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ON THE APPLICATION OF _LYAPUNOV'S SECOND METHOD
TO MULTIVALUED DIFFERENCE EQUATIONS

J. SCHINAS, A. MEIMARIDOU

In the present paper we study the stability of the miltivalued difference equation
x(n+1) ¢ Fn,x(n)) via Lyapunov’s second method. In particular, we give sufficient conditions
for stability, uniform stability, asymptotic stability, uniform-asvmptotic stability, as well as
the corresponding types of weak stability.

1. Let £ be an Euclidean space with norm - | and S(r) bethe open ball
in £ centered at 0 with radius r>0. Let ¢(E) be the family of all compact
nonempty subsets of E. For any A¢ c¢(E) we denote | A ;=sup{ a :a¢A}.

Ii n is any integer, we denote by /, the set {n, n+1,...}.

For some r, 0<r= o, let F:[,x8(r)— c(E) be a given multifunction. Fix-
ing (n., x,) € I, 8(r), we consider on /, the multivalued difference equation

(1 x(n+1)€ F(n, x(n))

By asolution of (1) we understand a function x:/, — S(r) (i.e. a sequence)
satisfying (1) an /,. We denote by p(,, n, x) any solution of (I) passing from
(n, x)€l,,<S(r), i. e. taking at n¢/,, the value x ¢ S(r). For any m¢/,, we
denote the attainable set from (n, x) at m of (1) by

Alm, n, x)={y=p(m, n, x):p(-, n, x) is a solution passing from
(n, x)€ 1, <S8(r).

We remark that the set A(m, n, x) is defined both forwards, i.e. for m>n
and backwards, ie. for m<n. Obviously A(n, n, x)={x]}.

Ax € S(r) such that {x{=Hn, x), for any n¢y,, is called an end-point o
(1). In case F(n, x) is independent of n, i.e. (1) is a discrete multivalued dy-
namical system, existence of end-points is discussed in [2; 8]. In the present
paper we assume that 0 is an end-point of (1) and we determine sufficient
conditions for various types of stability (resp. weak stability) of the end point
0 of (1) via Lyapunov’s second method. Results of this kind, concerning dis-
crete multivalued dynamical systems, can be found in [2; 4; 6; 8]. They re-
present the discrete version of current investigations concerning (continuous)
multivalued dynamical systems [10; 11] and multivalued differential cquations [1;
(3; 45 5]

Finally, let us mention that stability properties of multivalued difference
equations find several applications in various fields; for example, in optimiza-
tion theory [9; 13, in problems of minimization algorithms [12], in game theory
8], in mathematical economics [4], and in numerical analysis. In the last dis- -
cipline multivalued difference equations are derived from a discretization of
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multivalued differential equations. But the numerical convergence question of
the solutions of the multivalued differential equations is closely linked to nu-
merical stability, that is the stability of the corresponding multivalued differen-
ce equations [7].

The following definitions concern the stability ( resp. weak stability) of
the end-point O of (1).

Definition 1. The end-point O of (1) isstable), (resp.weakly stable), if
for any >0 and n,¢ 1, there exists a 8(g, n,)>0 such that | x,| <8 implies
‘A(n. n, X,) ;<& (resp. there exists a solution p(., n, x,) of (1) such that,
[p(n, n, x,)|<e), for all n¢l,,

Definition 2. The end-point O of (1) is uniform stable (resp. weak-
ly uniformly stable),if it is stable and § in Definition 1 is independent of n,.

Definition 3. The end-point 0 of (1) is asymptotically stable (resp.
weakly asymptotically stable), if it is stable (resp. weakly stable) and for
any n,¢€ 1, there exists a 8,(n,)>0 such that | x,|<8, implies lim,,.. |A(n, n,,
x,)|s=0 (resp. there exists a solution p(., ny x,) of (1) such that lim,..\p(n,
ne Xo)|=0).

Definition 4. The end-point O of (1) is uniform-asymptotically sta-
ble (resp. weakly uniform-asymptotically stable), if it is uniformly stable
(resp. weakly uniformly stable) and for any €>0 there exist a §,>0 and a
N(e)>0 such that | x, <38, implies | A(n, n, x,) <& (resp. there exists a so-
lution p(-, n, x,) of (1) such that |p(n, n, x,) <e). for all n¢l, ..

Clearly, any type of stabilty implies the corresponding type of weak sta-
bility. The notion of weak stability, which is pertinent to non-iniqueness of so-
lutions in the multivalued case, was developed by Roxin, [10:11] in relation to
multivalued dynamical systems.

2. Main results. Our stability criteria are based upon the existence of an
appropriate scalar function V, V: /[, <S8(r) — R. Moreover, in order to measure
the growth or decay of such a function of V along a solution of (1), we de-
fine, for any n¢/l,x€S(r) and y¢€ F(n, x) S(r), the following functions

AV(n, x, y)=V(n+1, y)—V(n, x)AV(n, x, F)=sup{AV(n, x, y): yeF(n, x)}

We denote by K the class of all monotonically increasing scalar functions
on [0, r) vanishing at 0. We consider the following hypotheses:
(Hy) V(n, 0)=0, a(‘x,).< V(n, x), for some a ¢ K and for all (n, x) ¢ 1,<XS(r);
(Hg) WAn, x)=b(|x|), for some b¢ K and for all (n, x)31,XS(r);
(H;)  AV(n, x, F)=0, for all (n, x)€[,<S(r);
(Hy) for all (n, x)€ [,XS(r) there exists y,.€ F(n, x)(1S8(r) such that
AV(n, x, Yp)=0;
(H) AV(n, x, F)=—c(V(n, x)), for some ¢ ¢ K and for all (n, x) €1,XS(r);
(H;) for all (n, x)¢€1,<S(r) there exists y, ¢ F(n, x)N S(r) such that AV(n,
X, Vo)== —c(V(n, x)), for some c¢ K;
(Hy) AV(n, x, F)=—c(|x!|) for some ¢ ¢ K and for all (n, x)¢1,<XS8(r);
(HY) for all (n, x)€1,<S(r), there exists y,. € F(n, x)N\S(r) such that
AV(n, x, V.. )=—c(|x|) for some c¢K.
A scalar function V, which satisfies (H,) (or (H,) and (H,)), is said to be
a Lyapunov function or entropy (resp. weak Lyapunov function ar weak en-
- tropy), according to Aubin and Siegel [2] on /,X8(r) for the multivalued
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differnce equation (1), if it also satisfies one of (Hj;), (H,), (Hs) (resp. one of
(H3), (H, (HY))

Obviously any Lyapunov function is a weak Lyapunov function.

Theorem 1. The hypotheses (H)) (Hs) imply that the end-point O of
(1) is stable.

Proof. For any €>0 and n, ¢/, we can choose a 8(g, n,)>0 such that
| x, <8 implies V(ng x,)<a(e). Let x € A(n, ny, x,), n€1,, be arbitrary. Then
there exists a solution p(-, n, x,) of (1) such that p(n, n, x,)=x. Moreover,
Vin+1, p(n+1, ny xo))—Vin, x)=AV(n, x, F)<0 implies V(n+1, p(n+1, n,
x,))=V(n, p(n, n, x,)), for any n¢ I,,. By induction, it can be easily proved
that V(n, p(n, ng Xx,))=V(n, x,), for any n¢l,,. Therefore a(|p(n, ny xo)!)
<WV(n, p(n, n, xo))=V(n, x,)<a(e) and, since a ¢ K we get |p(n, ny x,)| <8,
nel,, ie. |AWn, ng x,)|s<e, since x ¢ A(n, n;, x,) is arbitrary.

Theorem 2. The hypotheses (H,), (H}) imply that the end-point 0 of
(1) is weakly stable.

Proof. Let p(., n, xo); [n,—S(r) be defined by p(n,, n, xo)=xq p(n+1,
Moy Xo)=Ynpin noxy € Fn, p(n, ng x,)) 0 S(r), n €l,,. Clearly p(., n, x,)is a solu-
tion of (1) and p(n, n, x,)€A(n, n, x,). By definition of p(., n, x,) and hy-
pothesis (H)) we get V(n+1, p(n+1, nyg, x0))—V(n, p(n, n,, x,))=AV(n, p(n,
Moy Xo)s Vnpinnaxy)=0. Then, as in Theorem 1, we get |p(n, n,, x,)|<g, n¢ In,.

heorem 3. The hypotheses (H,), (Hy), (H;) imply that the end-point
0 of (1) is uniformly stable.

Proof. For arbitrary e>0 we choose 8=35(e)>0 such that b&(8)<a(e).
Then, whenever |x,/<8, we have V(n, x,)=b(|x,|) <b(d)<a(e), n, €/,
Then by the same argument, as in Theorem 1, we have a(|p(n, n, Xo)|)<
a(e), i.e. | p(n, ny x5) <e.

Theoremd4. The hypotheses (H,), (Hy), (H3) imply that the end-point O of
(1) is weakly uniformly stable.

Proof. For arbitrary €>0 we choose §=38(¢)>0 such that b(8)<af(e). If
we construct the solution p( ., n,, x,) as in the proof of Theorem 2, then it is
implied a(|p (1, n, Xo) )= Vi(ng xo=b(|x,|)<b(8)<a(e), ny¢ I,

Theorem 5. The hypotheses (H,), (Hy) imply that the end-point 0O of
(1) is asymptotically stable.

Proof. From Theorem 1 and since (H,) implies (H;) we have stability.
Also there exists a 8,>0 such that n,¢€/, |x,|<8, imply | A(n, ny xo)|<7,
nel,. Let x¢A(n ny xo) n¢ln, be arbitrary and p(., n, x,) be the corre-
sponding solution of (1) passing from (n,, x,). Clearly V(n, p(n, ng xo))= Vi(n,,
Xo) i.e. there exists V,=limu...V(n, pn, ny xo)). If V,5=0, we shall show that,

2) V(n, p(n, ng x)—V(n, xo)=—c(Vy)(n—n,), né€l,,

Actually, (using induction) if we accept that it holds for some n then, V(n+1,
p(n+1, ny xo)—V(ng x)=Vin, p(n, ny xo))—ec(Ving, xo)—WV(n,, xo)= —c(Vy)

(n—ny)—c(Vy)=—c(Vy)(n+1—n), since V(n, p(n, ny x) is non-increasing in
n and c¢ K, i.e. it holds for n+1. Thus, taking the limit n—oo in (2), we
get V,= —co, a contradiction. Therefore, V,=0 and lim.,. a(| p(n, no xo)|)

NiMae o V(n, pn, ne x))=0, ie. liMmuswa(|p(n, ne xo)|)=0, ie. lim,.p(n,
n,, x,)—0. Since x¢€ A(n, n, x,) is arbitrary, it follows lima. | A(n, 1y X,)|,=0.
Theorem 6. The hypotheses (H,), (H}) imply that the end-point 0 of

(1) is weakly asymptotically stable.
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Proof. Let p(., n, x,) be the solution of (1) constructed as in the proof
of Theorem 2.Clearly V(n+1, p(n+1, n, x,)—V(n, p(n, ny, xp)) = —c(Vin, p
(n,n,, x,))- Inductionshows that V(n, p(n, n, x,))=V(n, x) n¢l,, and as in
the proof of Theorem 5 we get liMpae p(n, 1y Xxp) =0.

Theorem 7. The hypotheses (H)), (Hy). (Hy) imply that the end-point 0
of (1) is uniform-asymptotically stable.

Proof. Uniform stability is established by Theorem 3, since (H;) implies
(H;). Also there exists a 8,>0 such that n,¢/, | x, <8, imply " Aln, n,
x,) ,<r, n¢l,. Morcover, for any £>0 there exists a 8(¢)>0 such that »,¢ /,
x, <8 imply | A(n, n, x,)|,<e n¢l,. We claim that for all n, ¢/, | x,/ <38,
there exists a n, ¢ [, such that A(n,, n, x,)|,<8(¢). Because otherwise, for
an arbitrary x ¢ A(n, n,, x,), n€l,, and for the corresponding solution p(n,
n,, x,) of (1) passing from (n, x,), we would have |p(n, n, x,) =8(€). n¢/n,
ie. —colp(n, n, x) <—c(3)). Hypotheses (H;) implies that, for all n¢/,
Vin 1, p(n+1, n, x0)—Vin, p(n, ne, x.))=—c('p(n, ng x,) ). One can easily
obtain by induction that, for all n, €/, V(n, p(n, ny xo)=Vi(n, x,)—c(3e)) (n
—n,). Let (b(3,) a(8(€))'c(3(e)). Since V(n, x,)=b(|x,!)<b(8,) we get, for
all n>n,+Ne), Vin, p(n, n, x,))<a(d(e)). a contradiction. Now taking M(g)
sufficiently large, there exists a n, € [,, ny,=n,+ M), such that ' A(n;, ng, x);
< 8(g), which implies that | A(n,, n, x,)',<e, for all n>n,+Me), and the proof
is completed.

Theorem 8. The hypotheses (H,), (Hy), (H:)imply that the end-point 0 of
(1) is weakly uniform-asymptotically stable.

Proof. If p(., n, x,) is the solution of (1) constructed as in the proof of
Theorem 2, then it can be shown, as in the proof of Theorem 7, that there
exists a Me)>0 such that | p(n, ny, x,) | <8(e), n=ny+ Me).

Finally we give some examples illustrating the above types of stability
(resp. weak stability). Consider the multivalued difference equations

(3) x(n 1) € Fn, x)={ "lﬂ nl-+-‘2 x(n)), nely,

x(n),

(4) x(n+1)¢ An, x)={x(n), l” x(n), "LQ x(n)}, nel,

n

Then, (3) is uniform-asymptotically stable and therefore weakly uniform-asym-
ptotically stable, since if we consider V(n, x)=x2 a(r)=r*2, b(r)==3r?2 and
c(r)= —r*2 all hypotheses of Theorem 7 are satisfied. Also (4) is uniformly
stable and therefore weakly uniformly stable, since if we consider V(n, x)=|x|,
a(ry- r 2, b(r)--3r/2, all hypotheses of Theorem 3 are satisfied. Obviously, (4)
is non uniform-asymptotically stable, although it is weakly uniform-asympto-
tically stable, since if we consider V(n, x)=|x|, a(r)=r/2, b(r)=3r/2, c(1)=r/2
and v, . -x/(n+2) all hypotheses of Theorem 8 are satisfied.
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