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VECTOR OPTIMIZATION AND EXISTENCE
THEOREMS IN GAME THEORY

YURL S. PARVANOV

It is well known that the Pareto optimality plays an important role in the mathematical
economy and game theory. The infinite dimensional generalization of this optimality concept
has been investigated for two decades (see [1]). Joining to this research, in this paper the
game-theoretical applications of existence theorems of vector optimization are investigated. In
section 1 the basic notions are defined and a simple Weierstrass type theorem is proved. In section
2, on the basis of the formalization proposed in [2]. the existence of a cooperative solution of
a game with infinite number of players is considered. In section 3 the existence of a minimax
type solution of a general antagonistic game with infinite number of payv-off functions is
proved.

1. In our investigations the following definitions will be needed.

Definition. 1. Let Z be a real Banach space, K=Z a convex sharp
cone. (A cone K is called sharp if z¢K, —z¢ K imply 2=0.) The pair
(Z, K) is said to be an ordered Banach space. [In convention with this or-
dering the following notations will be used. For any z, zy3¢Z we shall
write 2,=2y, 2,52y and 2,<2z,, if 2—2, € K, 23—z, € K\{0} and z,--z, ¢ int K,
respectively.

Definition 2. Let =@ be an arbitrary set, (Z, K) be an ordered
Banach space and f: # — Z be a given function. An element u, ¢« is said
to be a K-minimum point of the function f, if there exists no wu,¢ % with
)= fuy). ,

We notice that in case Z: —=R¥ the ordering is usually given by the
cone K: =R¥ of non-negative vectors. Then, as a special case, the Pareto mini-

mality is obtained. In the classical function spaces, in most cases, the order
cone is that of (a. e.) non-negative functions.

The K-maximum point is defined analogously.

Definition 3. Let #--Q) be a topological space, (Z, K) be an order-
ed Banach space and suppose that int K-+=. A function f:0-+Z is said to
be K-lower semicontinuous (briefly K-L. s. c.) at a point u,¢ N\, if for eve-
ry y€int K there exists a neighbourhood k(i,) of u, such that f(u)=f(uy) -y
(u € k(ug)). f is called K—L. s. ¢, if it is K-—I. s. c. at every u,¢%.

The notation of K-upper semicontinuity (K-u. s. c.) is defined analogously.

Remark 1. It follows from int K4 that any continuous function
f:u—Z is also K-1. s. ¢. and K-u. s. c. It is also not hard to see that in
case of Z:=RN, K: -R¥ f: @ +7 is K-1. s. c. if and only if every coordinate
function of f is I. s. c. in the usual sense,

Definition 4. Let (Z, K) be an ordered Banach space. Then a conti-
nuous linear functional p ¢ Z* is called strictly positive, if for each z¢ K
~ {0} (p, 2)>0.
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The following theorem is a generalization of the Weierstrass theorem to
ordered Banach spaces.

Theorem 1. Let #+=@ be a compact topological space, (Z, K) be an
ordered Banach space, int K== and suppose that there exists a strictly
positive functional p ¢ Z* and f:U—~Z is K-l.s.c. Then the function f has
a K-minimum point.

Proof. First, we show that p o f: #—R is 1. s. c. in the usual sense. Let
u' ¢« and € ¢ R, be arbitrary. Since p is continuous, there exists a 8 ¢Ry
such that for any z¢ Z with |z |<3 we have (p, 2)| <e. By int K==(), there
is a yeint K with | y| <8. By the K-1. s. c. of f there exists a neighbourhood
k(u’) such that f(u)—f(u')+v>0 (u € &(u")). Thus we get

0(p, fu)—p, fWN+{p. ¥<(p=f) W)—(pf) W)+s,

that is,p o f is l. s. ¢. By Weierstrass’s theorem the function p o f has a mini-
mum point #, € % . u, is a K-minimum point of f. Indeed, supposing the contra-
ry, there exists a u, ¢ % for which f(u,)<f(u,). Since p is strictly positive
we have (p e f) (4,)<(p < f) (4,), which is a contradiction.

Remark 2. If the Banach space Z is separable and K is closed then by
Krein’s theorem there exists a strictly positive functional p ¢ Z* [3, theorem
2. 1.). A counterexample in [3] shows that in nonseparable spacesa strictly positive
functional does not necessarily exist. However, there exists such a functio-
nal, for example, in the ordered Banach space

Z: =L([t, t,), R),
K: ={z€L([ty, t,). R): 2(f)=0 for a. e. t€[t, £]}.

Indeed, the continuous linear functional p:Z R, (p, 2):=[}'z (2€2) is
clearly strictly positive.

2. In the following, we shall show how Theorem 1 guarantees the existence
of a cooperative solution of games with infinite number of players.

Let (&, p) be a metric space, (47, 1) be a compact metric space, n:& A
be a continuous surjection. A mapping # : A4 —& is called a section of =, if
n, u=id 4. Denote by % the set ofall continuous sections of n. The elements

of the space .4~ are interpreted as players while the elements of # arecal-
led cooperative strategies. For any v ¢4 the metric space %,: = n~Yv) is consi-
dered as the strategy space of the plaver v. Fot any u', '’ ¢ %

(1) du', u'’): =sup{p(a’(v). u’'(v)): ve N}

is a metric on #%. Suppose that each player v ¢ .4~ a pay-off function f,: #—R
Is given such that for every u ¢ % the mapping v - f{u) (v € A7) is continuous.
(i. e. given a cooperative strategy, “close” players have “close” pay-offs). The
joint pay-off function f is defined as follows:

f: U -C(AN), flu) (v): =flu) (wewU, veAN)

The pair (n, f) if called a cooperajive game.

Now, let (B +#,—#% be an a-bitrary set of cooperative strategies. Then
a cooperative strategy uo € %, is said to be a solution of the game (=, f) with
respect to #,, if there exists no u, ¢ %, such that for every v ¢ A the ine-
quality fu(u,)==fdu,) holds and besides f,(u,)>f.(u,) for some v, € A It is

10 Cn. Cepamxa, xn. 2
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clear that u ¢ %, is a solution of (m, f) withrespectto #%,if and only if 4, is a
K-maximum point of the function f 2 cU, —» Z: =C(A), where K:={z¢C(A):
0

z(v)=o(ve A)}
Suppose the set #, is compact with respect to the metrics 4, and ff?( is
0

K-u. s. c. Since C(A4) is separable, by Krein's theorem there exists a strictly
positive functional in C(4")*. Thus, from Theorem I, it follows that the game
(m, f) has a solution with respect to %,.

Now consider the connection between the classical cooperative games
with a finite number of players and the general formalization given above.
If the number of players is V¢ N, then 4" : ={1,..., N} is compact with res-
pect to the discrete metrics. For each v¢.4" let the compact metric space
(#,, p,) be interpreted as the strategy space of player v. Then, on the disjoint
union &: = U N %, define the following mapping: n: & » A, m(e): =, if
e¢ %, Define on the set & a metric p such that for any e’, ¢’"¢ & put

1, if m(e)+n(e"),
p(f’,, e”): N pv(e" '“) : ’ rr

W}T.‘)W if m(e’)=mn(e"")= :v.
Since the metrics p induces the topological sum of the spaces #(v¢.V'), the
mapping is continuous. Clearly, any section of & is continuous, thus # = XY \#..
Now, the metrics d defined in (1) induces the product topology on the set %,
which is compact. For each v¢ A7, let f,: —~R be the pay-off function of
player v, and suppose that they are u. s. c. Then, by Remark 1, the joint
pay-off function f: # -~ C(A") =RV is K-u. s. ¢. on the compact space #%,= %
with respect to the order cone K: R¥ . Thus, from the above, we obtain the
well-known existence theorem for .A"-person cooperative games.

3. In this section the existence of a minimax type solution of antagonistic
games with infinite number of pay-off functions is investigated.

Let % + () be a compact topological space, and let (¥7, p) and (S, A) be
non-empty compact metric spaces, suppose the function F: #<¥ 8§ <R is
. s. ¢, and for each u ¢ % define the continuous function F,:¥ S R,
FJ v, s): Fu, v, s). Put

G: Uy ——~C(S), Gu v)(s): =Fu, v, s) (se3).

The pair (% <v¥", () is called an antagonistic game with vector-valued pay-off
function. # and ¥ are interpreted as the strategy sets of player | and II, res-
pectively, and G is called the pay-off function of player Il

Definition 5 A strategy u,¢ % is called a K-minimax solution for
player 1, if there is no u, ¢ % such that for each s¢S

max {((u,, ©) (5): v €YV pamax (Gu,, v(s): ve¥),
and
max {G(u,, v)(s,): v ¢ ¥ }<max {Gu, v)(s,):ve¥)

for some s, € S.
Under the above condition the following existence theorem is valid:
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Theorem 2. Let #==Q be a compact topological space, let (¥, p) and
(S, ) be non-empty conpact metric spaces, suppose the function F: U XYV
xS R is [. s. c. and let be given the vector-valued pay-off function

G: Ux¥ —C(S), Gu, v)(s): =Fu, v, s)(s€S),

where the function F,: ¥ XS —R, F(v, s): =Fu, v, s) is continuous for
each u ¢ ¥. Then in the antagonistic game with vector-valued pay-off func-
tion (U x¥", G) there exists K-minimax solution for player l.

Proof. a) For every (v, s) € ¥ XS define the following function: Fp, : #
—R, F,u): =F(u, v, s). We show that at each point u, € % the elements of
the set {F,,: (v, s)€¥ XS} are equally I s.c, that is for any € ¢R, there
exists a neighbourhood A(u,)—# such that for each u ¢ k(u,) and (v. $)€¥ XS

(2) Fvs(u) > Fv:(uo)_ €.

Now, let ¢ R, be given arbitrarily. Since F is I. s. c. and F,, is uniformly
continuous, for every pair (¥, S,)€¥ XS there exists an open neighbourhood
k(ity, Uo So)=U X¥ XS such that for any (&, v, s) € R(ug o So)

3 Foltt)— Fo (o) >—¢/2,

(39 Fos(ttg)— Foys, (o)< /2.

From the open covering {k(u,, To So): (. So) € ¥ xS} of the compact set
{uo} ¥ xS choose a finite covering {k(ug v 1) .-, k(u,, v, S,)}- Then
the set

k(u,): :nl pryk(ug, v, s)=U

is obviously a neighbourhood of u,. Let u ¢ k(u,) and (v, s)€ ¥ xS be arbitrary.
Then there exists an index j¢ 1, n for which (&, v, s) € k(io, v;, ;). Thus, from
(3) and (3’) choosing (vo, So): =(v;, s), it follows that
Fv:(u)_ Fv:(uO)": Fp,(ll)—Fol.:,.(uo)'f'Fo/:’.(uo)—F"(lln)>—5
b) For each s ¢ S define the function F,: % R, F(u): —max {Fo(u):ve ¥ )
Then, for every u, € % the elements of the set {F,: s€ S} are equally I s.c.
Indeed, let € ¢ R. be arbitrary. Then, by the arguments of a), there exists a

neighbourhood k(i,) such that for every u € k(u,) and (7, s)€ ¥ xS we have
(2). Hence, it follows that for any u ¢ k(u,) and s¢S

F.(u) =max {Fou):v € ¥} >max{F,(u,): v¢ ¥} —e=F{u,)—e.
¢) Define the function
f: w—RS, fu)(s): - F,(u)=max {Fu, v, s): veV} (seS)

We show that R,—C(S). Fix a point u, ¢ # arbitrarily. Since f(u,), as a point-
wise supremum of continuous functions is I. s. ¢, it is enough to prove that
fluy,) is u. s. c. Let e¢R, and s, ¢S be arbitrary and consider the metrics

d: (¥ <S)x<(¥ <S) R
d(v', s') (¥, s")): =pv, v')+MS, s,
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which defines the product topology on ¥ < S. Since F, : ¥ ¥ S —R is uniform-
ly continuous, there exists a 3 ¢R, such that

(4) Fu(v, )< Fuo(t" SO) +&,

whenever (7, s) € ¥ xS and d((v, s), (v, 5,))<d. The last condition is equiva-
lent to A(s, $,)<<d. Thus,for every s¢ ks(s,) relation (4) holds for each v ¢ ¥".
Therefore,

f(uy) (s)=max {F.(v, s): ve¥}<max{F.(v, s,): vE¥|+e—=[fuy)(sy)+¢e

(s € ks(s))-
d) The function f: % - C(S) is K-l. s. ¢. with respect to the order cone

(5) K: ={z¢C(S): z{s)=o(s € 35)}
of the space C(S). Indeed, choose y ¢ int K arbitrarily. Since S is compact and
the continuous function y: §-+R is everywhere positive, € : =min y>o0. From

b) it follows the existence of aneighbourhood k(x,) such that for every « ¢ A(u,)
and s ¢S we have F(u)>FJ(u,)—e=F/(u,)—v(s), consequently f(u)>f(u,)—
1 (u € k(u,)).

e) Finally, (8, A) is a compact metric space. Thus the Banach space C(S)
is separable. Since the cone (5)is closed, by Krein’s theorem there exists a
strictly positive functional p ¢ C(S)*. Thus, using Theorem 1, statement d) im-
plies that the function f has a K-minimum point u, ¢ . From Definition 5, it
immediately follows that #, is a K-minimax solution for player I.

Theorem 2 is proved.
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