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APPROXIMATION OF A CLASS OF BOUNDED CONVEX
FUNCTIONS BY BERNSTEIN POLYNOMIALS IN L,

VIOLETA AT. KOSTOVA

In the paper an estimate 1s obtained for the approximation of a class of bounded convex
functions by Bernstein polynomials in Z,. It is proved that the estimate is exact with respect
to the order.

We shall use the following notations:
Lla,b] — the set of all bounded and measurable functions on [a, b];

b
fix) —8lx) I, =[] flx) —g(x) | dx
— the distance between f, g€ Lia.s)s K, = {fix): f€Ljas. flax,—(1 — a)xy)

= af(x)+ (1 —a) flxg), X1, Xa€[a, 8], 0 < a=<l, max[!flx), a=x=b]=M<L =}
is the set of the bounded and convex functions in Lig.s;

B,(f: x)- lfﬂf(:)P,.v(x). where Py(x) = (" Jee(1—x)" =

is the Bernstein polynomial for f¢ K.

In [1; 3] is proved

Theorem 1. Let f be a function of bounded variation on (0, 1|. Then

B,(f: x)—f(x) 1, sCV{ fn=%

We prove

Theorem 2. Let feK{, . Then |B,(f; x)— f(x) |, = O(n™"). where 1)
depends only on M.

For the proof of Theorem 2 we need two lemmas.

Lemma 1. Let g()) be the convex increasing function

gk x)=max {0, M(x—21)(1—-1)}, A0, 1), M>O0.

Then for n=4, || B(gM ) x)—g(; x),,<3/2Mn~" holds.

Proof. We integrate the Bernstein polynomial (see [1]) and obtain

l‘ n M v
Zimr

1) [ BAg( ) - APl X)x

M &y : M eV
<A z (n ——l)“({p"v(x)d,t T=0(n+1) v:‘:‘o(?’-—k)*

vel
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M N v oM R U2 (LR Y
T (I=m(n+1) \.:,,,Z,_IH (=M= {FA=1P+[r— 2n(n+1)

HE D M(1—2) (121 AP+ D),

where D, = A — M AnMUnr D) Me=lmh) C Agter some calculations we get

2 2n(n+1) n+1
) D, =M1—=2)(n+1)"'+D,,
where D, lz—— % Now we shall prove that for
(3) rE[3/2n7Y, 1—3/2n7Y, n=4,
we have
(4) Dy= 1201 —=A)n+ 1)~

Indeed under the restriction (3) it is true that 2<=2i(1—2X)n. Applying ele-
mentary transformations we obtain a sequence of equivalent inequalities:

1 +2nA2<2nh—1<=nh+[nn];
(AP —([ni]2+2nAi2 < nk +[nA];
(nA)2 +nA3—[nh]2—[nk]|=nk—nki3;
n(n+ DA2—[ak]([ar] +1)=nA(1—2);

AT [mA)[aR]+1) . M1=A)

2 2n(n41)  2An+1)

which prove (4).
Further we conclude from (2) and (4) that

(5) D, -=32M1 —A)n—t.
Due to (1) and (5) we obtain
M(1—=x) . 3Mxr

(6) f BAg(h): x)dx =02 4 SR

But in view of the definition of gA) we have

7 4 g0-; x)dx =MD

and

®) B0 )~ gh: 0= [ 1BL&OY: x)—g(h: o)

Then (6), (7) and (8) yield
(9 1B, (gx): x)—g: x)||=3/2Mn~",
Lemma | is proved.
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Lemma 2. Let fGK‘lg“” be a monotone increasing function for x¢[0, 1]
and f(x)=0 for x=0, f(x) =M for x=1. Then | B,(f: x)—f(x) /I, <9/2Mn™?
holds.

Proof. Without restriction of the generality we can consider f to be
continuous on [0, 1]. Then for every £>0 there exists a linear combination of
the functions g(x)=ZXm$u,g(X;; x) with the property

(10) max { fix)—g(x), x¢[0, 1]}<e,

where p,=0, i=1,2,...,m, Zp=1; gk)i=12...m
=1

==
are the convex functions from Lemma 1.

According to Lemma 1 for every function g(&), i=1, 2,..., m, (9) holds.
Then for the polynomial B,(g: x)=X7 u,B,(g*,); x) from (9) follows

(11) B(g: x)—g(x) = E W [Ba(g0h): ) — g0l L

< %l Bugn): =80 )| ,=32Mn
Due to (10) we have
1 n
(12) I Bn(g: x) — Bu(fs x) |y, Sl[ b3 tg(—:';-) —f(—:;—) Pl x)dx <Ee.
v=0

Using (10), (11) and (12) we obtain
B(f: X)—f(x) .= | Bg: x)—&x)| .+ Blg: )—BLf: 0L

+| 8(x)--f(x) | L,=92Mn1.

Lemma 2 is proved. Now we shall prove Theorem 2.

Let fe K,  Without restriction of the generality we can consider f to be
continuous. We denote a =f(a)=min {f(x); x€[0, 1]}, a¢[0, 1], and define the
non-negative function f(x)=f(x)—a for x¢€[0, 1]. Further we express the func-
tion f as follows : f(x)=p(x)+h(x) for x€[0, 1], where

0 ., x¢€[0,a];
p(x):{ﬁx)' x€(a, 1];

_| ). x€[0, a];
"(")‘{o“ x€(a 1)

The functions p and ¢(x)=A(1 —x), x¢[0, 1], satisfy the conditions of Lemma 2.
Hence it holds: || B(p; x)—p(x)!;, S92Mn~—"; | B(¢: x)—q(x) |/, =9/2Mn™.
Then for the Bernstein polynomial B(f: x) = B(p: x) + B(h: x) =B, (p; x)
+ B,(g: x) one has

(13) (B (f: X)—f(x) 1= Balps X)—p(x) |1, + | BAq: x) —q(x) |, SIMn—.
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The obtained estimate holds for the function f(x)=f(x)—a, x¢[0, 1]. This is
not a restriction of the generality since by definition
CBASi X)) 1 Bl fs x)—a—flx)+al =] B fi ) —fx)] L.

Now we shall prove that the order of approximation O(n—') of the functions
fEK, by Bernstein polynomials can not be improved in L,.

Let us consider the function g(—;—; x)= max {0,2M (x —%)}, x€[0, 1). For

the order of approximation of the function g(1/2) by Bernstein polynomials we
obtain:
a) Let n=2k, k=1, 2,..., A=1/2. From (1) follows

| Bonla( )5 x)dx= M1 —05(3k+ 1)(2k+ 1)1 =025M[1 + (2 + 1)~1].

Then from (8) we get
(149 B (g(1/2); x)—g(1/2; x) ||, =0,25M 2k + 1)~ = 0,125Mn—1.
b) Let n=2k+1, k=0, 1, 2,... In this case we have
| Bars1(8(172)5 x)—&(1/25 x)|/1,= || Barsa(&(1/2)5 x)—g(1/2; x) |, =0,125Mn~".
Therefore for every n it holds
(15) || B(g(1/2); x)—g(1/2; x)|,,=0.125Mn~1.
Due to (13) and (15) we obtain for fEKi(','_”

B,(f: X)—fix)|=0(n"").
Theorem 2 is proved.
Corollary. Let feK[],. f(x)=0 for x¢[0, 1]. Then inf{| P, (x)—fix) ..
Poc H}=6Mn—', where H,={P,; PYx)=Ziismgna;x(1—xY, a;=0}, is the set
of polynomials with positive coefficients of degree <n.
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