Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



A SOFTWARE PROJECT WITH DATA BASE*
I. HAVEL, 1. HOJDAR, P. LIEBL

The authors currently work on an operating system for a small computer that will be
put into use in early 1979. The system will contain a data base and provide for multiprogram
operation. The paper briefly states the theoretical points of departure of the project and the
decisions adopted.

1. The necessity to conceive and build information servicing systems for
groups of computer users who work on related problems and share data, leads
to the introduction of the idea, and tackling of the problems of the Data Base
(DB). Under DB we understand, following e. g. [1], the whole amount of (ope-
rational) data, describing a certain section of the real world (a good example
is an industrial enterprise) stored in one computer (or in a network of com-
puters) and shared by several users for the solutions of their respective tasks.
The most satisfactory description of a DB we consider to be the relational
model. According to this way of looking at the nature and structure of the
data, a DB consists of a finite number of relations.

2. Given the nonempty sets D, D,, ..., D, (the domains), a subset of
their cartesian product is called a relation. The relational model of DC is
based on the observation that an entity of the real world can be described by the
values of several of its properties, attributes, that is, represented by a re-
cord which is an ordered p-tuple of values d,, d,,. . ., d,, where &, D,,i—1,...,p.
Each domain, the set of possible values of an attribute, is given a name refer-
ring to this attribute. As entities naturally group themselves into homogeneous
classes of entities of the same type, the set of records representing entities
of one type forms a relation. In the real world, entities are interrelated in va-
rious ways. The relational model considers any relationship between en-
tities again as an entity and represents the connection between entity types as
a relation.

3. The data in a DB are not only for inspection. They must be able
to be updated to reflect flexibly the changing facts about our section of
the real world. There are 3 basic types of update operations: update proper
(changing the value of one or several attributes in one record), amend (adding
a new record to a relation) and delete (removing a certain record from a re-
lation). The effect of update operations on the relation is that in fact we have
a sequence of relations. We well say, not very accurately, that the relations
are time-dependent; the DB consists of a finite number of ‘ime-depen-
dent relations.

_‘ﬂirbeﬂlrivered at the Conference on Systems for Information Servicing of Professionally
Linked Computer Users, May 23-29, 1977, Varna.

SERDICA Bulgaricae mathematicae publicationes. Vol. 10, 1984, p. 128—131.



A SOFTWARE PROJECT WITH DATA BASE 129

4. We will assume the relations to be finite subsets of the (not neces-
sarily finite) cartesian products. A finite relation is conveniently represented
by a list of its records; this can be understood as a two-dimensional table.
Each column represents an attribute and each row is a record. On the inter-
section of a row and a column stands the value of the respective attribute of
the entity represented by the respective record. As in a list its elements are
naturally ordered, we take a somewhat modified view and consider the DB to
consist of a finite number of (still of course time-dependent) ordered
data sets (ODS). An ODS we define as a mapping of a section (1, 2,..., N)
of the set of naturals into a relation; in other words, it is the numbered (and
so, ordered) family of records of a relation. This modification of the standard
definition enables us to introduce in an exact and convenient way notions
such as “sorted” or “pointer”. Moreover, it forms the basis for the introduc-
tion of a sublanguage for reading and updating which can deal with single
records as well as with whole relations.

5. For the data organized in a DB it is a natural requirement to be ac-
cessible to more than one application program — otherwise they are the in-
ternal operational data of a program not deserving the name DB. From this
it follows that on the computer (or computer network) where the DB is stored,
the operating system (OS) provides for multiprogram operation. The
means for describing such an OS and its function are programming languages
for parallel programming. We use Concurrent Pascal [2]. The
basic notions of parallel programming are the generalized data structures called
monitors and the concurrently running processes which share common
data via the monitors.

6. The OS permitting concurrent execution of several application programs
on a computer (or computer network) with a DB, together with all software,
is represented by one single program in Concurrent Pascal. The parts of this.
program are, besides certain processes and monitors dealing with input/output
processes each representing one application program and monitors (the DB-
monitors) that contain all the data of the DB and organize access to them for
the application programs. The compiler must provide for separate translation
of (additional) processes (application programs) and DB-monitors as well as for
their ad hoc linkage into the running program.

7. In a program in Concurrent Pascal, every process is syntactically al-
most similar to a program in ordinary Pascal [3]. The task of the application
programmer therefore will be, in order to solve his problem, to write one or
several ordinary sequential programs in a somewhat modified and simplified
version of Pascal (e. g. no set, file or pointer type, diiferent standard
functions). To perform 1/0 operations, he will call procedures that are, from
his view, standard procedures, but in the respective process of Concurrent
Pascal which represents his program in the whole system, they are ordinary
procedures that in turn use certain monitors. In a rather similar way, to per-
form read or operations with the DB, he will call standard procedures that
“behind his back”™ use DB-monitors.

8. Let us give one example for the basic means the programmer will be
able to use for communication with the DB. The statement employee (find, i,
condition, buffer) has the form of a procedure statement with 4 parameters.
The first is of type action= (find, get), the second of type integrer,
the third is a function condition (b: employee type): boolean, and the

9 Cn. Cepanka, Ku. 2



130 I. HAVEL, J. HOJDAR, P. LIEBL

fourth as well as the single parameter of condition are both of type employee
type = record name: string; born: record day:1..31; month:1..12;
yvear: 1..1977 end; department: 1..20 end which can be considered to
be the type of one record of the relation employee from the view of this pro-
gram. The semantics of employee (find, i, condition, buffer) is as follows:
In the relation employee a record is found for which condition equals true.
The search starts with index equal i and after the successful search the index
of the found record appears in i while the found record itself appears in buffer.
If there is no record of the specified properties a value /=0 is returned. The
function condition is written by the application programmer. It may natu-
rally contain in its turn operations with other relations or with employee
itselt.

9. We consider data security [4] to be of considerable importance in
a shared DB. By data security we understand the means at disposal to prevent
unauthorized reading and updating. It is convenient to distinguish value inde-
pendent security (certain attributes in a relation, or a whole relation, are pro-
tected) and value dependent security (certain records in a relation are pro-
tected). We speak respectively of column protection and row protection. While
row protection can be implemented only dynamically, column protection can be,
and should be, implemented statically. We propose to implement column pro-
tection, using inherent properties of the language Pascal. The programmer can
use only the attributes explicitly stated in the type declaration (refer to the
example given in 9.) type employee type, namely buffer. name, buffer. born, buf-
fer. department. He has no way of using the fact, even when he learns about it,
that in the DB the relation employee has also the attributes salary: integer and
previously convicted: boolean. The “filtering” is done in the procedure em-
ployee which is not written by the programmer but supplied by the DB ad-
ministrator at compilation time. Another application programmer (or, for that
matter, the same one when writing a program for another department) might
be issued with a standard procedure employce2, where now the type em-
ployee type 2 contains the attributes salary and previously convicted and the
type action2 = (find, get, put, amend, delete).

10. As already mentioned, there isa DB administrator, a single person
or whole department, who is in a certain sense in charge of the DB. In our
view, he performs the following functions:

A) he decides on establishing a new relation in the DB, decides about its
size (maximal value of index) and organization, about the type of the at-
tributes, and writes the corresponding monitors and procedures.

B) he decides about access permissions to application programs (security)
and writes the corresponding procedures.

C) he decides about the acceptance of application programs into the system
and about their priority within the multiprogram regime and takes the steps
necessary to compile and link.

Note that he has no immediate access to the data as such.

11. From what has been said it is obvious what we understand by “user’
and “access to DB”: it is the author of an application program and the sta-
tements in his program concerning the DB, respectively. The “casual user” as
well as a non-procedural query language like SEQUEL are outside the scope.
We consider including an interpretation system dealing with non-parametrical
queries somewhere in the future.

»



A SOFTWARE PROJECT WITH DATA BASE 131

12. All our considerations are based on afew preconditions. First, the com-
puter must have disk memories for the DB. Second, the computer com-
municates with the outside world via terminals with interrupt facilities
rather than via traditional 1/0 units that handle files in batch processing. Third,
the system works in an environment where the values of the data are all de-
fined (at least almost always) and are also (almost always) in due time sup-
plied to the DB; inother words, the system may assume order and disci-
pline as granted, rather than having to enforce both.

13. On the principles and ideas, the authors have suggested and are cur-
rently implementing in Czechoslovakia an OS with DB on the system KAIO
(up fo 128 kB direct access memory with 800 ns base cycle, several disk units
of 125 MB each, four interrupt levels. rich and varied network of 1/0 de-
vices of terminal type for collection and transmission of data) [5].

REFERENCES

1. C. J. Date. An Introduction to Database Systems. New York, 1976.

o P. Brinch Hansen. The Programming Language Concurrent Pascal. /JEEE Trans. Soft-
ware Engineering, 1, 1975, No. 2.

3. K. Jensen, N. Wirth. Pascal — User Manual and Report. Lecture Notes in Computer
Science, No. 18.

4 H. Wedekind. Datensicherheit in Datenbanksystemen. In: Data Base Systems. Lecture
Notes in Computer Science, No. 39.

5. KAIO. Systém pro sbér a pfedzpracovdni dat. Praha, 1976

Matematicky ustav CSAV Received 11. 9. 1977
Praha, Czechoslovakia



