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ON FUNCTIONS REALIZING THE MAXIMA
OF TWO FUNCTIONALS AT A TIME

ZBIGNIEW J. JAKUBOWSKI, WIESLAW MAJCHRZAK

Let SR(M), M>1, denote the family of functions F(2)=2z-+ZX] zn  holomotphic and

n= n
univalent in the disc A={z: |z |<1}, satisfying the conditions: | F(z) [<M for z¢A, A=A,
for n=2, 3,... In the paper it has been proved that if there exists a function w=Fz)
for which in the family SR(M) the maxima of the coefficients A, and Ay 1(N=4, 5....)

are attained simultaneously, then it satisfies in the disc A the equation
w z

d = — |e|=1.
(e—w/M)Y e—w/M) (e—2)(e—2)

There has also been given an analogous theorem concerning the coefficients AK. Ay,
N=p+1, 2=K=N—1, where p is an arbitrary prime number.

1. Consider the family Sg(M), M>1, of functions
(D Fz)=z+ A2+ ---+A2"+---

holomorphic and univalent in the disc A={z:|z|<1}, satisfying the conditions

| F(z)|<M for z € A, Ay=Ax for n=2, 3,... Let Sp= U m>1 Sg(M).
One knows numerous results concerning the problem of maximization of

(2) HMF)=A~x

the functional defined in the class Sx(M). Some of them are obtained as strai-
ghtforward corollaries from the known earlier estimations of functional (2)
considered in the family S(M) of univalent functions of form (1), bounded, with
arbitrary coefficients. And so, a consequence of the results of G. Pick [11]
and A. Schaeffer, D. Spencer [12] (see also [19; 8]) are the sharp esti-
mations from above of the coefficients Ay and Ay in the class Sp(M). In those
papers, for each M>1, the extremal functions were given. From the results
included in the papers by L.Siewierski ([16;17; 18]) and from those obtained
in some other way by M. Schiffer and O. Tammi [15] it follows direct-
ly that, for each N=2, 3,..., there exists an My such that, for all Me¢(l,
My), the maximum of functional (2) in the class Sg(M) is attained only for a
function w—=PW¥-z; M), PN¥=1X0; M)=0, defined in the disc A by the equa-
tion
w z
(1 — (w/ M)V JTN=D) == V1) 7=
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This theorem constitutes a positive solution to the hypothesis of Z. Charzy-
nski and O. Tammi, formulated earlier (for the families S(M)). For N=5, 6, . ..,
the maximal interval (1, My) in which the functions PW—1 are extremal with
respect to functional (2) has not been known as yet. Of course, My = + oo,
M3= e, M‘ =2.

In the last few years, the estimations of the coefficient 4, in the family
Sp(M), M>1, were obtained [20-22; 14; 9]. It was also shown [24; 23;6; 7]
that, for any N=6, 8, 10, ..., there exists an M) such that, for each
M ¢ (M, + <), the only extremal function with respect to functional (2) in
the classes Sp(M) is the Pick function P(z; M)=P")(z; M). Similarly as in
the case of the Charzynski —Tammi hypothesis, the greatest interval (M, + =°)
in which the Pick function is extremal is not known (of course, M;= 1,
Mi =11).

The above-mentioned theorems solve merely in part the hard task of de-
termining the maximum of functional (2) in the class Sz(M) for any admissi-
ble NV and M. It can easily be noticed that from the cited results of Siewier-
ski it follows that, for M sufficiently close to 1, in the class Siz(M) there are
no functions extremal with respect to Ay and Ay, at the same time. In turn,
from the result of Jakubowski, Zielinska, Zyskowska mentioned above we in-
fer that, for M sufficiently large, the only such function can be the Pick
function.

In this situation, it seems essential to ask about the structure of functions
which simultaneously maximize in the class Sp(M), M>1, two distinct coeffi-
cients of power series (1), whose indices satisfy certain conditions. We assu-
me here that such functions do exist. It turns out that functions of this type map
the disc A onto the disc |w|<M from which at most two rectilinear slits
have been removed. The problems considered in the present paper refer to the re-
sults obtained in the class S= |y 4>1S(M) by A. K. Bahtin [1], and the me-
thod approximates the proof of Lemma 31 in monograph [13]. The analogue of
this lemma for functions of the class S(M) is contained in [25].

2. Let #F (M), N=2, 3,..., M>1,stand for the set of all functions for which
functional (2) attains its maximum in the family Syx(M). Since functional (2) is
continuous, whereas the class Sg(M) compact, therefore Fn(M)+ (). Next,
let us denote by 2(M), M>1, the family of functions w=P(z; M; €), P(O;
M; €)=0, |e|=1, satisfying in the disc A the equation

w z

(3) P Y YT Y .
(e—w/M)(E—w/M) (e—2)(c—2)

Obviously, ZA(M)=Sp(M), P(z; M; 1)=P(z; M).

The following theorem takes place:

Theorem 1. If, for any fixed M>1,N=4, 5, ..., a function F belongs
to Fn(M)N Fnp1 (M), then F belongs to P(M).

Proof. Let F of form (1) be an arbitrary fixed function belonging to
the intersection F (M) F n1(M). Then, from the fundamental theorem of
I. Dziubinski [3] it follows that the function

= flz)= Fz))M= flu,,z". where a,-1/M, a,= A,/M,
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n=2, 3,..., satisfies the system of differential-functional equations of the
form

2t N—j N—j
(4) T EDN—J@ +T:J)— z3151\! j @Y + 5= ~ =7 )

) (B E O @ )= S e+ —her)
T) E N—j+1 e —;_ N—j+1 po )

where
Dy_j=aQ—/*V, j=1,2,..., N=-1; 2Dy=—2Pn,
En—_; =Jaj, j=1,2,..., N—1; 2E,=(N—1)an—2n,
Q‘V_,-H:a(};,";'lf“),j:l. 2,..., N; 29,=—PnN+1»
En—j+1= ja,, j=1,2,..., N; 28, —NaN+1—9N+1.

2 y=min 2 D;_jcos(j—1)x; Pyi1= mm 2 D;_,cos(j—1)x,
0<x=2r j=2 0=x<2r j=

f@I" = % amz, m=2,3,...

Dividing (4) by (5), we get the equation

Dy i@+ N+ Dy @V TP+ 4D +D,

6 I
©) DNV Dy, AT+ L+ D)+ D,

=2R(2),

where
(7)
En 12V 4Ey 223 4 4 E 2V EgN T 4B 2V 4 Ey_g24+En
R(=) = J 2N+EN 2V 4L +512N+'+JozN+leN_‘+ s +€N_Iz+‘N

with that Ey_1 =8y = - M1,
In Eq. (6) let us put

(8) = a¢i~2 2)

T
1+aC+g’
Eq. (6) will then take the form

TV ' 4T oV 24 .. 4Ty q0+Ty_,
©) O T+ T o+ . I?N.l m+f~—zm(z)'

where Tx1 =Dn_1 =M=V and T y= = M-N+1),
Moreover, the substitution of (8) made in (4), (5) reduces those equations
to the form

mI—N

z0'\? Y e N g S
(10)  (iF+@+2)e) 1-@=2w] (;) IElT/-m” = ;&_‘EN_,(z +2-N),
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11 o (z0°\? N“g' oN—/+1 ‘\{l N—jt+1 1 mj—N—1

( ) “+(a+2)‘°] [T={@—2)o] \?) j§_'l Jj—1 :j=l JN—/+1(Z +2z )
The function ow=w(z) defined by Eq. (9) is algebraic and, besides,

from (6), (9), (10) we obtain o(0)=0. In a sufficiently small neighbourhood of

the point @=0 and the point z=0 let us expand, respectively, the left- and

the right-hand sides of Eq. (9) in power series. We have

oM+r0+ - )=2(1+pz+ ).

Hence, by means of the indefinite coefficients method, one can define unique-
ly the expansion

(12) m:M—12+v222_+_...

in a sufficiently small neighbourhood of the point z=0.
If we represent Eq. (9) in the form

(13) G(z, ©)=0,

then G(0, 0)=0 and G‘;(O, 0)=M—1+0. Consequently, according to the impl;-
it function theorem, Eq. (13) uniquely determines in a sufficiently small
neighbourhood of the point 2==0 a single-valued and holomorphic function
o=(2) taking values in a sufficiently small neighbourhood of the point ©=0.

The form of expansion (12) of the function ®(z) points out that, in a suf-
ficiently small neighbourhood of z=0, all branches of this algebraic function
are identical. In consequence, all branches of the function w(z) are equal for
any z ¢ C. Whereas if an algebraic function is single-valued on C, then it is a
rational function. So,

Py(2)

- —1 iR\
(14) o=M"'z By(z) z¢C,

where P, and P, are assumed to be relatively prime polynomials and P,(0)
=P,(0)=1.

We shall now examine the form of the polynomials P, and P, in (14).
Note first that if @—0, then from (4), (8) it follows (cf. [13]) that 2—0; con-
sequently, the polynomial P, has no zeros, which means that P(z)=1 for
z¢C. In turn, P, cannot be constant because the function w©=2z/M does not
satisfy (10). Hence it appears that

(15) m—TM—lzl_‘bbl”‘_mqH,M,t ,

by+0, k1.

Suppose that £=1. If we substitute the function

M1z

(16) o=

6, %0,

in Eq. (10), then we shall easily find that, for z — co, the left-hand side
of (10) tends to zero, while its right-hand side tends to <o. Hence, function
(16) does not satisfy system (10)-(11); consequently, £>1,
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Let #=1+r, where r=1. Then, from (15) we have
_ M -1 | 2|
(7 o=5—7F [1+07N. [z[>p

where p is sufficiently large.
Let us substitute (17) in Eq. (10), (11). Since

N
T Ey_f2v 7+ 2—Ny= M2V 11+ 0(z7)),
j=1

N
o=V T Tj_lm:v—j:M—nbi\;—’lzw—l)r[l +0(z),
j=1
m’

'~ —A1+0(E),

1

(+@ieli=@=Da) — | TOE™)

therefore from Eq. (10), in a neighbourhood of the point oo, we obtain

(18) PMTBY1ZN=D7 [1 4 O(z— )] = M~12V 11+ 0(z 7))
Analogously, from (11) we have
(19) MY, 2V [1+ 0z ) =M~"2M1+ 0z}

So, from (18), (19) we obtain the system of equations
(r—1) (N—1)=0
(r—1)N=0
roYt =

by, =1

(20)

whence r=1, bg=1.
Consequently, function (15) has the form

—_— M1z
- z’+b,x+l

Hence, by taking account of (8), the function {=f(z) satisfies the equation

y 4 . M1z
(21) Gral+l  B4bz+l

Since f is holomorphic in A, therefore 2?+b6,2+1=(e—2) (e—z), where & |=1
while on the other hand, Eq. (21) determines the function f¢ Sg(M) for

any M>1 only if b,=a. Hence (21) takes the form

4 B M-z el=1
OG-0 (-ne-z = 7
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In consequence, the function w=F(2)=Mf(2) satisfies Eq. (3), and thus
belongs to 2(M).

3. It turns out that in Theorem 1 the assumptions concerning the indices
of the coefficients being maximized may be changed. We have

Theorem 2. If, for any fixed M>1, N=p+1, 2=K<=N—1, where p
is a prime number, a function F belongs to Fn(M)N F (M), then F belongs
to P(M).

This theorem is proved similarly as Theorem 1. In particular, the assump-
tions about the numbers N and K are used while proving the form of the
expansion of a suitable function ® in series (12). The assumption that p is a
prime number is also essential in proving that the system analogous to system
(20) has a solution of the form r=1, by=1.

4. To finish with, it is worth noting that, in the limit case (when M— + <o),
the family 2(+ =) reduces to the function P(z; +o; g)=2/(e —2)(e — 2),
e!=1. In particular, for e =1, we obtain the Koebe function (see the result
in the class Sp [2]). What is more, the functions P(z; M; €) are extremal
with respect to functional (2) in some class of typically-real functions, inves-
tigated by Z. Lewandowski and S. Wajler [10].

The basic problems of our paper were presented at the International Sum-
mer School-Colloquium on Complex Analysis and its Applications, Varna, 2-9.
05.1983.
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