+2.2m——l am+2,2m
M +d!m.m+l M+62",_,,|+2 M+62m,m+ 4 e . M +02m,2m—~1 M+62m.2m

where |&;; =2c/n*4, M=cN.
From this system, by subtracting j-th row from the j+ 1-th, j=1,...,
m—1, and by subtracting the m-j-th row from the m+ j—I-th one, j=1,
., m, we obtain the system:

:AM—f—t'L] £1,2 e« o o &1,2m | _al_ !‘vJy_.(m_l)'_;

€21 M+ £2,2 . e . €2.2m f a, | ‘ Ay..(,,,_g) .

(21) \ | = | !,
- |

\_ &2m,1 €2m,2 .. M+ sz,zm_l 02,1‘5 ! AYm— !

where &, =4c/n*4, 1y, >0.

But ¢=me(A+ B)/B. Therefore, M>me(A+ B)/B, since M- ¢N>C. Lemma
2 yields that if |e ,|<<e¢, then the system (21) has a positive solution, i.e. the
following condition must be satisfied: 4c/n**<e—cB/m(A+B), or

(22) 4m(A+ B)/n**B<1.

Therefore Inn>4k~'In((A+ B)4m/B) must be fulfilled.

Since the condition (22) is formulated in the conditions of the theorem,
Lemma 2 implies that the system (21), i.e. the system (20) as well, have a
positive solution. But then the polynomial £, .(x) will satisfy the conditions of
the theorem, since Bnx(x, (2 1)/2m) and B, x(—x, (2i—1)/2m) are monotonely
decreasing in [—1,0] and monotonely increasing in [0, 1]. The condition
P, A(0)—0 is obtained from the fact that B,a(0, (2i—1)/2m)=0.

Thus, the theorem is proved.

Proofof Theorem 2. If B>cm—#, then (A+B)/B--2m#/c. Then the
conditions of Theorem 1 take the form: klnn/n<1/8m,8m#+!/cA**<1.

Let £ (8+ 2)/4. The second condition becomes 8mé+1/cnf+2<1.

Since n_>m>8/c, then this condition is satisfied.

For k& (B8-+2)/4, the first condition assumes the form:

(23) (E32) -5 < g

But by definition g>1. Therefore, (5 +2)/4<38 4.
Then (23) takes the form
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(24) 681In n/n<1/m.

Let n - tfmlInm, where r is an arbitrary positive number for the time
being. Then (24) might be written in the form:

(25) 6 1n (:,fli:lnln m) <1.
But
6 In (¢xpm Inm) Inif+21lom In 5 2\ . Inz 3. lnr 3
 tlam <6 tlam 6(1lnm +T)>b(rlnm+";)t' 6(§+ ;‘)’

The above inequality follows from the condition of the theorem, according
to which m>e° If 145, then

o5 3)<,

and therefore (25) is fulfilled. The theorem is proved.

Using Lemma 1 from [19] it can be proved that the order O(mlInm)from
Theorem 2 cannot be improved. This will become clear from the considera-
tions below.

3. We will state some corollaries from Theorem 2 giving exact estimates
for the partially monotone approximations with respect to the Hausdorff dis-
tance and the partially monotone local approximations.

The Hausdorif distance between functions was introduced by Bl. Sendov
and B. Penkov [20] and further developed in the theory of approximations
by Bl. Sendov and his school [21].

Let the set F, consist of all bounded along the axis y and closed point
sets in the plane which are convex with respect to the x axis and whose pro-
jection on the x axis coincides with the interval 4. The Hausdorff distance in
the set F, is defined by

r(F, G)=max{§l;p inf d(A, B), Sl:[z ;lelfo d(A, B)},

F BeG A
where d(A, B) -max{|a,—b,|, |ag—b,|},

A=(a,, a,), B=(b, by); FF,, G¢Fy.

Let / be a function bounded in 4. By f denote the complemented
graph of f:

f=n{F:FeF,, fCF},

where f denotes the graph of the function f.
Obviously, if f is a continuous function, then f- f.
The Hausdorff distance r(f, g) between two functions f and g, bounded

in 1, is determined as a Hausdorff distance between their complemented

graphs: r(f, g r(f, &.
Let us denote by

EN(f), = P‘:‘L’(f: P)
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the best approximation of the function f, bounded in the set A=[a, b], by
means of algebraic polynomials of degree not greater than n. A fundamental

result in the theory of Hausdorif approximations is the universal estimate ob-
tained by Bl. Sendov [22], as follows:

E.(f),=O(nn/n).

This estimate is kept when a monotone bounded function is approximat-

ed by a monotone polynomial of /7, with respect to the Hausdorff distance
(see [10]).

Theorem 3. If fis a continuous function in (—1, 1|, monotonely de-
creasing in [—1, 0] and monotonely increasing in (0, 1), then for any posi-
tive integer n, there exists a polynomial P¢H?, for which, if x¢[—1, 1]:

(26) f(x)+F(x) <alnn/n,
where a is an absolute positive constant, and
f(x)+P(x) =max{ int max{ x—t, f(x)—PF{F) |,
te[—1,1]

inf max{{x—t, f(t)—P(x) .

re[—L1)

Proof. Let m be a positive integer. Consider the system of points (x_,,
Y—1)y (X4, Y1), where x;=i/m, x_,=—i/m, y,=f(i/m)+(i—1)m® y_,=f(—i'm)+
(i—1)/m® i=1,..., m. From Theorem 2, for m>e%, it follows that there exists
a polynomial P,(x) of degree 135 mlIn m, which is of the class H2 for

which: y, =P (x,), Y=Pyx_y), i=1,..., m. 135 m In m*
Let x¢[x,_1, x;] or [x_,, x_;. ). It is easily seen that

eipfl max{|x—t, f(x)—Pyt) }=1/m+1/m*<2/m,
re(—1,1)

int  max{x—t, f({)—Pix) }s1/m+1/m3<2/m.

re(—1,1]
Theretfore, it m=n/lnn,
| f(x)=Py(x) <2Inn/n.
But, it m=n/Ilnn, then 135m Inm<= bn.
Then there exists a polynomial P¢/f2, tor which
| f(x)—P(x)|<alnn/n.

From the definition of a Hausdorif distance it is clear that, if f is conti-
nuous in [—1, 1], PeH,:

max | f(x)+=P(x) =r(f, P).
—1sxs!

Then the estimate (26) from Theorem 3 can be written, as follows:
(27) r(f, P)=alnnn.
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As seen, the estimate (27) does not depend on the structural properties
(tor example, the continuity modulus) of the continuous function f. Then,
since the complemented graph of every function, bounded in [—1, 1], can be
approximated arbitrarily well by means of continuous functions with respect
to the Hausdorff distance, then the estimate (27) holds also for the Hausdorfi
approximation of arbitrary, bounded partially monotone functions in [-1, 1],
by means of partially monotone polynomials.

Before going further on, we have to define the concept of a local conti-

nuity modulus for a given function f, continuous in [—I1, 1]. This definition
can be found in [19].
Let f be continuous in [ -1, 1}, x¢[ -1, 1|. The number

w(f, x;8)— sup flx+h—fx), >0
h =4

is called a local continuity modulus for the tunction / at the point x¢[—1, 1)
Obviously,

w(f, x;a)éw(f;d): '\.&[_lllli

sup  w(f, x; 9)=wl f; 9).
re[—1,1]

From the Jackson Theorem it is known that for any positive integer n
and continuous f, there exists a polynomial P¢H,, for which

It is known, however, that in (28) w(f; n~') cannot be replaced by
w(f, x; n~'). In this connection, V. Popov in [19] set the problem for the
local approximations and solved it in the following way:

For every positive integer n and continuous f, there exists an algebraic
polynomial P¢H,, for which

(29) flx)—P(x)|=w(f, x; Inn/n)+0O(n").

The estimate (29) is exact.

We will prove the following theorem giving an exact (with respect to
the order) estimate for the partially monotone local approximations:

Theorem 4. If | is continuous in [—1,1), monotone decreasing in
| —1,0] and monotone increasing in (0, 1|, then, for any positive integer n,
there exists a polynomial P¢H?, for which, if x¢[—1, 1]

(30) f(x)—P(x) |=cw( f, x; Inn/n)+O(n~"),

where ¢ is an absolute constant.
Proof. An estimate of the type

flx)—P(x) | =cw(/f, x; Inn/n)+O(Inn/n)
can be easily proved by the well-known inequality :
Sflx)—P(x) =wl(f, x;r(f, P)+r(f, P)

and by Theorem 3.
We will prove the estimate (30) by using directly the problem for the
partially monotone interpolation.
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Let m be a positive integer. Consider the systemn of points (see Theorem 3)
(xiy Vi), (x4, ¥—i)y i=—m, ..., m. Without loss of generality and in connec-
tion with our further considerations, we might assume that y,=y_,=1, y,=
y-1=0 Then, by Theorem 2 it follows that there exists a polynomial
PcHZ, ., m>e€°, for which:
Vi=P(x), y-i=Px_), i—1,..., m.
Let x¢[x;—1, x;] and let f(x)= P(x) first. Then:
(31) J(x) = P(x) | =f(x)— P(x) = f(x)) — P(x;_1)
=f(x) = f(x11) + [ Xe) = P(Xi2) = f(x0) = f(Xi1) + f(xi 1) — f(x02)— (| —2)/my
Sw(f, x; xi—xi)+1/m*sw(f, x; mY)y+m—2
If f(x)=P(x), then

f(x) = P(x) =P(x)—[(X) = P(xi) — f(Xim1) = P(x;) —f(x;)+f(x,) —f( Xtm1)

<ol xi mY)slf, xi mo)smet

In the same way the inequality (s1) is proved when x¢[x_, x_;;; ) But
P(x) is of degree not greater than 135mInm. If we set m=n/lnn, P(x) be-
comes of degree not greater than 1357, i.e. PcH}, and

) —P(x) = e(f, X3 ¢, In n/m)+ O(n—).

The above inequality, which holds for PtH,g,, implies the validity of the
theorem.

From the fact that the result (20) is exact it follows that the estimate in
the above theorem is also exact with respect to the order. On the other hand
Theorem 4 implies that the estimate of Theorem 2 is also exact with respect
to the order of n, since, if we assume that in Theorem 2 might become small-
er in order, depending on m, then the order in Theorem 4 can be immediate-
ly improved, which, as already mentioned, is impossible.

From Theorem 4, as a particular case, follows the same estimate for the
monotone local approximations as well.
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