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A PROOF OF TELYAKOVSKI— GOPENGAUZ THEOREM
THROUGH INTERPOLATION

K. B. SRIVASTAVA

This paper gives an elegant proof of Telyakovski’s theorcur for continuous functions de-
fined on [—1,1| by actually constructing interpolatory polynomials of degree not higher than

4n based on the nodes xp=cos kzx n, k=0,n. This paper also includes a new proof of R. M-
Trigub’s inequality for the derivative of the polynomial.

1. Introduction. In their paper [2] O. Kis and P. Vertesi constructed
the polynomials 7,(/, x) of degree at most 4n, w:ich interpolate the given
tunction f(x)¢ C |—1,1] at the points

(1.1) Xpn=C0S8 2kn/2n -+ 1, k0, n,
where k-0, n stands for £ 0,1,2,...,n and satisfy A. F. Timan’s inequality
(1.2) f(xX) - Palf, X) - Ciof(dn(x)), —1 x 1.

Here wy(.) is the modulus of continuity of fix), I,(x)=n "1 x*+n=3 and C,
an absolute positive constant. We observe that the inequality (1.2) cannot be
replaced by the inequality

(1.3) f(X)—Pal f, X) = Confl(1—x) 2y 1 x 1,

tor P,(f, 1) f( -1). The inequality (1.3) was first proved by S. A, Telya-
kovskii[4) and I. E. Gopengauz [l].

Our aim, in this paper, is to give the proof of Telyakovskii — Gopengauz
inequality (1.3) by constructing the polynomials Q,(f, x), which interpolate the
function at the points

(1.4) Xpn— COSRan, k 0, n.

We may mention that the proof of the inequality (1.3) has earlier been given
by R. B. Saxena [3] by different interpolation polynomials constructed on
the nodes (1.4).

We shall see that our polynomials are simpler in nature than the polyno-
mials in [3] In fact our polynomials may be compared with the polyno-
mials in [2].

2. We describe the construction of the polynomials «),(/, x). Let
—1=x -1,cost x and costp, Xw, (from now onwards we shall be writing
k instead of kn for the sake of simplicity) with

(2.1) t,=knin, k=0,n.
Further for & 1, 2n, let
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TELYAKOVSKI — GOPENGAUS THEOREM 273

(2.2) Ly(£) = [sin n(t —ty) cos (t—1,)/2)]/[27 sin (£ —£4)/2)]
n—I1
—a (142 X cos j(t 4,)+cos n(t—t,)]
n j=1
and
(2.3) palt) = 413(1) - 3U4().

Then for any arbitrary function f(x), given on [—1, 1], we define the po-
lynomials

2.4) Qu(fy %) 155 f)+ A=)

+ 2 =[5 10+ 15T A=D1 a0
where

(25)  Go(x) = Pan(t), ga(X)=palt) and g,(x)=put)+pon-o(t), k=1, 1 1.

We note that our polynomials Q.(f, x) are of degree at most 4n-+1 as the
fundamental polynomials gx(x) are of degree 4n at most which can easily be
seen from their definitions. Moreover, they interpolate the function at the
points (2.1), because gx(x;)- s, R, j= 0, n, which is an easy consequence of
L(t) = 04y, k, j=1,2n. With the help of the polynomials Q.(f, x), we shall first
prove the following

Theorem 1. Let f(x)¢C| 1,1] and n be any natural number, then for
every x¢|—1,1] we have

a) Qul f, X)—f(x) | = Camr(dx(x)),
b) QLS X) = C 1, (x)w s (An(X)).

Remark 1. We could prove the theorem simply by considering the poly-
nomials  Ru(f, xX)- f(C)+ Zk=o| f(xx)—f(C)]- ga(x), —1<c<1. The inequality (b)
which supplements the inequality (a) was given by R. M. Trigub in [5].

QOur main aim is to prove the following

Theorem 2. Let fix)¢ Cl 1,1], then for every x¢|[—1,1] we have

f(x)—=Quf, %) = Cray(n='(1 —x3)1).

Remark 2. This theorem can also be proved with the help of the poly”
nomials given in Remark 1.

Before proving the theorems we need some lemmas.

3. Lemma 1. The following identity holds :

2n

. : i A
(3.1 *‘;‘p,(t) =1— gy (012 cos 2nt +3 cos 4nt).
Proof. Following Kis--Vertesi [I] we have from (2.2)

n n
2nl,(t) 1 +2 X cosjt- cosnt X Z/—cosnt,

fosl J n
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n 2n 3n 2n
(3.2) (2n2 X B(t)= X { Y Cj32le—) —3cosn((t—ty) X C .2e~'",
k=1 k=1 =—3n J=—2n

+3cos?n(t—t,) X Ze—Vt, — cos?® n(t—t,)},

J=—n

where z—e¢‘“. Noting that
2? B e-—i/(n/n) 1 — —2ijn
T ey =L
k=1 1—e
O if j is not a multiple of 2n
|27 it j is a multiple of 2n,
and
s

o— ikl +//m) 2{ 2n, if j=+n, +3n, +5n,...

S
A=

1 0. 1in the contrary case,

we obtain
2n
(Zn)“él L3(1)— Cys =2Cupn3cos 2nt —3 . 2(,‘,','3 cos? nt+3 cous? nt,

where C,3 and Cq,3 are respectively the coefficients ot Z° and Z* for m=3,
C,'.,J the coefficient of Z” for m-—2 in the expansion

(3.3) N CuZi=Z-ma(1—zniayn ¥ UTNUFY . tm1)

Jj= :mn J=0 (m—1)!

Obviously Cym—C_jm j 1, mn.
Thus, we have after simplification

Cos - 3n2+3n-+1, Cany ~ (n2+3n+2)/2, Crs=n+1.
On substituting these values of Cos, C2,3 and C,, in (3.2) we obtain
. o\ B 28 . 1 ,, 1
(3.4) (2n)* ¥ l;:(t):(dn’—-—i)+(n1+ 3 ) cos 2nt.
In the same way we have

2n
(3.5) (2n)® él B()=Co4+2Cup4 cos 2nt +2Cyp 4 cos 4nt

~4.cos nt|2Cy 4 cos nt + 20" 4 cos 3nt|
i ” 7
6 cos? nt[Co 4 + 2Can,4 cOS 2nt)— 8 cos* nt + cos* nt,

where, again, the numbers Co4, Cuuy and Cynq are respectively the coefficients
of Z°, Z?" and Z*' for m-—4, the numbers (J,',,. and Cj,, the coefficients of

Zn and Z¥ for m 3 and the numbers C,, and Cin4 the coeificients of Zv
and Z* for m=2 in the expansion (3.3). Thus, we have on simplification
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Cos=(16n°+24n2+14n+3)/3, Cops—(4n3+12n*+11n+3);3, Cyna=1,
Coa—2m3+3n+1, Cina— 1, Cou=2n+1, Capy=1.

Hence with these values of the coefficients we obtain from (3.5)
) n 16 4 3\, 8% 4n 1 1
3.6) (2n)? él ()= (3 n— n—+—§)+ . T*?_?) CcOs 2nt + & COs 4nt.
From (3.4) and (3.6) we have
2n i 1
(3.7) ki l(41;;(:) —3L3(#)= 1 — g5 (9— 12 cos 2nt + 3 cos 4np),
which is essentially the same as (3.1).

Remark 3. Compare the identity (3.7) with the identity of A. H. Tu-

reckii, where we have 4/3(f)—3/i(f)=1, when the nodes of interpolation are
the points (1.1).

Lemma 2. There hold
a) L)+, () =3as;*sin?nt,
b) OO+ (O, (8) =21asn sin® nt,

1 .
c) (cost—cos t,)l3(t)+(cos t—cos ti1)l3 (D) |= 13 asy?sin?t,

where s,—2nsin (t—t,)/2.
Proof. Since

(3:8) B8, = Utba) G—bbra+ 5, )

and

L1 (= 1)*Isin nt sin (x/2n) .
£ TERH LT Onsin (£ —ty) 2 sin (E—1,, )2

Hence we have

. sin? nt y . sy
: . 2 . . L e—2 | —4 2
‘l‘:(t)'*'l:*‘(t) = ‘Sk—'ﬂ*s;'l '{S. = | | Sp ! | Sks sk+l} —Jﬂbk sin® nt

since |s, |=|Ss;1, which proves the first part of the lemma.
To prove the second part, we see that

‘(_”’* Isin nt

L+ 1,0 2.2n

cosec?(t—1,)/2

+(-7 l))* ;iﬂ,'" cosec? (f —tui1)/2+ '2 (- 1)* cos nt cot (t—1t,)/2
- an

1 - 2. —
b1 (—1pticos ntcot g (t—tagn) - dnasy it nast s Snasy

and hence we get after difierentiating (3.8)
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L@@ 5 (O, (D)

~Snas;?-3s;7%sin® nt+ns;? - 2.3ns,? sin? nt = 18ans, * sin? nt,

where we have used [,(f)|=n/ s, , which gives the part (b).
l.astly, we can easily see that

(3.9) cost,—cost—2sint.sin(t—ty)/2cos (t—1tx)/2 2 costsin?(f—t,)/2,
(3.10) COS £y —COS tpsy =2 sin(n/2n) sin (E,+ £rr1)/2

alsintcos (tr.y  tHy+2costsin (e 1)/2) cos((trsr —1)2)}/n.
Therefore, we get

(cos t-—cost,)ly(t) - (cost—cos trr)ly, (£) =(13a/2)s? sin?¢

and we have our last of the lemma proved.
4. Proof of the Theorem 1. On account of (2.4), we have the identity

(4.1) Qaf, x) flx)
1Hx(/(l) f(x))’fl.-_;x(ﬂ- 1’**/(4‘)),'[1 é“‘h‘x)}

t -‘/(x/) S(X))gu(x) = X+ X,

Using the properties of modulus of continuity we have

(4.2) (1 += X))l —x)+ (1 —xX)ws(l+x) - bwpl —x?), x¢c|—1, 1]
Hence we obtain after using (4.2) and (3.1)

. 9
(4.3) oo 'x‘in, ; wy(l - x)—= 8 wp( (X))

Now we break the sum X, into four parts after making use of (2.5), i

N, =(f(cost;—f(cost)) pft) f R (f(cos ty) — f(cost))4li(t)

2n

2n
- .‘_'l(f(cost,.) f(cos £))4l;(t) 3’. : (f(cost,) -f(cos ) li(¢)
R=/4

(f(cost,) f(cost)pAt)+ 2o+ 27+,
where ; is defined by
(4.4) t—t; —nl2n.

We will now show that each constituent of the sum X, is o{ws(4,(x))|. For
the first constituent, we have from (3.9), (2.3), (4.4) and the properties of mo-
dulus of continuity

(4.5) S(cost)) [(cost) pAt)|
(1t a/2)wp(n (1 = X))+ (1 2% 8)w | x |/n?*).
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The estimates for Y and Y, are the same, so we do only Y. We make use
of the method of Okis [2], i. e. group the summands into pairs. Thus, if the

number of terms in N. is even, they are grouped in pairs and no term is left,
but if the number of terms is odd, one term will be left out which can be
estimated as (4.5). Now using lemma 2(a) and (3.9), (3.10), we obtain

’ /"1 L 1 ) ) j’\:l 1 ) »71

~o 4'371;31 <s"+si>u)f(fl (- x2?) 2)+4.37t*:l (sg‘]—f—gsz+‘> n)/( x |/n?),
since s, |- 2nsin(f—1,)/21 =2n( k—j)-1)2n-2i—1, i~ k-]l k+j. We
easily obtain

(4.6) S A 2mwgn (1 —x'?) T (20 1) 20 1) Y
i=1

10y ( x /n2) S (20 1) 3+(204 1) 22) = Olwd A(X))}-
fem]

For the last constituent, using (3.9), (3.10) and the estimates for [,(t), we have

2n
(4.7) =3 I {is 34 5y Yo (n (1 = x)'7)]
A=, bt/
‘-k I‘.‘.‘k (5,2 + 285,22 ws( x!/m®)=Olwy(n T —x)124  x n?))
=1, ki)

Thus, combining (4.6), (4.7), (4.5) we obtain from (4.1)
Qi f, X)—f(x) = Ol (n~'(1—x?)'P+ x n=?)j

which proves the first part of the theorem.
For the second part, we differentiate (2.4)

: n-f—-1 , = 1)—A—1
Qnl 1, x) f()“'{L L h:n—(ﬂ—)-—;‘— ’)q.tx)

- x L 1—x |
RV R e DRy (G AR
PO E g |+ B o —A0a
! frum] k=0
L G )+ 5 (o= D, E, aio
With the help of (2.5), we have

2 (f(cos tay— (cos NP0

[Fsine
. — X 2n , - . -
L ;; (f(x—fA)+ : , (fX) f(-l))“:” k}‘“pk(r)g_,lv,v_m_.L Yon-

For ¥, and Y4 using the appropriate form of the identity we see that
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(4.8) o =oA1).3/8m3< A7 (X)w A dud x))
and
(4.9) Top = BwAl —x?).3/2n< A, (x)w (Unlx)).

For X,, applying the same argument we used to estimate Y, with only diffe-
rence that now we have p)(f) instead of p,(f) and hence

1 ) 36 n si
ane f(cos ty—f(cost) - pi(t) <RI o 4,00)

and

' sin ¢

:"2‘2 |= Oln s'in mt (1),4/1,.()6))} ,

sin ¢

1 n sin nt
=0 { e ordne).

Combining these three equalities, we have

. nt
'S ]=0 {'%:,— w/(A,,(x))} A
Case 1. When (1—x%)!2>1/n then we have
(4.10) a0 |= Oy (X) - oA da( %))}
Case 2. When (1- x?)'"?<1/n then we have on using sinnf <ni sint
(4.11) S = 0{d7 ) - o1,

Hence from (4.11), (4.10), (4.9) and (4.8) we get seqcond part of the theorem.
Proof of the Theorem 2. Let (1 -x%!? -1/n then from the first
part of the Theorem 1 we have

(412) 1 Qn(fr x)“'f(x) | :\:QC[(U[(’I ' l(l - .Vg)lm).
Secondly let (1--x?)12< 1/n, then trom (2.4) we have

Quf0 0~ [0 A+ 55 e -] [1- £ a)|

; 50 (f(xn)  f(x))qu(x).
R

From (4.3) we have

—x

n
HEE ) foN+5 5 (=D —f [ 1= 2 pa() | =g a1 — 9™

[Tsing (2.5), we have
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[X— Xk |

o
fla)—fx) 1gax) < £ (+5—24
0 - 1—x

I 4a

)(J)f(] _xﬂ) ‘p/,(t) i'

&

since ¥27 p.(¢)=O(1) and

2n
Y (cost— cost,) palt)
=1

k=

—1
—(cost—costyp,(t)+4 ,E (cos t—cos t)3(1)
k=1

2n 2n
+4 X (cost cost)l¥(t)—3 I  (cost—cos tR)li(t)
k=j+1 k=1, k=tj

=(cost—cos t)p(t)+ T+ X+ X
Arguing in the same way as in the proof of the first part of the theorem
and now using the lemma 2(c) we see that
(4.13) X =0(01—x%, XI=0(1—x3), XI"|=0(1—x?

-3
and |cost—cost () <= (a2 4+22/8) (1 —x?). We get from (4.13) and the last
inequality

2n

Y cost—costel| pu(t) =01 —x?).
=1

Hence we have

QA f, X)—f(x) | = O(ws(1 — x2))= O((1 — x?)'2/n) for (1—x312<1/n.

From here and (4.12) we have our theorem.
) Acknowledgement. The author is grateful to Dr. R. B. Saxena for his
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