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ONESIDED APPROXIMATION WITH ENTIRE FUNCTIONS
OF EXPONENTIAL TYPE

DIMITAR P. DRYANOV

The purpose of this paper is to give Jackson’s {ype theorem for the best onesided
approximation in L,(—-o, +-0) with entire functions of an exponential type by means of the
moduli (£, 8) -

Onesided approximation of functions was first cosidered by G. Freud
and T. Ganelius in [1] and [2]. They give the first nontrivial direct estimat-
es for the best onesided polynomial and spline approximation.

We shall use the following modulus for the function f(x):

u(f O = o(f, % 8) ;s of, x, 8)=sup{| (t+A)—ft)|:t, t+he[x—3, x+3]}

calling it an average modulus. Moduli of this type were first considered by
Bl Sendov [3] and P. P. Korovkin [4]. Many properties of these moduli
are given in [5] by Dolgenko and Sevastianov. This modulus possesses
the following property : 7,(f, A8).,<(c, A+ 1) t,( f, 8)z,, where ¢, and ¢, are con-
stants, discribed in [7]. We can set ¢,—=4 and cy,=4 but these aren’t the best
possible constants.

V. Popov, A. Andreev and Bl. Sendov used this modulus and ob-
tained [6] Jackson’s type theorems for the onesided polynomial and spline
approximation. V. Popov and A. Andreev used moduli of this type and
obtained [7] Steckin’s type theorems for onesided trigonometrical and spline
approximation. V. Popov in [8], using these moduli gives the converse theo-
rem for the onesided trigonometrical approximation.

Definition. We say that f(2) is an entire function of exponential
type of order o =0, if for every £>0 there exists R.>0 such, that for every
2, |21 >R, the inequality |f(z)|=e©+92 holds.

We denote by E, the set of all entire functions of exponential type of
order o, which are bounded above the real line.

Definition. The best onesided approximation of f(x) in L,(— <o, + <)
with the set Eq is:

Exp (o) f)r,=inf {||a,—uy||;  w,(x)=f(x)=ua(x); 4y, 13€ Eo).

In this paper we shall prove the following theorem:
Theorem 1. /f f(x) is a function such that

i) t(f, 67 < co,
ii) J(X) € Ly(-— 0, + )

then Exp (o) f)i,=ct,(f, o "), where cis an absolute constant, and ¢ ~const>1.

SERDICA Bulgaricae mathematicae publicationes, Vol. 10, 1984, p. 276—286.



APPROXIMATION WITH ENTIRE FUNCTIONS OF EXPONENIIAL TYPE 277

To this end we shall prove some lemmas. Let’s consider the function
Fo.At)=[t"'sin(m¢/2)]?". Evidently this function belongs to E,,,.

Qur first aim is to approximate onesidedly the following stepfunction:

Mr X€ [—'1) l]r
f(x)‘{o, x¢[—1,1].

Lemma 1. Let’s determine C,,, as a constant depending on the parameters
m and r such that Cpm,,[+> FuAt)dt=1.1f m>0 and r>0 then Cp,,<0,5(n/m)>" !
holds true.

Proof. In the interval [0, n/2] the function x—!sinx is a decreasing one
and therefore x~'sin x=2/n for every x¢ [0, n/2]. Then (mt/2)~'sinmt/2=2/n
where for ¢ we have 0<mt/2<mn/2 or O0<f¢<mn/m, i. e. t~—!sin m¢/2=m/n holds
v t€[0, t/m]. Then we can write the following chain

+o0 o6
Cph= [ ' sinmtj2pdt=2 [ (¢~ sin mt/2]dt

~2 [ [t~ sin m/2rdt=2 ’:f"' (m/m)dt =2 (m)mpr—,
0

whereof it follows, that C,, ,<0,5 (x/m)* .
Lemma 2. Let f(x) be a non-negative function. We denote

v (x)= if: F(x+18) Dm,r (t)at,

where Dy, ,(£)=Chm, [t sinmt/2]?" and r>0,5. Then the following inequality
FO—¥ @)= (sup Fx)). @r—1)7 [r/(m3 P~ + o1 (f, x, 8,)

holds, where 8,>0 we can choose depending on x.
Proof. We have

V)= [ T+ Dy Ot = | [F(x+8) —F (D (Ot +F ().
Hereby '

8 o ~ +oo o ~
W(x)—F (%) Sy [f(x+t)—f(x)]D...r(t)dt+sf [f (x+8)—1 (x)]Dm.r (£)dt|

+| _f: (7 (x+6)—F ()] Dpm., (t)dt |

| x| <o LI

sx
<[supf(x)]) [ DmdAt)dt+o(F, x,8,) f8 Do, (1) dt.
x| <L oo -8,
But on the other hand
Cmr, [ [t 'sinmt)2)¥dt=2Cpn,, [[t”‘sin mt|2)¥dt

ax:a}n <oo
<2C, [ ¥ dE=2Cp, (2r— 1)1 5741,

Sx
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Applying Lemma 1 we obtain 2(2r—1)"'Cp,, 5> ' <0,52 (2r—1)"" [r/(md )2t
and

W) T = sup Tl @r =17 [R/md P + o x 3.

Theorem 2. For the function
M>0y XG[_lr 1])
f(x)= -
0, xé[—1,1]
we have Exp(o)(f),<cMc', where ¢ is an absolute constant.
Proof. We consider the subsidiary function
~ M(1+a/o), x¢€|—1—(relno)/2c, 1+ (nelno)/20],
Sx)=10 , x¢[-1—(relnc)/20, 1+(relno)2c)
where we shall determine o later and now we want only a>0. Obviously
F(x)=f(x). We substitute m--2c/lnc and r=2"'Inc. Let now —l=x=1L
Then, if 3,=(relno)/2c for every x€[—1,1] we obtain from Lemma 2, consi-
dering the function y(x), which we have examined in the same Lemma:
| F(x)—V (x) | =M(1+a/c)(Inc—1)"!(2rc In6)""o~! (2n e In ¢) o+t
=M(l+a/c)ec L.

If o>e? then Iﬂx)AG(xU§M(l+a,r’c)e o~ We want f(x)—ql(x)>:f(x)~f(x)
for —1=x=1. Evidently f(x)  w(x) because [*Z D, (f)dt=1. One sufficient
L1 [—=L1]

condition for f(x);_;ﬁ(x) is M(1+a/c)ec—'=aMo~! or a=e(l—e/o). Since
o>e? we can choose a=e?/(e—1), for example.
Let’s consider the domain

p=(—oco, —l—(n(e+1)Ino)/(20)] U [1 +(n(e+1)In 6)/(20), + ==)
and choose 8,=|x|—1—(nelno)/20c. Applying Lemma 2 we obtain:
W =7 () oo =1 ¥ ()~ F () |,
=2M 7 2r—1)"t[rn/(m(x—1—2"'o"  teln o))"~ dx-—=1(m,r, o).
14 (r(e+1) In 0)/20
We change the argument y-—x—1—(nelno)/20. Then we have

I(m,r,0)=2M [ (x/m)*—'y=2+'dy

(r In o)/20
M (2r—1)"1 (2r—2)~" (n/m)?" ! [( In 6)/20] 2" 2,
for r>1. After that we have
1(m(o), r(o), o) =2M[(Ino—1)(In 6 —2)| ' (n In 6/20)"" *- '(nlno/20) Mo+?
~Mino[(Ine—1)(Inc—-2)] 'n.o" "
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Now for 6>/24, where A>1, we obtain
Inoc—2>InA4; Inc/(lnc—1)=1/(1—1/Ino)<(2+In A)/(1+1n A)
=Ino[(lnoc—-1)(Inc—2)]'<(2+InA)[(1+In A)In A] L.
Let’s consider the following domain
v=[—1—(n(e+1)Ino)/20, —1]U[], 1 +(n(e--1)1noc)/20]

and let’s estimate in L,(y) the function [*Zf(x+£)cCm,, [t sin m¢/2]"d¢ or find
another method for approximation in L,(y) of f(x) with £;. Now we can write

(r(e+1)Ino)/26=2"'n(e+1)(In A+2)(e24)!
=n(e+1)(2e?) " (A7'InA+A72)<n(e+1)(2e?) ! (e +2)< 3,

because o>¢24, where A>1 is a fixed number. Here we use that the function
x~!'Inx is decreasing for x>e.
So we obtain the following:

L (x)=2M; 2. f [V (x) —f ()|dx=C,Mo—1;

3. Ioﬁ/ (X)—f(0)d,=CMo—1; 4. _fll W (x)—f (x)|dx<C Mo .

We define the following function:
Fi0)= 1, x€[2By—1,2B,+1], k=0, =1, +2,...
! 0, x¢[2B,—1,2B,+1], k=0, +1, +2,...,

where B=4 is a fixed number.
From [10] we can approximate f(x) onesidedly in [—B, B] with an element
belonging to E[c]nB~ ! and from the solution of this problem we know, that

it is periodic with a period 2B. We denote this solution by G,(x) and for it
we know the following:

V=G [0 AMx=Ciots [ [0 —f()ldx=Cia,

Let's consider the entire function Ww(x)y,(x)€ Eo(l+ [g] B 1) cEs (1 +nB71).

_We know, that w(x)y,(x)=f(x) and what is left is to estimate how close is
W(x)y (x) to flx) in Ly(— =, +0):

o 1 o B -, -
l [wyi(x) —f(oldx= [ [vwi(x)—Ax)dx+2 [ v(X)\v;(x)dX+2+{ w(x).yi(x)dx,
and from here we obtain

a) 2 [ W(xdx=1M f (100 —f,(x)dx < AMC, o1,



280 D. P. DRYANOV

b T @R AMx= [ G0~ M. Ddx = ] W1k
- _fl (V (x)—M)dx=2M _f" (v,— Ddx+ _fll(G(x)—M)dxé'M(?Cﬁ—Cﬁc—‘;

+o o0~ +oo o +oo
© 2f V(Wi (x)dx=2Cs | w(x)dx=2Cs [ (w(x)—f (o)dx =2C;C;Mo™".
Finally we obtained the following integral estimate in L(—o0, +0):

7 990 —f (0l = (1 + RB-XACo+2CsCy + 2G5+ C] [+ 7807,

which proves the theorem after the following note. If we want to approximate
with an entire function of order o we choose y (x) with order o (1—B), v, (x)
with order [oB), B< 1. Then w(x)y,(x)€Es. In this way we obtain the approxi-
mation given above. By analogy we may approximate the step-function from
below.

Note. Let’s consider the functions

M, xe[—1,1] M, x¢la, b]
f(“):{o, xé[—1,1] "={o, x¢[a,b]

Evidently f(x) = g[2—'(b—a)x+ 2 (b+a))and g(£) = f[2((b—a) ' —(b +aXb—a)'].
We take a function w(x)€E.(b—a)2~!, which approximates onesidedly f(x)
with order O(2M/o(b—a)). The function x(f)= v[2t(b—a)'— (b+a)(b—a))
belongs to E,27'(b—a)2(b—a) '=E, On the other hand x (f)=g(¢) and

T gl =T @O—fenat - 2555 CMo.

Now we know that the step-function is approximated onesidedly by the set
E, in Ly(—co, + o) with order O(Mo—') independently from the length and
the place of the support.

Definition. Let f(x) be a real valued function defined in (— <, + =0).
If there exists the limit

+ o0 n
V f=limV f<ceo,

n—oco —n

we call it a variation of the function f(x) in (— oo, + ).
Examples. 1) If f(x)=0 for x<x,, then it is evident that

+ oo + oo X + oo
V=V f+ N f=fx)+ V f.
2) Let f(x) has a first derivative, which is an absolute integrable. Applying

the well known theorem for the final growths and the definition of Rieman’s
integral we obtain

\7ff° @) dt=||f |1, (— o + o).
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For example:
+ oo -+ oo

+ o0 0 0
Ve ltl=\V e+ })/e‘-‘: [ edx+ [ e “dx=2.
—o0 — o0 0

—o0

Lemma 3. Let f(x) be a function with a bounded wvariation and let's
consider the functions f+(x)=max (f(x), 0); f(x)=min(f(x),0). Then
i) f(x)=/"x)+f(x);

il) fH(x) and f—(x) are also with a bounded wvariation and
+o0 + o0 400 + o0
V=V Vf=V/f

The proof of this lemma is trivial.
Let f(x) be a function, for which

1) t(f,o )= j: o,(f, x, o7 )dx< o,

(2) ve>0, vR>0 3x}, x;7; (i=1,2): x>0, x7>0, x7<0, x;7<0
xF|>R, | x7 |[>R and [fH(x})|<e; |f(x7)|<e (i=1,2). If o is a positive
number, o>-4A4¢2, we construct the functions So(x) and J4(x) in the following
way: we divide the real line to intervals with length o~ each. In every
interval S,(x) is equal to supf(x) in this interval and Jo(x) is equal to inf f(x)
in this interval. Then it’s evident that

Jo (X)=f(X)=So(x) ¥ X €(— 0, +2).

Let’s consider the function So(x). According to the definition it’s variation
is the sum of its jumps. Then it is obvious from the definition of t,(f, 8),, and
from its property on page 1 that

+ 0o
c_lyws,gt, (Se» 271 oY), and 7,(Se, 07, =7, (f, 2071, =91, (f, 07).

It follows, that

+o00
V Se=0 (27144 1) 1,(Se, 071, =27 01, (f, 071, < ==,

Here we conclude that S,(x) has a bounded variation and |Ss(x)| is bounded
from a constant depending on o. The functions S} (x) and S;(x) also have a
bounded variation according to Lemma 3.

Now we shall prove Theorem 1. There are three cases in the proof
and every following contains the previous.

a) supp f(x) is bounded. Here 2) (page 9) is automatically fulfilled. Then
So(x) and hence Sf(x) and S;(x) have a finite number different from zero
jumps. Considering S}(x) we divide the ordinate on the non-zero values of
S+ (x), which are finite numbers. We keep the following law: if the dividing
line y=y, cuts a stem, where S}(x) have a value greater or equal to y, we
approximate the function, which is zero out of this stem and has a value
equal to the distance from this cutting line to the next lower cutting line in it.
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In this way we obtain the following construction:
For example from the functions

d, x¢[A,B)
0, x¢[A, B)

d, x¢e|B,C]

and d"’(x)“{o x¢[B, C)

d)(x):{

Fig. 1

we construct for approximation the function dy(x)+dy(x) and we make this
not only with two neighbour ones, but with all similar to them neighbour
functions.

Applying Theorem 2 we approximate each one of the step-functions, obtain-
ed in this way with order O(M’,c~'), where M; is the height of the corres-
ponding step and o' is the order of the exponential class of entire functions.
Let the steps, which we have to approximate be &, and T,(x), T5(x), T5(x),
..., T,(x) be the corresponding entire functions, which approximate the corre-
sponding step-function. Then 7'} (x)= X% 7T (x) is an entire function, which belongs
to E,, such that

k + oo
18500 TE) | n=c(E M)o~t=e(V SHe™!

and T/(x)=S/(x). T;(x) is an entire function, but it isn't clear whether
T}t €E, That will be proved in case b).

b) supp f(x) is bounded from the left and unbounded from the right (for
example). Then we make the division from the left end of the support to the
right. We obtain S,;(x) and from there S}(x). Here the values nonequal to

zero can be infinite number. Sf(x) is a function with bounded variation and
vIizSs =M, from where it follows, that M,—~0(k »--), where M, are
differences of the heights of all neighbour stems, which belong to S} (x).

Since ¥M,< o, it follows, that the series, whose m-th sum is equal to the
height of the m-th stem, is summable, Let " is the sum of this series. Then from
0<So(x)— Jo(X)=0y(f, X, 6 )= || So—Jo [, =7 (f, 071, < oo,

and from 1) and 2) (page 9) it follows that I'=0.
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We consider B, =|[the set of the steps (which are finite numbers) with
corresponding heights M1, M, ..., My for which the upper cutting line,

participating in the forming of these steps has a level less or equal to m~! sup f(x)
and greater then (m+ 1)~'sup f(x), where m=1,2,3,...]. We consider B, and

v
sup f(x)

lx|<=

B,

J12syp f) T

<=

B;.

---d---f--1---F---F—-tr-1+--t-------

Fig. 2

make the same construction like in a). The functions, which we are approxi-
mating, are obtained to the last cut line, which is the first in B, and s. on. In

this way we obtain the series T3, Xx, M, , and
oo ik ’ oo -+ oo

I EMey<EM=VS;

- j= ! o
k=1 j=1 =1 —o0

which is evidently from Fig. 2.
The series of entire functions, belonging to E; which approximate the

steps with corresponding heights My, Mp, ..., M;'}' My, My, .. ., Mo, . . .,
M’kl' M;Q, cosy M;,'k, ... are denoted by Th Tz, .« ey Til’ Til‘“' Til+2' ceey T,'1+12
toeetipat oo Typpiyt o+l tip... . We require that 7} (x)=Z7_,T¢(x)
belongs to E,. Now we put a new condition, which follows from this requirement :
3) f(x)€Ly(—o0, + =)

Since

0=Se(X)—f()=0(f, x,071) so || So—f|lL=t(f, 67 )L< =,

i, e. So(x)—f(x)€L, it follows, that S;(x)€L,. In this way from 1) (page 9)
and 3) it follows 2) (more precisely from the good asymptotic behaviour of

the function f(x)), i. e. the condition 2) (page 9) drops off.
From [11, p. 126, Theorem 336] it follows, that 7} € E..

Now we can write down, that

i
oo k + oo
!S;' —T: |y —— »n)-—QO'—l(‘( T X M”)gt‘c" V Se
k=1 j=I1 —00
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c) suppf(x) is unbounded. We fix one stem like in b) and make the same
like in b) to the right and to the left of it. We obtain 77 (x) and 7], (x)
such, that

s 9 oo /‘ 400
USHX)—Tig(xX)—TH(x) | Li=o e (Z T MO+ X & M, ))=0""c V S;.
X . R W e e

=1 i=1

In this way for S7(x) we find 7 (x) such, that

i) Ti(x)€Ea T (x)=T},(x)+ T3, ()
i) T} (x)=S87 (%),

“+ 00
iii) i T;' (X)—S;' (X)) |Ly(—oo, +x)§0’—l cV S:.

For S (x) we find 7 (x). which satisfies:

i) T (x)€Es,
i) T;(x)=8; (x),
iii) TS () —S85(%) | £y(—oe, ;w);'c—lc+\;° S,

Then applying Lemma 3 for 7} +7_' and S;=S; +S; we have
SoelX)—T7 ()T () =187 () =T ()l +11 S5 (0)—T5(x) ||
o (Y SE+V SD)=20071V S,

It is obvious also that Se(x)< 7} (x)+ 75 (x) and V*ZSe=01(Se 67')L,
We constructed S, (x), which satisfies

i) So (x)=f(x),
ii) | So(x) = f(x) =7 (f. 070,
It is evident also that
®,(So, X, =W, (f, X, 207)=>1,(Se, 07V, =1y (f, 2071,
On the other hand (7} (x)+ 7, (x))€ Es and we have
()~ T3 (xX)=TF(x) |, f(0)=Se (%) |, +] Sa ()= T3 ()~ T7 (x) 2.

+ oo
=7 f, o), + c! oV Se= L (fr o), 46y (So, c,'—'l)L,

<t (fio M+t (fi2o7),s(1+9% ) (f.o™ ), =c.tv(fi o),

where ¢ is an absolute constant.
It follows that Exp(0)(f).,<ct, (f, 6%, which establishes Theorem 1.
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Now we give an example for a function, for which t,(f, o), is infinite
and the approximation with the class £, is infinite in L,.
Let f(x) be defined as follows
(x—k+E 2R, xeclk—k2 k]
f(xX)=(k+k2—x)k2, x¢[k k+k2,

0 , X¢lk—k 2 R+E2), R=1,2,3,...
One may see, that
oo &k
i) [ fligeoo, te)=Z [ (x—k+k2)k¥x
k=1, _p—2

2 oo 1

1 oo
(B+k2—x)k2dx=2 0{ vdy I ,

g=1

E k+k 1

. i ot
r=1 l'[ q* 1 g* :
ii) ve>0, yR>03 x/, x7 (i=1, 2): x; >0, xf <0, x;7 >0,
x;<0, xF >R x7|>R and fr(x})|<e |fT(x)I<E,

iii) ow(f, r)L= s (-:;——%)zoo.

¢>o

Let’s assume, that w(x)€ £, and o(x)=f(x), yx€(— oo, + o). Then from Bern-
stein’s inequality we have

sup{ 0'(x), | x|<os}=o,sup{lo(x)], | x|<oo}<k, ko= const.

Let p, be such positive integer, that p;2<k;! and (p,—1)"?=k;". Considering
the following function

(R+ky'—x)ke x€lk, R+kRS'), k=1,2,...
Ay (x)=1 (x—k+kzOk, x€[k—R;,R], k=1,2,...
0 , x¢le—kyt k+45), R=1,2,...

and assume, that there exists x, such that o (x,)<Ay (x,), where xg€[&x,
k., +k;']. Then we assert, that

a) there is only finite number values of x, belonging to [k., k. +k5"]
such that o(x)= A, (x).

If we suppose, that exists a sequence x,, xy, X3, ...,X, ... such that
A (x)=0o(x), i=1,2,... we consider the function Q(x)=&(x)— (k. +&;'—x)k,
which is an entire function and Q(x;)=0,i=1,2... . But from the Cantor’s
theorem we know that there exists {x; }; , <{x,}>, and x* such that lim x; = x*.
It follows, that Q(x)==0. Hense (x)=(ky,+ k;"'—x)k, which is impossible.

b) from a) there exist x’ and x’’, which belong to [&, &« +£;"] such
that Ax (x")=a(x"), Ap (x"")=w0(x") and o (x)<As (x), v x€[x', x"].

Then from Rolle’s theorem there exists a point {¢(x’, x’') such that
o'(§)=A, (§)=k, but sup {| @'(x) |, x|<o}<k,.
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It follows that ®(x)=As (x), yx, and then we have the following estimate

0w v Z =Bl pist, 4oy = =

Note. We obtain covergence from the following new property of
T (f, 8) oo ooyt T( S)L,6—30<:'r1(f, d), << and f(x) is continuous almost

—

everywhere.
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