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ON CONVEXIES AND RELATED CONGRUENCES ON GRAPHS
JUHANI NIEMINEN

A closure operation on graphs is defined. The properties of congruences having the sub-
stitution property with respect to this operation are considered. A special class of graphs
is found, where the congruences have properties like congruences in distributive lattices.

1. Introduction. Let G--(X, £) be a finite, connected and undirected graph
without loops and multiple lines. X is the set of points in G and £ its set of
lines. A geodesic (shortest path) closed pointset, called here briefly a convex.
of G can be defined as follows: Let x, y¢ X. The notation SP(x, y) is a brief
expression for the set {w w¢X and w is on an x—y geodesic in G}. In ge-
neral, if A and B are two non-empty subsets of X, SP(4, B)={w w¢ X, wis
on an a-—-b geodesic, where a¢A and b¢B). Moreover, we denote by
SP (x, v)=SP(SP{(x,y), SP(x, y)), i—1, 2,..., and SP'(x, y)=S8P(x, y).
Because G is finite, there is certainly a value n of i such that SP"(x,y)
=SP""Y(x,y) =SP""(x, y)—=--- and this set SP"x, y) is briefly denoted by
(x,¥). {x,y) is the least convex containing x and y in G. The pointset (4, B)
is defined analogously. A non-empty pointset A= X is called convex (or geo-
desic closed) if (4, A)=A, and according to the definition of (x, y), (x, y),
(x,y) =(x,y). (,) is a setvalued operation on X and on G as well.

The purpose of this paper is to consider (,)-compatible congruences on
G and (, )-compatible homomorphisms of G. In particular we will consider the
lattice C(G) of (, )-compatible congruences on G. It turns out that a class of
graphs has properties that are analogous to the characteristic properties of
distributive lattices and thus this class of graphs is a natural generalization of
distributive lattices.

As easily seen, (x, x)={x} for every x¢ X, as well as (X, X)=.X. More-
over, if A is the pointset inducing the complete subgraph of G then (A4, A)
=A, and if xy¢€E, then (x, y)-={x, y}. One can easily prove that ((A, B),
(A, B)Y--(A, B) when A and B are non-empty subsets of X. A convex S+.X
of G is called prime, if X\ S is also a convex of G.

If A and B are two convexies of G such that A B--@, then A B is a
convex of G, too. By A\/B we mean the least convex of G containing A
and B. Thus the convexies of G constitute a join-semilattice #, where JA/
exists whenever /() /4. A special class of graphs are the graphs where every
convex J+.X is the intersection of prime convexies containing /; we will de-
note this class by ¥, As easily seen, every complete graph belongs to this
class as well as every tree and the Hasse diagram graphs of finite distributive
lattices. It will be shown that ¥, is a natural generalization of finite distri-
butive lattices.

As a general reference of graph theory we will use the book [2] of
Harary and of lattice theory the book [1] of Griatzer. Convexies of
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CONVEXIES AND RELATED CONGRUENCES OF GRAPHS 107

graphs are considered in [3], [5—10], and related results are given also by
Melter and Tomescu in [4]

In all what follows a congruence means a (, )-compatible congruence and
a homomorphism a (, )-compatible homomorphism.

2. Congruences on arbitrary graphs. In this section we present proper-
ties of homomorphisms and congruences on arbitrary graphs.

A binary, reflexive, symmetric and transitive relation R is called a ¢, )-com-
patible congruence on G, if (a, b), (x, ¥)€R imply that ((a, x), (b, V))ER,
which means that for every z¢(a, x) there is a v¢(b, y) such that (z, ?)€R
and vice versa. Because R is transitive, R induces a partition €={C,,..., C,}
of X as follows: C, ) --- U C,=X, C;1 C;=@ whenever i=j, and
(1 if a, b¢C, and x, y¢Cj, then

@ x)NC,=@0 <> (b, y —NCr= forevery k,k=1,...,n

(cf [9, Thm. 1]). The congruence classes C, are convexies of G.

As it is well known, every congruence determines a homomorphism and
conversely. In the homomorphism ¢ induced by congruence R, every congru-
ence class C, is mapped onto a point ¢; of the homomorphic image ¢(G) of G.
Moreover, the condition (1) shows that ¢; and ¢; are adjacent in ¢(G) when-
ever C; and C; have two adjacent points in G [9].

Theorem 1. Let ¢ be a homomorphism of G and H=(Xy, Ep) its
homomorphic image under ¢, where Xy={c,, ..., c,,{ If Ay is a convex of H,
then ¢—(A,) is a convex of G, and if Ay is a prime convex, then ¢~ (Ap)
isf prime, too. Moreover, if A is a convex of G, then ¢(A)=Xy is a convex
of H.
Proof. Let Ay={ciys.-+, Cim}- Then @Y A)=C, U --- U C;p Because Ay
is a convex of H, (c;p c;iy=Ay for every two points ¢y, €€ Ay But this
means that if x¢C; and y€C, then (x, WNC,=@ for all C,do (Ap),
according to (1). Thus (97 (A), 0 (Ap)<=e ' (Ay) in G, whence ¢~ (Ap) is
a convex of G. When A, is a prime convex, then X\ Ay is a convex of H,
and we can show that ¢! (XH\I._4,,) is a convex of G. But this shows that
9©~1(A,,) is a prime convex of G. The last assertion follows directly from (1).
This completes the proof.

Theorem 2. Let ¢ be a homomorphism of G and H=(Xy Ep) its
homomorphic image under @. Then the join-semilattice ¥ yof all convexies of
H is a join-homomorphic image of J g

Proof. As proved in Theorem 1, every convex of G is mapped onto a
convex of A under @, and conversely every convex of F is the image of a
convex of G under ¢. Thus ¢: F;—Fyis onto and it remains to show that
oI\ 7)=o(1)\V o(J) for every two convexies / and J of G. On the other hand,
INJT=, Jy and o)V o(J)=(e(]), ®(+)). According to (1) we know that in G
(I, HN Cy+=@ if and only if (@(/), o(/NNc+=@ in H, whence oVs)=o(l)
V @(+). This completes the proof.

Melter and Tomescu introduced in [4] the concept of a base in a
graph. Following them we say that a non empty set ScX is a base of G,
if for every two distinct points x, y €X'\ S there is a point 2¢S such that
(x, 2)+(y, 2). The least cardinality of a base in G is called the dimension of
G and denoted by dim (G).

Theorem 3. Let ¢ be a homomorphism of G and H=(Xy E,) its
homomorphic image under ¢. If dim(G)=1 then also dim(H)=1.
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Proof. Let {z} be a base of G. We will show that {@(z)} is a base of H.
whence dim (/) 1. Assume that there are two disjoint points ¢(x) and ¢(y)
in A such that (p(x), ¢2)) = (o y), o(2)). Let € ={C,, ..., C,} be the congruence
partition of X" in the congruence related to ¢, and assume that x¢C, and
VveC, in C. Because (¢(x), 0(2)) =(p(y), @2 (x,2)NC,+=@ and (y, 2)N C,+D
in G; this holds for every x from C, and for every y from C,. Let us denote
x by .. Then (x,, 2) contains a peint y, from €,. If (x,, 2)=(y,, 2) we have
obtained a contradiction and hence we assume that (y,, z) is contained in
(x,, z) properly (because v, z¢(x,, 2), then (y,, 2)=(x,, 2)). Because (y,, 2)
NC.#+, (v, 2) contains a point x, (-=x,, since otherwise (x,, 2)=(y,, 2))
from C. If (v,, 2Y=(x, 2), we have a contradiction, and thus we assume
that (x,, 2) is contained in (y, z) properly. Because (x, 2)(1Cy+ @, (xXq, 2)
contains a point v, {-=+y,) from C,. Certainly {y., 2)=(x,, 2), and if the equa-
lity holds, we have a contradiction, and if not, we can continue the process.
Because G is finite and because we have constructed a sequence (x,, 2)
Y 2) e, YT Yy 2)---, we will find after a finite number of steps
two points v_ ani x, such that (x;, 2)=(y, 2z) in contradiction with the base
property of {z}. Hence the Theorem.

Let C(G) be the set of all congruences on a graph G. If ®, 6¢C(G), the
meet ® A0 is usually defined as follows: (a, H)e DA O <>(u, b)¢ ® and (a, b)€6.
This is not valid in every graph, not even in every graph of the class ¥
As an example one can consider the graph G¢%, of Figure 2, where ® con-
sists of classes {#, w, v}, {z, y, x} and 0 of classes {z, u, w}, {y, x, v}; then
® A0 is not any more a (,)-compatible congruence on G. On the other hand,
there are many graphs, where C(G) is a lattice with respect to the meet A
defined above, namely complete graphs, trees (and thus also graphs, where
every block is a complete graph), the graphs isomorphic to the Hasse diagrams
of distributive lattices (and thus also graphs, where every block is a graph
isomorphic to the Hasse diagram of a distributive lattice) and the graphs iso-
morphic to the Hasse diagrams of modular lattices. /n the following, when we
consider the lattice C(G), we assume that the meet can be defined in C(G)
as done above.

Theorem 4. [et 0 and ® be two arbitrary congruences on G and
the lattice C(G) exist. Then C(G) is distributive, if

(x, V)EON/ D@ implies the existence of a path uy u,, ..., u,
(2) Upyy, contained in (x, y) such that x=u, y=u,,, and

(u;, u;)€0 or (1 )€ ® or both for every i—0,...,n.

Proof. Let the condition hold and (x, y)ewA(0V®). Thus (x, ¥y)ew
whence (@, w;,)€w for every i-=0,...,n Accordingly, (u, u,.,\)eyAO or
(2, u;,) € wA® for every 7/, which implies that (z, u,.,)€(wAO)V(yA®) for
every £ Hence also (x, ¥)e(wAO)V(w A®) and thus w A(O\V/ D)< (y AO) V(v AD)
from which the distributivity of C(G) follows.

Note that there are graphs G for which C(G) exists and is non-distribu-
tive also in the class 4,. For example, consider the complete graph of Figure 1,
where 0 has the classes {y, x}, {#, w}, v the classes {x}, {w}, {y, «} and ®
the classes {y}, {u}, {x, w}. Thus 0\/y -0y ® 1 in C(G), whence yA(0vdD)

y but (WAO)V(YAD®)=0\0=0 in C(G), from which the non-distributivity
follows,
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3. Congruences on graphs of ¥, At first we like to show that the ho-
momorphic image of a graph from ¥, belongs to %,

Theorem 5. Let G¢%p and ¢ be a homomorphisn of G onto H=(X,,
Ey). Then also He%p.

Fig. 1 Fig. 2

Proof. Let /4 Jy,=X,; be two non-empty convexies of A such that
Iy Jy= ). Because H is finite, we can find a maximal convex K, which
contains / and for which Ky (1 /y=@. As shown in Theorem 1, ¢~/ )=/
is a convex of G as well as 97(v,)=J/ and ¢ (Ky)=K. Moreover, /— K and
JNK=(@. The maximality of K, implies that for every x,¢ X\ K (Ky
Vi{xy}) N Jy+= . Because ¢ is a homomorphism, K has the same maximality
property in G. If K is not a prime convex in @, then there is a prime convex
P containing properly K and JN X\ P. But this is absurd according to the
maximality of K, and hence K is a prime convex of G.

Because K=o '(K},), then o X\ K)NKy=@ in H and ¢(X\ K)U K= Xy
Moreover, because X\ K is a convex of G, @(X\K)=Xy\ K, is a convex
of H, whence K, is a prime convex of /. Thus we have shown that every
two convexies /,; and J,, for which /; 1 J;=(@), can be separated by a prime
convex K, in H. Hence every convex /[, of H is the intersection of prime
convexies containing /; and consequently H¢%, This completes the proof.

Let x, y¢X in a graph G. Then x/y={w x¢(w,y)}, see [6]. The follo-
wing theorem shows a property of the sets x/y in the graphs of the class .

Theorem 6. If G¢Gp, then x|y is a convex of G for every pair
X, ye X

yProof. Because x€{x, ¥), x¢€x/y, too. If every point of X belongs to
x/y, then x/y is a convex. Usually, y is a point such that y¢x/y, because
(y, y)=y and if x¢(y, y), then x=y. So we assume that x=+y, x/y-+=X and
consequently obtain the result y ¢ x/y. According to the property of G, there
is a prime convex P such that x¢P and y ¢ P, and thus we can form W
= N{P! P is a prime convex in G, x¢P and y¢P}. Trivially, W is a convex
of G, and we will show that W-=x/y, from which the assertion follows.

Let we¢ W but x¢(w, y). Because every convex of G can be obtained as
an intersection of prime convexies containing the convex under question, there
is a prime convex P of G such that x¢P but (w, y)= X\ P, whence w¢ W,
which is a contradiction. Thus W< x/y. On the other hand, if there is a point
z2¢ X W such that x¢(z, y). we obtain a contradiction, too. Indeed, when
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z¢ X\ W, there is a prime convex P containing x but not z, whence (z, y)
— X\ Pc= X W. Thus x/y=W, and consequently, W=x/y. This completes
the proof.

Next we like to consider congruences on a graph G¢%p.

Lemma 1. Let P be a prime convex of a graph G, P+X. Then O(P),
where (x, ¥)EO(P)<>x, yeP or x, ye X\ P, is congruence on G.

Proof. Obviously 6(P) is reflexive and symmetric. Because it has only
two classes P and X\ P, it is transitive, too. So it remains to prove the
(, -compatibility of 6(P). Let x, y, 2, w¢P. Then also (x, 2), (y, w)=P,
whence (x, y), (2, w)€ 6(P) implies ((x, z), (v, w))€0O(P). The proof is analo-
gous, if x, y, 2, we X\ P. Let x, y¢P and z, w¢ X\ P. Then (x, 2)NP+Q
Hx, 21 X\ P as well as (y, w) P=@=(y, w)y X\ P, and so (x, y), (2, w)
€6(P) implies ((x, 2), (¥, w))€O(F). Thus 6O(P) is (, »-compatible and hence a
congruence on Q.

Theorem 7. Let G¢9p and C(G) exist. Then every congruence 0 on
G is the meet of maximum elements of C(G).

Proof. Let P be a prime convex of G. Because 6(P) has at most two
congruence classes, it is a maximum element in C(G) (a maximum element 0
has the property that if ®=6 then ®=0 or ®=1).

Suppose now that y, ®¢ C(G) and y<=®. We will show that there is a
prime convex P of G such that §(P)==® and 6(P)<vy. This property will be
used as follows: Let ® be a fixed element of C(G) and vy = {0(P)| O(P)=® in
C(G)}). If ®=y, then y=®, because ®=y according to the definition of w.
Then the property we will prove below determines a 0(P)—® and 0(P)=v,
which contradicts the definition of y. Hence ® =y = A{0(F) 0(F)=®}.

Because y<®, there is a pair x, y of points such that (x, y)éy and
(x, y)¢ ®. Every congruence class of a congruence on X is a convex of G.
Let C,, be the congruence class of @ containing x, and because (x, y)¢®,
y#C,y. Let ¢ be the homomorphism related to ®. Because y¢C,,, ¢(x)+=0(y),
and as shown in Theorem 5, ¢(G)€¥,. Hence there is a prime ideal 2’ in
@(G) containing @(x) but not @(y). ¢ '(P’) is a prime convex of G with the
property: 2, u€ ¢ '(P’) or z, u¢ X\ ¢~'(P’) when (2, u) ¢ ®. But then 0(¢—(P"))
=® and 6(¢"'(P))==y because (x, y)€0(¢—'(P")). This completes the proof.

Now we can prove a theorem characterizing the least congruence having
a given convex / as congruence class.

Theorem 8. Let Ge¢9p, C(G) exist, and I be a convex of G, [+ X.
Then (3) is a congruence on G having I as a congruence class. Moreover, (4)
characterizes O[l] and it is the least congruence having [ as a congruence
class.

(3) O[/]= /\{G}F){P is a prime convex of G and [ P}.

(4 (x, ¥)€O[/]|<>there are two points i,, iy€l such that y¢(x, i) and
XE(Y, ).

Jf”roof. Clearly 0[/) is a congruence on X. Because every P in (3) con-
tains /, (x, ¥)€0(P) for every P in (2) and for every two points x, y¢/,
whence (x, y)€0[/]. On the other hand, /= A{P P is a prime convex and
[ P}, whence (w, y)¢#0(P) for at least one O(P) in (3) and for every two
points w, y, we X\ / and y¢/ Hence / is a congruence class of 0[/]. Because
of Theorem 7 O[/] is the least congruence having / as a congruence class.

Let x and y be two points such that y€(x, ¢,) and x¢(y, &) for some
points i, i3€/, and let P be a prime convex from (3). If x¢ P, then also y¢ P,
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because i, ¢ /=P and thus ye¢(x, i,)=P. Similarly one sees that if x¢ X\ P
then also y¢ XA\ P. Hence (x, y)€0(P), and the result is valid for every P
in (3), whence (x, y)€0[/].

Conversely, let (x, ¥)€0[/] and assume that (x, {) does not contain y for
any i¢/. Thus /v{x} is a convex of G not containing y. Because G¢9%p,
IV{x}= A{P’| P is a prime convex and /\V{x}c—P’}, and since y ¢ /\/{x}, there
is a 2’ such that (x, y)¢0(P’). Further, /=/Vv{x}=P’, whence every O(P’) is
in (3). But this implies that (x, y)¢6[/|, which is a contradiction. Hence there
is an #,¢/ such that y¢(x, {;) and from the same reason there is an i, ¢/ such
that x¢(y, ;). This completes the proof.

In the case of lattices the lattice congruences 0[/] characterize the distri-
butivity. A partial converse can be obtained in the case of graphs.

Theorem 9. Let G be a graph and I a convex of G, I+X. If the
least congruence O[I| having I as a congruence class is characterized by (4),
then any point x¢ X is a base of G.

Proof. The least congruence having /={x} as a congruence class is the
identity relation U: (#, w)¢<>u=w, which is trivially a congruence on G.
Because U=0[{x}], we obtain (uz, w)¢6[{x}]<>w¢(u, x) and u¢{w, x)<>(u, x)
=(w, x), and this is possible only when z=w. Hence (u, x)=+(w, x) for every
two disjoint points &, @w€ AN\{x}. This shows that an arbitrary point x is a
base of G, and the theorem follows.

Although in G¢%, any point x¢ X is a base of G, the converse does not
hold. A counterexample is given in [5].

Because of the defining property of the class %, it is possible to prove
the congruence extension property.

Theorem 10. Let G¢%p, C(G) exist, and K be a convex of G. If ®
is a congruence on K, it can be extended to G, i. e. there is a congruence
on G such that (x, y)€®<>(x, v)€0 when (x, y)€ K.

Proof. The proof follows from the corresponding proof for distributive
lattices given in [1, Thm. IL.3.6].

Because K is a convex in a graph G¢%p, it induces a subgraph Gk of G
and Gg€%p. Let ¢ be the homomorphism related to @ in K, ¢: K— o(K).
Because Gx € %p, 0(Gk)€%p according to Theorem 5, and as shown in Theorem 1,
the pointset @~ '(P’) is a prime convex of Gy for every prime convex P’ of
o(Gy). Because K is a convex of G, ¢ (P )cK<X is a convex of G as well
as K\ @ '(P). Thus there is a prime convex P of G containing ¢~'(P’) such
that PN (K¢ (P))=@. Let A be the collection of all prime convexies P
of G such that @ (P )= P and K\ ¢ '(P)= X\ P for some prime convex P’
of @(Gy). Let us now consider the congruence relation 6= A{8(P)| P¢A}. For
x, y€K the condition (x, y)¢® is equivalent with ¢(x)=¢(y) and so for
every P¢A either x, yeP or x, ye X\ P and thus (x, y)€0. Conversely, if
(x, ¥)€0, then for every P—A either x, y€P or x, y ¢ X\ P and so either
o(x), o(¥)€P’ or ¢(x), o y)¢ P. Since every pair of distinct points of @(Gy)
is separated by a prime convex, we conclude that ¢(x)=e(y), whence (x, y)
€ ®, and the theorem follows.

Theorem 11. Let Ge¢9p, the lattice C(G) exist, and © be a congruence
on G with classes C,,...,C, Then 0=V{0[C]|i=1,..., n}

Proof. Every congruence class of 0 is a convex of G. Trivially
0<\{0[C)li=1,...,n}. On the other hand, O[C;] is the least congruence
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having C; as a congruence class, whence 0[C,]<6 for every i. Hence
0=\/{06|C;] i=1,...,n}, and the theorem follows.

Theorem 12, Let G¢%, and the lattice C(G) exist. C(G) is distribu-
tive if and only if (2) holds.

Proof. According to Theorem 4 it remains to show that the distributi-
vity of C(G) implies (2). Let (x, y)€06\v® and assume that there does not
exist an x--v path of (2). Thus every path giving the result (x, y)e0\Vv®
contains at least one point #; outside from (x, y). Because G¢ ¥, there is a
prime convex P such that (x, y)=P and w;= X~ P, whence (x, v)¢€0(P). Now
we can construct a congruence y as follows: w—= A{6(P) P is a prime con-
vex, (x, V)= P and u,¢ P}. Trivially (x, y)€w, whence also (x, ¥)EwA(0\ @)
“(yAO)V(y A®) which is impossible because of the definition of .

We call a graph complemented, if for every x¢ X there is a point z such
that (x, 2)=X. Moreover, G is strongly complemented if its every subgraph
G, induced by a convex / of G is complemented. Every strongly complemen-
ted graph ¢ is complemented, because Gy=G for the convex X of G. The
graph G of Figure 2 is from the class 4, and complemented, but it is not
strongly complemented because in the induced subgraph of points o, x, y
the point x does not have a complement.

Theorem 13. If G¢%, then the complement x of y is unique.

Proof. It has been proved in [7, Thm. 4] that when G¢9, then any
point y of G is a base of G. If there are two different complements x and x’
for vy, then (x, y)=X=(x’, ¥), and y is not any more a base of G, which is
a contradiction. Hence the theorem.

Theorem 14. Let G€9p, the lattice C(G) exist, and [ be a convex
of G, I+=X. If G is strongly complemented, then (x, y)€O[l|<>there are two
points iy, iy€l such that (x, i,)=(y, iy).

Proof. Let (x, v)e6[/]. Because G¢%, there are i, iy€¢/ such that
VE(x, £y and x€(Y, iy). Let us consider the pointset of all classes of 0[/] that
intersect (x, ) and let this pointset be C,, 1) ---1JC,,,. where C,,=/ and C,,,
contains x and y. C,,lj---C,, is a convex of G because it is the preimage
of the convex (c¢,,, ¢,,,) in the homomorphic image of G under the homomor-
phism related to 6[/]. Because C, .l ---UC,, is a convex, it induces a com-
plemented subgraph G,, of G. In this graph x has a complement i/, and be-
cause U,y €%, the complement is unique. (x, i) and (x, i) intersect both all
classes C,,...,C,, and if i, is from another class than C,,--/, say from C,,
then (C,, Cp) ={C.p» Cmy» Which is a contradictionaccording to Theorem 3. Si-
milarly, y has a complement /,¢i in G,,, and hence there are points i, i, ¢/
such that (x, i,)=(y, iy). This completes the proof.

In the following we give a graphtheoretic characterization of Boolean
lattices.

Theorem 15. A graph G¢9, is strongly complemented if and only
if G is isomorphic to the Hasse diagram of a finite Boolean lattice.

Proof. In the Hasse diagram of a finite modular lattice the pointset A
is a convex if and only if A is a convex sublattice (an interval) of L (see [9]).
As well known, every convex sublattice of a Boolean lattice is also Boolean
and hence every convex of the Hasse diagram /7 of a Boolean lattice is com-
plemented. Thus the graph // is strongly complemented and obviously H¢%,.

Conversely, let G be from ¥, strongly complemented and let x be an
arbitrary point of . Then x has a unique complement x’ in G such that
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(x, x’)=X. When proving the isomorphism of G to the Hasse diagram H of
a Boolean lattice, we will use the induction over the number of points in G
If | X|is 1 or 2, G is obviously isomorphic to the Hasse diagram of a Boolean
lattice, and so we assume that the isomorphism exists always when | X|<k.
Let  X|=k+1 and let x be adjacent to y,,...,y, in G. Every (y, x’) is a
convex of G and (y,, x)U ---1!(¥y,. x")=X{x}. According to the induction
assumption, the subgraph G(y,, x’) induced by (y; x') is isomorphic to the
Hasse diagram of a Boolean lattice, and as well known, we can choose the
greatest element freely and thus in every G(y, x’) x’ is chosen as the
greatest element, and consequently, y, is the least element in G(y;, x’),
i=1,...,r. Let y,,...,v. be the points adjacent to x’. The induction assum.
ption ensures that every (v, x) induces a subgraph G(x, y)) isomorphic to the
Boolean lattice, and in every such lattice we can choose y; the greatest and
x the least element. Obviously G is then isomorphic to the Hasse diagram of
a lattice L, (and this can be also proved by means of [6, Thm. 8]). In this
lattice L, every proper convex sublattice is complemented according to the
induction assumption, and according to the strong complementarity, also L,
is a complemented lattice. Because G¢%p, all complements are unique. As well
known, a lattice, where the complements in every convex sublattice are unique,
is distributive, and hence L is distributive. Because L, is distributive and
complemented, it is Boolean. This completes the proof.

At last ‘we like to mention that in the class ¥, complete graphs can be
characterized by means of congruence relations. The characterizations we have
found are all based on the property that every convex of a complete lattice
is a prime convex. Moreover, trees and, in general, graphs where every block
is a complete graph (those graphs include complete graphs and trees as special
cases) can also be characterized by means of congruences. In these graphs the
congruences 0[/] have namely a sharpened form: (x, y)€0[/]<>x, y¢/ or
xX=y.
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