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APPLICATION OF INTERPOLATION FORMULAS
TO THE NUMERICAL SOLUTION
OF SINGULAR INTEGRAL EQUATIONS

N. L. IOAKIMIDIS

The Lagrange and Hermite polynomial interpolation formulas are applied to the direct
numerical solution of one-dimensional singular integral equations with Cauchy-lype kernels
by using the quadrature method. The application of these formulas permits lo use
essentially arbitrary collocation points along the integration interval without decreasing
the accuracy of the obtained numerical results. In this way. iv is not necessary to eva-
luate special collocation points and, moreover, the distribution of these points along the
integration interval is sufficiently arbitrary to be made optimal from various points of view.
The method is also applicable to singular integrodifferential equations. A simple applicalion
of the method to a singular inlegral equation appearing in engineering problems is also
made.

1. Introduction. Several methods were proposed during the last decade for th
direct numerical solution of one-dimensional singular integral equations with
Cauchy-type kernels (called from now on simply singular integral equations).
Some of these methods are reported in the review paper [I]. Among these
methods, the direct quadrature method has gained high popularity. A series of
modifications and extensions of this method are due to loakimidis [2] and
were reported in a series of papers by loakimidis and Theocaris (see,
e. g. [1;3;4)). Moreover, in Refs. [2;5] numerical integration rules for Cauchy-
type principal value integrals were suggested. A major disadvantage of the
direct quadrature method is that it requires the determination not only of the
nodes and the weights of the quadrature rule used, but also of the collocation
points used. These points depend both on the quadrature rule and on the sin-
gular integral equation to be solved and they are generally the roots of com-
plicated transcendental functions. Moreover, the lack of any freedom in the
selection of the collocation points is a disadvantage of the method since phy-
sical conditions or theoretical results of numerical analysis may put some res-
trictions on their distribution or may suggest optimal distributions for these
points.

In this paper, we will apply the classical Lagrange and Hermite interpola-
tion formulas [6] to the above-described direct quadrature method of numerical
solution of singular integral equations. Then the selection of the collocation
points will become in principle arbitrary and this will not affect the accuracy
of the obtained numerical results. Furthermore, the cases of singular integral
equations with generalized kernels and of singular integrodifferential equations will
be considered. A numerical illustration of the method will also be presented.

2. The direct quadrature method. We consider the singular integral
equation of the second kind
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b
(2.1) A (x)w(x)g(x) + [w(t) K(t, x) gt)dt=f (x), a<x<b,
along a finite or infinite interval (a, 6). In this equation A(x) and f(x) are
known functions, K(#, x) a known kernel of the form
(22) K(t, x)=B(x)(t—x)+k(t x),
(where B(x) and k(% x) are known functions), w(x) is a weight function and
2(x) the unknown function. Because of (2.2), (2.1) can also be written as
b
(23) A(x)w(x) g(x)+ B(x) [w(t) £ “’dt+ o0k, x) g(6) dt =f(x), a<x<b.
Now, we apply an appropriate quadrature rule of the form [6]

24) [et)o Wdt= % A,0(t)+E,

where 7, are the nodes, A; the weights and £, the error term, to the appro-
ximation of the integrals in (2.3). For Cauchy-type principal value integrals,
this rule is modified as [2;5]

b
2.5) f'w(t)ti’gdt_ E A ) 4 M%) 0 (X)+ Epp xF by m=1(1)n,

(2.6) ;w(t)“’“) dt— A-“’“ L+ A0 0 () + AL)O() + Epp X =ty m=1(1)n,
l-rm

where M,(x) and A, (x) are generally transcendental functions dependent on
the quadrature rule (2.4) (2;5]. Assuming for the moment that x==¢, (m=1
(I)n) and applying (2.4) and (2.5) to (2.3), we obtain

2.7) [ACO)R(x)+ BOM,(x)) W(x)+ E‘A,K(t,-. X)W(t) = F(x), a< x<b, x4+t

m=1(1)n,

where y(x) is an approximation to g(x).
As was suggested in [1] for the general case of (2.3), we can select as
collocation points x, the roots (or some of the roots) of the function

(2.8) F, (x)=A(x)w(x)+ B(x)M, (x).

Generally, there exist n such collocation points, permitting the reduction of
(2.7) to the syetem of linear equations [1]:

(2.9) 1A’ K(t, x) y (8)=f () k=1(1)p, xyFL,,, m=1(1)n.

I=

But if p=n—1, then a supplementary condition of the form

(2.10) [ w(t) g(O)dt=C
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holds generally true, which, by using (2.4), gives
(2.11) T Ay()=C.
i=1

After the numerical solution of (2.9), probably supplemented by (2.11), the
approximate values y(f,) of g(x) at the nodes f, are determined. Then y(x)
can be considered to be the interpolating polynomial to these values.

3. Application of the Hermite interpolation formula. A new possibility
for constructing the system of linear equations (2.9) will be suggested in this
section. Instead of selecting the collocation points x, as the roots of (2.8),
we can select them in principle in an arbitrary way along (a,b). Then, be-
cause of (2.7), (2.9) will take the form

B0 Fu (e ¥ (x0+ T A, Kb ) (t) = (60). k=1 (1) p, Xyt m= 1 (D) 1.

We apply also (2.3) at the nodes ¢, taking into account (2.4) and (2.6). Then
we obtain

(3.2) G,y (t")+.~"§1 AK({, )y ) +A;BE) Y (E)=f(ty). j=1(1)n,
i+

where now

(3.3) G, (x)=A(x)w(x) + B(x)A, (x)

and y’(x) denotes an approximation to the derivative g (x) of g(x).
We assume now that y (x)is determined by the Hermite interpolation for-
mula, based on the values y(¢;) and y’(¢). This formula has the form [6]

(3.4) y(x)=,£ WY+ E ()Y (L),
where

(3.5) hy ()= [1 =2, () (x— ) B (x) j— 1 (1)n,
(3.6) Ry (x)=(x—t) L (x), j=1(1)n,

and

(3.7) Li(x)=0,(x)/[(x—t) 0o, ()], j=1(1)n,
with

(3.8) o, (x) =/f1‘(x —t).

By applying (3.4) at the arbitrarily selected collocation points x,, we find

(3.9) Y I )y )+ T B )Y () k1 (D,
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If we substitute in these equations the values of y(x,) and y’ (£,) by their
expressions resulting from (3.1) and (3.2), respectively, we obtain the following
system of linear equations

n

(3.10)  Dypy(t)=Zy k=1(1)p,

where

(311) DA {E 1 (60 K (b )14, BU)I—K (tn )/ F (5}
J+i

—hi(xp)+ R (x) G, (E)[AB(t)) i=1()n,k=1(1)p,
and
(3.12) Zy :,Ex Ry (x) [ (£)/[A; B ()] —f(x0)/Fr (%), k=1(1) p.

The numerical solution of (3.10) with p=n if the index x of (2.3) is equal
to 0, or with p=n—1 if =1, but with (2.11) supplementing in this case
(3.10), permits the determination of the approximate values y(f¢;) of the un-
known function g(x) at the nodes #. Moreover, it is possible from (3.1) to de-
termine afterwards directly the values of y(x,) and from (3.2) the values of
V' (¢)). It is also possible to use (3.4) as an expression of y(x) along the whole
integration interval [a, b].

4. Application of the Lagrange interpolation formula. It is simpler to
use the Lagrange interpolation formula [6]

q
(4.1) y(x)= kz_l Le(x)y (xp)
for the approximation y(x) to the unknown function g(x) in (2.3). In this way,

we can use ¢=n+p arbitrary collocation points x, not coinciding with one
or more of the nodes ¢ in (2.4) and the polynomials /,(x) are given by

(4.2) L (x)=0q (x)/[(x—xx) 0,; (x)) 2=1(1)g,
where
(4.3) o, ()= ﬁ (x—x)).

Equations (4.2) and (4.3) are analogous to (3.7) and (3.8) of section 3. The Lagrange
interpolation formula (4.1) permits to use a set of ¢ arbitrary collocation points
X, along (a, b). Then we obtain a system of ¢ linear equations of the form
(Cg.l) and we further find

(4.4) Y(xp) = [ fxn)— Iz‘Af K (t, x)y (E))/Fa(xy), k=1(1)q.
These equations can be inserted into (4.1) with x restricted to the values ¢

to give

6 Cn. Cepauxa, 1
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(45) W)+ £ ALE () K (60 x)/Fa(60) 19 (0)= £ L) F(x)/Fa(x)

Jj=1(1)n.
This is a system of 7 linear equations in n» unknowns, the values y(Z,) at the
nodes used. After the determination of these values, the values of y(x) at the
collocation points x, can be determined from (4.4) and y(x) along the whole
interval [a, b] from (4.1).

We can also add that (4.5) were constructed for the case where the collo-
cation points x, do not coincide with the nodes ¢, and the roots of F,(x). In
the first case, we obtain in our equations derivatives of the unknown function
y(x) (because of (2.6)) and this should be avoided. In the latter case, we ob-
tain (2.9). The same equations can also be seen to result from (4.4) or, further,
from (4.5) if the collocation points x, are the roots of F,(x). Finally, we can
mention that, although when the index % of (2.3) is equal to O, (4.5) are suf-
ficient for the determination of y(¢), vet, if x=1, we must use (2.11), which
will replace one of (4.5).

5. A. numerical application. For the application of the numerical techni-
que of the previous section, we consider the airfoil equation [7] (with x=0)

o &0
(5.1) _ll w(t),; — dt =nf(x), - I<x<1,

where now
(5.2) w () =[(1—8)/(1+ )]
For the numerical solution of (5.1), we will use the quadrature rule

=X Ao(t)+E,
1

1
(5.3) Jw(t)(t)dt
1 i
where ¢, are determined by
(5.4) (1 +¢t)U, ,(t)=0 or t,—~cos0,0,=in/n, i-1(1)n,

where U/, ,(x) denotes the Chebyshev polynomial of the second kind and
degree n—1, and A, are determined by

(5.5) A n(l—t)ni=1(1)(n-1), A,=n/n.
Moreover, (5.3) can be modified on the basis of the results of [5] to apply to
Cauchy-type principal value integrals as
1 n
(5.6) [w @2 Qat - T 2,2+ M, (x) 0 (X)+ Ep xF: 4, i< 1(1)n,
1 == {

where now
(5.7) M, (x) = —=T, (x)/[(1 +x) Uy (x)]
with 7°,(x) denoting the Chebyshev polynomial of the first kind and degree n.

In accordance with the results of section 2, we select the collocation
points 2z, as
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(5.8) T,(2,)=0 or z,=cos@ 0,=(k—05)n/n,k=1(1)n,
as is clear from (5.7). Then (5.1) can by approximated by the linear equations
(5.9) £ AN fz) k=1 (1)n.

i=1 i k

After the determination of y(¢,) from (5.9), y(x) can be determined almost
along the whole interval [—1, 1] by

(5.10) ¥ (¥)=[xf(x)— = ALDYM, (), x5t i=1 (), xF2, k=1(D)n,

X

as is clear from (5.1) and (5.6).

[n this section we wish mainly to illustrate the application of the method
of numerical solution of singular integral equations based on the Lagrange in-
terpolation formula and described in section 4. For the application of this me-
thod, we select a set of ¢g=2n collocation points x, by

(5.11) Ton(x,)=0 or xp=0c0S VY, ¥,=(k—0.5)n/(2n), k=1(1)2n.

Now (4.5) take the form

612) 30+ E ALE 6 il Y@= 1) f /My (s 1=1 ().
By taking into account that

(5.13) U,_,(x)=sinn 0/sin®, T,(x)=cosnB with x=cos 9,

as well as (5.7)and (5.11), we can see that

(5.14) M, (x,)=—msiny,cos ny,/[(14cosy,)sinny,], k=1(1)2n.
Similarly, by taking into account (4.2), (5.4) and (5.11), we easily find that

(5.15) 1, (t,)=cos 2n 0, sin y,/[2n (cos 6,— cos y,) sin 2n y,],
i=1(1)n, k=1(1)2n.
Equation (5.1) was at first solved for f(x)=—1—x. In this simple case,

it can be directly verified that this equation possesses the closed-form solu-
tion: g(x)=2+x. The numerical results, even for n=2, by both above-des-
cribed methods verified this closed-form solution of (5.1) in this special case,
that is, ¥ (x)-=g(x). As a second application, we assumed that f(x)=—expx.
In this case, no closed-form solution of (5.1)is available. In Table 1 we present
the numerical results obtained for y(x) at x=+1 for n=2(1) 7 both by the
method of section 2 and by the method of section 4. Since £,=—1, y(—1)
was directly determined from the solution of (5.9) or (5.12). As regards
v (1), it was determined from (5.10) for x=1. We observe from the results of
Table 1 that the above-described methods gave in this application numerical
results convergent and of almost comparable accuracies. Similar very good
agreement between the numerical results obtained by the two aforeme ntioned
methods was also observed in the interior points of the interval (—1.1).
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Table 1

Numerical results for the solution g(x) of (5.1) with s (x)—~ —exp x for x=- ;1 obtained
by the direct quadrature method, v, (1), as well as by the method based on the
Lagrange interpolation formula, y;(+1)

no | Yp (=1 yp (=1 ! yp (O Yy
f \

2 1.260591837 1.266065679 1.920168522 1.901888128
3 1.266020900 1.265065878 1.928456335 1.928205066
| 1.266065674 1.265065878 4.928515593 4.928514062
5 1.266065877 1.266065878 4928515841 4.928515835
6 1.266065878 1.266065878 1928515811 1928515841
7

1.266065873 1.266065878 1.923515811 4.928515841

6. Application to singular integral equations with generalized kernels.
The Lagrange and Hermite interpolation formulas can also be used for the nu-
merical solution of singular integral equations with kernels presenting poles
outside but near the integration interval. Consider, for example, the singular
integral equation

A

tivia) 8D dl=f(x),a=0, 0<x<1.

1

“o(f) (—— -
(6.1) (! w(t) (— +
If a takes small positive values or if ¢ =0 (in which case we say that (6.1) is a
singular integral equation with a generalized kernel), then the contribution of
the pole £~ —(x+a) when evaluating the integral in (6.1) should be taken

into account in (2.4). The contribution of the pole {=u with u— —(x+a) to
the error term £, in (2.4) will be a term of the form [8]
(6.2) E,o— N, (u)g(u)

in our case (with NV,(«) a transcendental function related to M, (x)).

Several techniques permitting to obtain accurate results in the case of
(6.1) and similar cases were suggested by loakimidis (see, e. g., [9]). Here we
confine ourselves to show the application of the methods of section 4 to this
class of singular integral equations. In the case of (6.1), we have simply to
use (4.1) with nodes x, including both the n nodes ¢, of (2.4) to (26) and the
p nodes u,=—(z,+a) (k=1(1)p), where z, are the roots of (2.8). Then, by
applying (6.1) at the collocation points z, by using (2.4) and (2.5) and taking
into account (6.2), we obtain

(6.3) _il A K (L, z2) v (8) + AN, () v (1) =f(2,), k=1(1 )Py
where
(6.4) Kt x)=1/(t—x)+Lr/(t+ x+a).

The existence of a sufficient number of collocation points z, is assured by
the developments of [1]. Furthermore, we obtain from (6.3)

(6.5) y(u)=[f(z,)~ %‘ A Kt z)y ())[AN, (@), k=1(1)p.
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Since {x,}={¢} U {u,}, we can insert the values of y(a,) from (6.5) into (4.1).
Then we obtain an interpolation formula of the form

66) Y- E G (x)y (8)+Gy ()

where G;(x)(j=0(1)n) are easily determined functions from (4.1) and (6.5).

Now we can select an arbitrary set of collocation points ©,(2=1(1)n),
not coinciding with the nodes £, inside the integration interval (0, 1) of (6.1)
and apply again this equation at these points. Then, because of (2.4), (2.5)and
(6.2), we obtain

6.7) _;il A K(t, v) Yy (0)+ M, (v) Y () £ AN, (0,) ¥ (0= f(7p), k=1 (1) n,

where ©,= —(v,+a) (k=1(1)n). By using (6.6) for x=v,and x=w,(k=1(1)n)
and inserting the resulting values for y(x) into (6.7), we obtain a system of
n linear equations with unknowns the values of y(#). Of course, if we have
to take into account the condition (2.10), the number of collocation points o,
should be (n—1) instead of n. After the determination of y(¢;) from (6.7), ¥ (1)
can be determined from (6.5) and y(x) along the whole integration interval
[0,1] can be determined from (4.1) or, better, (6.6). .

7. Application to singular integrodifferential equations. In this section
we will illustrate the application of the Hermite and the Lagrange inter-
polation formulas to the numerical solution of two classes of singular integro-
differential equations appearing in engineering problems. The Hermite interpo-
lation formula is more appropriate than the Lagrange interpolation formula for
the first class of singular integrodifferential equations, whereas the contrary
happens for the second class of these equations.

We consider at first the singular integrodifferential equation

7.1 Ax)w(x) g (.\')+.|?10(1)K(¢- x) g(t)dt=f(x), a<x<b,

where K (¢, x) is given again by (2.2). This equation differs from (2.1) only in
the replacement of g(x) in the free term of (2.1) by its derivative g’ (x). For
the numerical solution of this equation by application of the Hermite interpo-
lation formula (3.4), we can apply this equation at the nodes #, of the quadra-
ture rules (2.4) to (2.6). Then, because of (2.6), we determine directly the ap-
proximate values y’(f,) of the derivative g’(x) of the unknown function g(x)
on the basis of the approximate values y(#). Then, the Hermite interpolation
formula (3.4) can be written as

(7.2) Y0 = £ H (03 () +Hy(x),

where H,(x)(j=0(1)n) are casily determined polynomials. By differentiating
(7.2), we obtain

(7.3) Y (x)= E H; ()5 )+ Hy(x),
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Now, if (7.1) is applied at a set of n more collocation points x, along the in-
terval (a, b), by using (2.4) and (2.5), and (7.2) and (7.3) are taken into account,
there results a system of 7 linear equations for the determination of y (7).
After the determination of these values, (7.2) can be used as the interpolation
formula for the approximation y(x) to g(x) along [a, b].

Second, we consider the singular integrodifferential equation

T4 AR )+ [ K ) B (£ di—f(x), a<x<b, k(@)= (b)—0.

Now the unknown function 4 (x) appears in the free term of this equation and
its derivative under the integral sign. For the special case of (7.4) known as
Prandtl’s integral equation, where [a, b]=|—1,1] and K (¢ x)=1/({—x), the
well-known Multhopp’s collocation method [10] is generally applicable.

Here we will apply the Lagrange interpolation formula (4.1) to the nume-
rical solution of (7.4) without restrictions on the interval [a, 6] and the kernel
K (¢, x). At first, by taking into account the expression (2.2) for the kernel
K (¢, x), as well as the developments of Ref. [11], we rewrite (7.4) in the equi-
valent form

(7.5) A(x)w(x)g(x)+ - fw(t)g()dt-L-j w(t) 282 g (t)ydt = f(x). a<x<b,

with 2 (x)=w(x) g(x) and w(x) an appropriate weight function. Next, we differen-
tiate (2.5) with respect to x and we obtain

b
(7.6) %fw(t)t;“’_‘iidz;, A,(;"‘” S+ M ()0 (X)+ M, (x) 9" (x)+E,,

xHtpm—=1(1)n

Then we apply (7.5) at the collocation points z,, determined as the roots of
M, (x). By using (2.4) and (7.6), we obtain the values of y(z,), on the basis
of the values of y (%), and the Lagrange interpolation formula (4.1) with nodes
x, including these collocation points 2z, (k=1(1)p), as well as the nodes ¢,
(i=1(1)n) of (2.4) and (7.6), takes the form (6.6). Finally, the application of
(7.5) at an arbitrary set of collocation points v, (£=1(1)n) inside the inter-
val (a, b) permits the construction of n linear equations with unknowns the va-
lues of y(¢) exactly as happened in section 6.

8. Discussion. The aim of the results of sections 2 to 7 was to show
that it is possible to solve numerically (2.1) (or the other equations considered)
by reducing it to a system of only n linear equations. The results of this paper
can evidently be generalized to apply to a series of other classes of singular
integral equations and related equations (or systems of such equations) not
considered in this paper. Of course, there remains the question of establishing
the conditions under which the proposed methods converge to the correct re-
sults for the unknown function, as well as the optimum (in some sense) se-
lection of the collocation points in all cases where their location inside the
integration interval (a, b) has been left arbitrary. These problems require much
theoretical work. In practice, it is in several cases the computer which reveals
the convergence as happened in the application of section 5 although theoreti-
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cal results have begun to appear (see, e.g. [12]). It is hoped that these re-
sults will become complete in future.
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