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ASYMPTOTIC ESTIMATES FOR THE BEST APPROXIMATION
OF STRICTLY n-CONVEX FUNCTIONS WITH CHEBYSHEVIAN SPLINES

MARIANA D. NEDELCHEVA, IVAN G. GINCHEV

A function f(£) is said to be strictly n-convex on [a, b] if f(¢)¢€ C"[a, b]
and f"(¢)>0 on [a, b]. (The concept of n-convex functions is considered by
other authors, e. g. Bl. Sendov [6], who introduces it without the restric-
tive assumptions for f(#) being in C")

The set 7T,={¢}% , is said to be a k-partition of [a, b] if a=F<t, < -
<t,=b.

The set 7,—{t}:_, where a=f{<t,<---<ty=b, is said to realize a Che-
byshev alternance for f if

ft)=y.(—=1YIfo, i=0,1,..., k; y=+1.

Here  f denotes the norm of f in Cla, b].

Denote by M} the class of the continuous on [a, b] functions p(f) for any
of which there exists a k-partition 7,={¢}*_, of [a, b], such that the restric-
tion of p on each subinterval [£ ., ¢](i=1,2,..., k) coincides with a poly-
nomial of degree at most n. The functions of M} are deficient Chebyshevian
splines and here they are called simply splines.

The purpose of this paper is to obtain an asymptotic estimate for the
best approximation

Hua )=l f—psll= min = sup |f(t)—p(t)

P(M"_l t¢la, b
k

as k— . The function p, € Mi ' is called a function of the best approxima-
tion for f and its existence is established in the following theorem :
Theorem 1. Let f(t) be a strictly n-convex function of even order n
on |a, b). A necessary and sufficient condition PREML' to be of the best
approximation for f(t) is the existence of a kn-partition T,,={t}:" of [a, b]
realizing a Chebyshev alternance for f(t)—py(t), i. e. f(t,)—pu(t;)=(—1)||f(+)

~pa() | (i=0,1,.... kn), where ||-|| stands for the uniform norm on [a, b].
The function of the best approximation p,,eML'" exists, it is unique and
for each i -1,2,..., R, pp is the polynomial of the best approximation for

f(t) on the interval |ty t,)-

We give here only the idea of the proof without any details.

The necessity is obtained by induction in & For k=1 it follows imme-
diately from the well known Chebyshev theorem for approximation of conti-
nuous functions by polynomials.

23 Cn. Cepawka, Ku. 4 SERDICA Bulgaricae mathematicae publicationes. Vol. 10, 1984, p.
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Suppose T, —{t,}%_, is a k-partition of [a, b] such that the function of the
best approximation pA,eMZ~l is a polynomial pL of degree at most n—1 on
cach interval [¢ 1, £]. To prove the necessity for an arbitrary & the function

¢(¢) is defined by

(]‘I(t), tk_.lﬁt.}/_tk,

where ¢, ¢ Mi 1 is of the best approximation for f on [t f,1] and g eMi!
is of the best approximation for f on [fr_1, £;].

Using the fact that n is even and the Rolle’s theorem one can show that
g€ M ' From the inductive uniqueness argument it follows p,=¢ and satis-
fies the conditions of the theorem.

The uniqueness of p, is obtained from the uniqueness of the determina-
tion of the knot 7, 1, which must satisfy the equation d,()=d,(¢), where

d(ty~ inf sup f()—p(t), df®)= inf  sup |f()—p(x) .
I

n—1t¢ [a,t) n—lzt€[s, b
PEM[_, P M] €

q(t)_{q,(t), ty=t<ta-,

llere the continuity and monotonity of these functions are used.

The proof of the sufficiency is based on the pigeon — hole principle.

Remark. If n fails to be even the theorem is not true.

Let us mention that this result was inspired by the work of P. Ken-
derov [1], who studies the approximation of convex figures by polygons.
In this case the Hausdorff distance appears to be more suitable than the uni-
form one.

We give some facts which we use later.

Lemma 1 (Polya’s mean value theorem [4]). Determine an integral h(t)
of the homogeneous equation

d"x " lx

(1) L.Y :’;i—‘t‘n-+¢ +...+(p"x=()

17 g1
with continuous coefficients ®(i=1,2,...,n), assuming the same values as
f(t)€ C"(a, b) at n given points of (a,b); determine further an integral g(t)
of the non — homogeneous equation

d"x a"x

LX"-'-F‘T‘¢1F+"'+¢,,-X':I

that vanishes at the n points in question. Suppose that the homogeneous
equation (1) admits n—1 integrals hy(t), ... ha(t) satisfying the n—1 ine-
qualities h,(£)>0, W(h(t), hot))>O0, ..., W(hy(t), ho(t), . . ., hn1(£))>0 through-
out the open interval (a, b) (here W(hy(t), ..., Wi(t)) stands for the Wron-
skian of the functions hy(t)...., h(t). Then for an arbitrary t of (a,b)
there exists a point & intermediate between the given n points and t such
that f(t) = h(t)+ gL f(3).

We use the asymptotic analysis developed by D. McClure [2] and
D. McClure and Vitale [3]. In fact we need the following

Lemma 2 (Lemma 5 on p. 350 in [3]). Let f be a real-valued function
on an interval [a, b] and let the function e(f; a,B) be defined for arbitrary
a-—-u<P--b. Let the following assumptions be satisfied :
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iy For any (a,B) satisfying a<a<B=b, e(f; a,B)=0. Further, if
a—a<P<y-=b, then max{e(f; «,B), e(f; B, V)}=e(f; a, 7).

ii)y There is a function J;, on |[a,b)] associated with f and a constant
m>0 such that J, is non-negative and piecewise continuous on [a, b], admit-
ting at worst a finite number of jump discontinuities, and ’}imoe(f; a,
a+h)h"=Ja+). This limit is uniform in that the difference |J,(a+)
—e(f; a, a+h)/h™| can be made uniformly small when (a, a+h) is contained
in an interval where J; is continuous.

iii) e( f; a, P) depends continuously on (a, B).

Define E,(f)= mrin max e( f; ti_i, t,), where the minimum is taken under

v

==

all k-partitions T,t:{l;,-}fd, of |a, b]. Then

lim BE,(f)=( [ JAS)ds)".

Lemma 3. Let f(¢£)¢C"[a, b] and for each a, B¢€|a, b] define e, (f; a,B)
to be the best approximation of f with polynomials of degree at most n—1
on |a, B]. Then for each u<P

(2) lim A "e,(f; a, a+h)=2"21+1 f@(a)i/n!
h—+0

The limit in (2) is uniform in a, in the sense that the difference
h=". e (f; a, a+h)—2=2+1| fO)(a)|/n!| can be made uniformly small in «
when the interval [a, a+h] is contained in [a, b] and h— +0.

Proof. Let p be a polynomial of degree at most n—1 interpolating f
at n distinct points a<ft <---<t,<a+h. Obviously (d"/dt")p(t)=0. Then
accordingly with the Polya’s mean value theorem (Lemma 1) we see that
f(t)—p(t)= f(E). p(t) (a<t<a+hk), where min(f £)<E<max(f ¢,) and p) is
the unique solution [a, a+ %] of the equation (@"/d¢")p(f)=1 satisfying p(¢;)

~0@=1,2...,n). Simple computations give p(t)=_" (E—t;) (t—ty)---(t—1,),
whence

FO—pO)= 1y fOE) E—t) (t—15) -+ (E—1,)

= (@) (1) (E—ty) -+ (E— 1)+ o(A").
Consequently (see p. 29 in [7])

(3) sup | f()—p() | = | f(@)| sup | T,(t: a, ath)|+O0(k")
t<a+h 5= h

~ f=a+

a=
—=2-2+1p" | fN(a)|/n! + o(h"),

where T,(t; a, a+h)=2"2+1 k" cos(narccos ((2{—2a—h)/)k)is the Chebyshev
polynomial of degree n on [a, a+ A].

Since the polynomial p(f) interpolating f(£) in the zeros of T,(¢; a, a+ k)
gives equality in (3) and accordingly with the Chebyshev theorem the poly-
nomial of best approximation p,_i(£) for f(¢) on [a, a+ 4] interpolates f(£) atn
distinct points, hence
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(4) e it ath)y=2-20 | fea)|/n! +o(h"),

As a straightiorward consequence we obtain inequality /2). Since the term
o(h") in the used inequality can be taken independent on «, therefore the
limit in (2) is uniform in a.

Theorem 2. For the best approximation of the strictly n-convex func-
tion f(t) by functions of ME" on |a, b] the following asymptotic estimate is
satisfied :

(5) lim A" Hy () =2 | fb NZors

k-0

Proof. For each k-partition T,={¢}* , of [a, b] we introduce E(f, T,)
maxy—;x e, f; ti—1, t;), where e, (f; t; 1 t;) are defined as in Lemma 3. Let
us denote

E, i f)—-min max e,(f; ti—y, t,)=min E,(f, T}).
T, \sisk T,

Obviously e,( f; a, B) depends continuously on the interval ends of [a, B}, and
for each a— a<P<y< b the inequality max{e,( f; a,B), e,(f; B. )}=e,(f: a,7)
holds. The proof follows as a direct consequence of Lemma 2 and 3 and from
the fact that En,x( f)=H,., (f) which one easily shows applying the construc-
tion in the proof of Theorem 1.

Analogous asymptotic estimates concerning the best approximations of
convex sets by polygons related to the Hausdorff metric are obtained by
Toth [8), McClure and Vitale [3] and V. Popov [5].
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