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A NOTE ON A SEMI-INVARIANT SUBMANIFOLD
OF A PARA-SASAKIAN MANIFOLD

K. D. SINGH, O. P. SRIVASTAVA

[n this note we define semi-invariant submanifolds of a para-Sasakian manifold and prove
thal each semi-invariant submanifold of a para-Sasakian manifold is necessarily an invariant
submanifold.

A Sasakian structure on a manifold has been defined in [1]. Later on ana-
logous structure called para-Sasakian structure was introduced and studied
in [4].

[[]2ecently in (1981) semi-invariant submanifolds of a Sasakian manifold
have been defined and studied in [2]. It has been proved that a Sasakian
manifold alwalys admits a semi-invariant submanifold. It was then natural to
investigate similar properties of semi-invariant submanifolds of a para-Sasakian
manifold. In this note we have shown that each semi-invariant submanifold
of a para-Sasakian manifold is necessarily an invariant submanifold and con-
sequently a para-Sasakian manifold does not admit any proper semi-invariant
submanifold. )

l. Preliminaries. An n-dim differentiable manifold M is called an al-

most paracontact Riemannian manifold (3], if there exists in M a tensor field F
of type (I, 1), a positive definite Riemannian metric g, a contravariant vector
field § and a covariant vector field n satisfying

(1.1) FP=I—m®E,

(1.2) n@)=1,

(1.3) &FX, FY)=gX, Y)—n(X)n(}), and
(1.4) n(X)=g(X, &).

The set (F,&m, g is then called an almost paracontact Riemannian struc-
ture on M. In such a manifold, the following relations hold :

() FX Y)=F(, X) where FI(X,Y)=g(FX,Y),
(1.5) ((ii) F(E)=0, (iii) moF=0, and
((iv) rank (F)=(n—1).

An almost paracontact Riemannian structure (F,E, n, g) on a manifold is
called a para-Sasakian structure [4] if

(1.6) (VxF)Y =g(X, ¥ J&e—2n(X (Y )E+n(¥ )X,
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where y denotes the Riemannian connection on M. On a para-Sasakian mani-
fold we have [4]

(1.7) viE=—FX.

2. Semi-invariant submanifold of a para-Sasakian manifold. Let M be
an n-dim almost paracontact Riemannian manifold with structure (£, &, n. &)
and M be an m-dim differentiable manifold isometrically immersed in M such
that & is tangential to M. Let 7M and 7M' denote the tangent bundle and
normal bundle respectively on M. We define a semi-invariant submanifold of
M as follows:

A submanifold M of an almost paracontact Riemannian manifold M is
called a semi-invariant submanifold of M if the following conditions are
satisfied :

(i) TM=D®D ®{g}

(i)  The distribution D is invariant by F, that is, for each X¢D, FX¢D,
and

(iil) the distribution D' is anti-invariant by F, that is, for each Xe¢D",
FXeFD " )=TM,

where D, D and {&} are orthogonal distributions on M such that (i) is
satisfied.

The distributions O and D' are called respectively the invariant distribu-
tion and the anti-invariant distribution of M. It is easily seen that invariant
(resp. anti-invariant) submanifold is a particular case of semi-invariant sub-
manifolds when dim D=0 (resp. dim D=0). A semi-invariant submanifold which
is neither invariant nor anti-invariant is called a proper semi-invariant sub-
manifold.

[Let M be a semi-invariant submanifold of a para-Sasakian manifold M and g

denote the Riemannian metric on M as well as the indiced metric on M.
Each X¢ TM can be represented by

(2.1) X=PX+QX+n(X)E where PX¢D and QX¢D".

Thus P and Q are projection morphisms of 7M into D and D, respectively.
Again if N¢ TM ', then FN can be written as

(2.2) FN-—=BN+CN, where BN¢TM and CNe¢TM- .

It can be easily seen that for X¢D, g(FN, X')=0 and also g(FN, &)--0, which
gives BN~(D . )

et v and y be the Riemannian connection on M and M, respectively.
Then the equations of (Gauss and Weingarten are given by

(2.3) V¥ vV +A(X. V),
and
(2.9) VilV=—AxX+A%N,

respectively, for all X, Ye¢TM, N¢ TM!, where £ is the second fundamental
form of M, AyX and y /N are tangential and normal parts of y,.V. From (2.3)
and (2.4) we get
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(2.5) gA(X, Y), N)=g(AxX, V).
Consequently g(Ax X, Y) is symmetric in X and Y.

Lemma 2.1. Let M be a semi-invariant submanifold of a para-Sasa-
kian manifold M. Then the following relation holds :

(2.6) g(vxF)Y, Z)=n(Y)g(X, Z), for all Z¢D@P D-".

Proof. Using (1.6) and the definition of semi-invariant submanifold we
obtain vy Z¢ D@ D+
(VxF)Y, Z)=g(gX., )e—2n(X)n(Y)E+n(Y)X, 2)=gn(Y)X, Z)=n(Y)g(X. Z),

which completes the proof.
In view of Lemma 2.1 we can directly state the following:
Corollary (21). Let M be a semi-invariant submanifold of a para-

Sasakian manifold M. Then the following relations hold :

(2.7) (VxF)Y, 2)=0, w ¥, Z¢ D@D D,
and
(2.8) g(VxF)Y, Z)=0, y X | Z, where Z¢ D@ D-.

We next prove
Lemma 22. In a semi-invariant submanifold M of a vara-Sasakian

manifold M, we have
(2.9) AFJ\Y'{"AF}’X:O, v X YE D-:-.

Proof. Since X,Ye¢DL, FX and FY¢TM!, (2.5) vields g(AgyY. Z)
-gh(Y, Z), FX)=g(h(Z,Y), FX). Using (3.3) we get

(2.10) &ApxY, Z)=g((vzY ), FX).

Now (1.5) (i) we have g((v2Y), FX)=g(Rv,Y), X)=&VAFY)—@2F)Y, X).
Using (2.7) and (2.4) the above equation reduces to g((v;Y), FX)=g(vAFY) X)
= g(—ApyZ, X)=—g(ApyX, Z). The above equation and (2.10) provide the
proof.

Theorem 2.1. A semi-invariant submanifold M of a para-Sasakian
manifold M is necessarily an invariant submanifold. Consequently a para-
Sasakian manifold M does not admit any proper semi-invariant submani-
fold.

Proof. Using (2.4), (1.6) and (1.5) (i) we get for all X,Y¢D"

N(ApyX)=&(—VFY), E)= —g(VxF)Y + FivxY ) &)

= —g(g(X., VYe—2n(XM(Y)E+n(Y)X, E) - g(vyY, FE)= —g( X, Y).

Interchanging X and Y in the above equation and then adding both equa-
tions we get n(AgyX+Apxt )= — g(X. Y). Using (2.9) in the above equation
we get g( X, Y)=6 for all X, Y¢DL. Consequently the dimension of DL is
zero and the submanifold is invariant submanifold, which completes the proof.
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