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ON THE EXTREME AND .? DISCREPANCIES
OF SYMMETRIC FINITE SEQUENCES

PETKO D. PROINOV

In the present paper we obtain estimates for the extreme and L2 discrepancies of any
symmetric finite sequence of points in s-dimensional unit cube Es=[0, 1}s. Our estimate for
the L2 discrepancy of symmetric sequences is an analogue of Erd6s-Turdn-Koksma's inequality.
The estimate for the extreme discrepancy of symmetric sequences in the case s=1 coincides
with LeVeque's inequality.

1. Introduction. Let s -1 and let £° denotes the unit cube consisting of
points x=(x,,..., x;) with 0=x;,<<1 (j=1,..., s). Let X={a,}}  be a fi-
nite sequence of points in £° For every y=(v,,...,y,) in E* we write
A(X;y) for the number of terms of X lying in the box 0=x;<y; (j=1,

., s) and put D(X;y)=N"'A(X;Y)—7Y,...¥s The numbers
D(X)= sup |D(X;v) and T(X)=( [ [D(X;y)Pdy)'”
YEES ES
are called the extreme and L2 discrepancies of X, respectively.
We shall make use of the following notations:
For every integer m we write m=max(l, |m]|).

For every lattice point m=(m,, ..., my) in Z° we define
m| = max |m;| and R(m)=m,...m,
1=9j=s
For a=(a,,.... a,) and B=(B,,..., B;) in RS, let (o, B) denote the stan-

dard inner product, that is (o, B)=a,B,+ ... +aB,.
It is well known that for any finite sequence X-{a,}¥  in £° and any

natural number » we have

> 1 \ 21 | c’ xilm, 4.
(1) D)= el 2 (R oy T e,

where ¢(s)>0 is an absolute constant depending only on the dimension s.
It is also well known that in the case s=1 the discrepancy D(.X) of any fi-
nite sequence X ={a,}¥ , in £=[0, 1] satisfies

. 6 oy _1‘77 l (Y mimay 913
(2) D(X) -?(‘,‘z m—1 m? I'N Pl ¢ )"

Inequalities (1) and (2) are called Erdos-Turdn-Koksma’s inequality (see
[1], p- 116) and LeVeque’s inequality (see [1], p. 111), respectively.
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In the present paper we obtain an inequality (see Theorem 2) for the L?
discrepancy of the so-called symmetric finite sequences in E£° which is an ana-
logue of Erdos-Turan-Koksma’s inequality. For the extreme discrepancy of the
symmetric finite sequences in E° we obtain an inequality (see Theorem 3)
which in the case s—1 coincides with LeVeque’s inequality.

2. Symmetric finite sequences. Let X—{a,}) , be a finite sequences in
E*. We shall say that a given point x=(x,,..., x;) in £° has a multiplicity
p(0<=p<s) with respect to the sequence X if exactly p terms of X coincide
with the point x. We call the sequence X a symmetric one if for any point

x=(xy,..., x,) in E° all points of the type
(3) (tl +(”—1)nxb ] Ts+(— l)rsx’)
have one and the same multiplicity with respect to X, when 1,,..., t; take inde-

pendently the values O and 1.

It is obvious that if a sequence X in F£° is symmetric then any other
sequence Y in E° originating from X by means of a transposition of its terms,
is also symmetric.

Let X be a finite sequence consisting of N points in £° and let X be a
symmetric sequence, consisting of M=2°N points in E°. We say that the
symmetric sequence X is produced by the sequence X if for every point
x=(xy,..., X;) in E° the following is valid: if a point x is a term of the
sequence X, then each point of type (3) is a term of the sequence X, where
T,..., T, take the values O and 1.

Apparently, each sequence X in E* produces at least one symmetric se-
quence X in E°. The inverse, of course, is true, too: if X is a symmetric se-
quence, consisting of M points in E* and if M=0(mod 2°) then there exists
at least one sequence .X in E° which produces the sequence X.

3. Estimates for the /2 discrepancy of symmetric finite sequences.
Theorem 1. Let X be a symmetric finite sequence, consisting of M=2'N
terms in E° and let X={a}N , be any finite sequence in E* producing

X. Then

- N
(4) TX)=(c(s) = (Rm)2| 5 S e™mowpyn,
|Im[|>0 k=1
where
(5) c(s) = (3/4n2)(1 —2—s+14-3-9),

Proof. Let X={a,}¥ , be a given sequence in £, and let X = {b, | R
where M —=2°N, be a symmetric sequence in £° which is produced by X. We
put
(6) ay=(Euk), ...\ ELR), k=1,..., N.

For y=(ypn ..., v, in E% let @, (x)=04x,,..., Xx,) be the characteristic
function of the box 0= x,;<v; (j=1,..., s). Then
N N 1

AR - o= E Y edmt (I G ()R,

=1%o, T
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Therefore

~ 1
(7) D(X; Y)=5- I py oAy (R), ..., alk)—v,...7

SN k-1 * =0

where, for brevity, we have put afk) -t,+(—1)7E(k), j=1,..., s.

The function D(y, ..., v.)—=D(X; v) is a piecewise continuous function
in £° Let
) ”\T," C(ml, L ,ns)e'.’m(m.‘/.%- . +msys)

be the Fourier series of (v, ..., v,). It is well known that the Fourier
coefficients are given by

(8) c(my, ..., ’”r) J‘ D(Yl ‘‘‘‘‘ 7. e-—)m’(m.-n+ cue '—ms‘ls)dyl L d‘/s'
ES

From (7) and (8) it follows that

1 A ) S Y onim,,.
(9) c(my, ..., mg) =xos X p I [ e ™"iiay
e k=1 *,..., rs-:O J=1 ai(k)
5 ! —2rim .y .
Il " 1€ I'Id‘Y,'
=1 0

1 Y8 e >
=y = I .‘..OA(m,-, u,(k))——/ill B(m;),

k=1 j=1 1=
where we use the following notations

1 1
A(m,a) = [ emmidy  B(m)= [ ye=rimidy.

For everv real number a and every integer m we have

(1/2rim)e—2xme—1), if m=0;
A(m, a)=

(10) (m, a) {l-a, if m0:
and

[—12rim, if m=0;
(h B('")_{ 12, if m-o.
We verify immediately that

1

(12) 220 A0, ufk))=1.

By (9). (11) and (12) we obtain

[ 1
('(0, ee oy O):—"er;’ k:l l—.é? =O
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Then by Parseval’s identity we have

(13) (TX)P= [ DO -- > ¥3) 27, - .. dy,
ES
— 5 Le(my, ... myg) 2= S | e(myy ...y my) %
where ¥’ means that (m,, ..., m,)==(0,..., 0).
Let p be a natural number with 1<=p<s and let {/;,.... j,} be an arbit-

rary subset of the set {I, 2,..., s}. We shall introduce the notation
S(Jyeves Jp)= x* | e(myy ..., my) 2,
m m

where the sum X¥ is over (my, ..., my) in Z° with m;=0 (I=j<s) if and
only if j coincides with any of the numbers j,, ..., j,.
It is easy to see that formula (13) can be written in the form

(19 (T(X)p= = 2 0(ju--es Jph
p=1 Ju ..., Jp
where the inner sum is over {j,,..., j}={l, 2,...5}.

Now let p be again a given natural number with l<p<=s and let
{/1»---» Jp} be a given subset of {1, 2,..., s}. We shall obtain an estimate
for the sum o(j,, ..., j,) From lower exposition, it will become clear that,
without any loss of generality, we can assume that {j,,..., j,; coincides
with {1, 2,..., p}

Let us suppose that {jj, ..., jp={1, 2,..., p}. Then

le(myy ooy my, 0,..., 0)[2

3 148

15)  0(fi-es J)= o
m0, . . .,pmp:#O

Let m,+0,..., m,+0 (1=p=s). Then from (9), (11) and (12) we obtain

(16) o(my, ..., m, O0,..., 0)
N P 1 .
=N?5L'(2—"155""1 . -l~ mp kil jl_ll r;":=0 (e—zﬁlmjai(k)—l)_((;xli)): 2‘11' my . .l. m,

We make the following transformations

(17) A S (e ™mA®_1)= I (™m0 4 e=imt ¥ _2)

J=1 =0 j=1
— 3 B(ep , ’)e2xi(e.m,§,(h)+ eve +s’m’§’(h))'
Cgpeo-9 @

P
where the sum is over &,..., &, which take the values 0, —1 and 1 (their
number is 37).

It is easily seen, that

(18) B, ..., 0)=(—1)727
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and
(19) B(ey, ..., g,) =2¢""1 for (g,..., £,)=(0,..., 0).

Now, using (18), from (16) and (17) we conclude that
(20) cmy ..., my 0,...,0)

1 1 1 .

— 2 . f)ﬂm . "'"l—‘.*_"';"*p* . :. . B(el, e e ey EP)S(elm,, ceo sy Sp"ln’ 0, o o ey 0),
P
where X’ means that (g,..., €,)%+(0,..., 0) and where for a lattice point
m=(m,,..., my) in Z° we use the notatlon
N N -
(21) S(my, ..., my)= i\/ Y T = ,1\ T P - A mS
A Y k=1

From (20) and (19) we obtain the estimate

) _ o S(eymy, .. .. pMp O, ... 0
c(myy oo my, 0,00, 0) < 1z NS <o o B (e : -0 0}

From the latter estimate and the well known inequality (Z7_,u;)*~nX"_ u? we
find

o ~ 31 ) | S(eymy, ..., EpMp. 0, ..., 0) 2,
co(my, ..., mp 0,...,0)[ i, L’s (Inx..‘.”::)’

From that inequality and from (15) we get

22) ofj - 3p—1 “r &= |S(gymy. .. ., EpMpo. 0, .. .\ 0) l‘-f
(22 Jv-os Jp S e . (my ... my)P
» 14
my+0, ..., m_+0

Let us consider the inner sum of that inequality with fixed €,,..., ¢,
and denote it by Q(g,, ..., g,). Let ¢(1-=¢g=p) be the number of those e,
(j=1,..., s) which are not equal to zero. With no loss of generality we can
assume that €,+0,..., €,-=0. Then

oo | Stgymy, . .. epmp, 0, .. .. 0) 2
Qe ..., €,) = ) ‘"""‘—’(';"‘l-.“jj'";'—)z——
meo.o.., m"— o
m=+0, ..., m_ =0
?
2 _p—q pd | S(gymy, . . .. €ggmg, O, . . ., 0) 2
= ‘3‘) - (my . mgP?
My, o oo nlq-v-ae
m%0, ..., m_+0
x? p—1 . S(my, . ..., mg 0, ...,0)2
( 3 ) ~ (my .. .omy)?
My oo mq==
my0, ..., m,:ﬁ)
(,,: p1 b | S(my, . ... my) |*
3 Myy ooey -r‘n P (ml N m!)’
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FFrom here and from (22) we obtain

. L 33P—1) = ISemy, . - mg) 2 .
: R e z = —— > 1
(23) o( Jp)= PHigezr PR (my . . .mg? e .
3371 ~ S(my, . . .. mg*
B my ... .‘-m =—o0 (my ... mg)?

We obtained the estimate (23) under the condition that {j, ..., j,} coin-
cides with {l, 2,..., p}. However, it is evident from the proof that it holds
for an arbitrary subset of the set {1, 2,..., s}.

From (14) and (23), using

v @D . S B S e a3y
S e, AT p)merrieEd
we obtain the estimate
: v : 3 et Stmy,....m9* S @F-1p
(24) (T(X))B == 4s~é—|x3 N :-”'s=“‘°° (m, ms)' p—l 3P e .-.-. ) Ipl
= S(my, . ... mg) *
A ’ —— e -
_C(S) My oo oy y m_=-—oo (ml mg)? ’

where the constant C(s) is defined by Eq. (5). Obviously the estimate (24) coin-
cides with (4). Thus Theorem 1 is proved.

It should be mentioned that Theorem 1 (with a different constant) has
been proved first in [2], but with a certain inaccuracy in our proof. We ex-
press our gratitude to Professor V. Popov (Sofia) for drawing our attention
to it.

From Theorem 1 for s=1 we get the following assertion.

Corollary 1. Let X be a symmetric finite sequence consisting of
M=2N terms in E=|0,1] and let X—={a,}Y_, be any finite sequence in E

producing X. Then

. B N :
(25) TX)s(omw = a5l Iy

m=1

We shall note that this estimate is precise. Indeed, if a,=ay= ... —ay
-0 then X will consist of NV zeros and N ones. Now from (25) we obtain

T(R)= (g B )= INT2

and from the definition of L% discrepancy we find that
TX)=(J (5 Y)idy)' 2 =112

Therefore in this case (25) is an equality.
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The following theorem is an analogue of Erdos-Turdn-Koksma’s inequa-
lity (1)

Theorem 2. Let X={a,}¥ , be any symmetric finite sequence in E°.
Then

(26) 7‘(X)N(C(s) by (R(m))“z;'—;]— § rmimay ;3)1»'2,
|im||>0 k=1

where the constant C(s) is defined by (5).
Proof. Let X={a,}¥ , be a given symmetric sequence in £ and let

X~:{bk};‘;,, where M=25N, be another symmetric sequence in £ which is
produced by X. Then for every point vy in £° we have AKX y)= 2°A(X; v).
Therefore IX(X; v)=MA(X;7)—7Y:..-Ys=D(X; v), and so

(27) T(X)=T(X).

It follows from Theorem 1 that for the symmetric sequence X will be va-
lid the estimate (4). Now from (4) and (27) we get (26). Theorem 2 is proved.

We proved that Theorem 2 follows from Theorem 1. It is not difficult to
prove the inverse. Indeed, let X={a,}=% | be an arbitrary sequence in £*
and let X={b,}¥, be a symmetric sequence which is produced by X.

From (26) we shall have

~ M
(28) (TRP=CE) S (RO 2 e B 0,
[jm]> ‘ =

Using the notation (6) and (21) we can write

M k=1 BN R=1 T,..., T =0

1
- B S (1),

s

From (28) and (29) it follows that

(Tp=%. = §o ASCEhm G

Tis ooy T =0my, ..., m —=—oo (my ...msp

? |2
SC) = R e

||m]|>0 1

We see that Theorem 1 is equivalent to Theorem 2.
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In the case s=1, it follows from Theorem 2 that for any symmetric se-
quence X={a,}¥  in E we have
oo N .
(30) T(X)=(5m P 115 pmimay ey

2 | AT
_ym* N T

but from Koksma's equality (see [1], p. 110):

,

! S 1 2 ] 1 * 1 1 E 2rima
(TXP=(y, 2 @ W+ g S gwin B &,

= k=1
which holds for any sequence X={a,}Y , in E it follows that

- 1 - 1 1 i 2nima, |
TX)2(gs 5 ol B mapye.
That inequality shows that in fact we have in (30) an equality.
Corollary 2. Let X—={a,}¥ | be any symmetric finite sequence in E.
Then

1 1,1 ¥ omima gue
TX=(g = el B €%
Of course, corollary 2 can also be derived only from Koksma's equality-
4. An estimate for the extreme discrepancy of symmetric finite sequ-
ences. In the following theorem we shall show that for symmetric sequences
LeVeque’s inequality (2) can be generalized for any dimension s==1.
Theorem 3. Let X—={a,}N  be any symmetric finite sequence in E*.
Then

N .
(31) D(X)=(C\(s) EO (R(m))—2* —:—/ kz‘.l XMy @ys+2),
where Cy(s)>0 is an absolute constant depending only on s and C,(1)=3/n>

Proof. It is known (see [3], Theorem 4.2 and Corollary 1.2) that for any
sequence X={a,}¥ , in E° the following inequality holds (D(X))s+?72
< Cy(s)T(X), where Cy(s) is an absolute constant depending only on s and
Cy(1)=/12. Therefore

(32) D(X)=(Cy(s)T(X))+2,

Now, if X is a symmetric sequence from (32) and from Theorem 2 we
get the estimate (31) with the constant C,(s)=((Cy(s))*C(s))"¢+2, where the
constant C(s) is defined by (5). It is easy to verify that C,(1)=3/n2. Theorem
3 is proved.

Finally, we shall remark that for s=1 the estimate (31) coincides with
LeVeque’s inequality (2).
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