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PERIODIC AUTOMORPHISMS ON A SMOOTH MANIFOLD,
PRESERVING A CLOSED DIFFERENTIAL 2-FORM

TSVETAN R. PELOV

"“The problem of the equivalence of the preservation of a closed 2-form and certain
1-forms is considered. The periodic automorphisms are proved to realize this equivalence. As
in general these 1-forms depend on the mappings, the question for simultaneous preservation
is considered. Some sets of periodic automorphisms are proved to preserve the 2-form iff all
of them preserve a fixed 1-form, the same for all the elements of the sets.

Let M be a (finite-dimensional) smooth manifold and ® ¢ A?T*M,
d®=0. Let us assume first n,(M)=0 and ®=dy. y is free-chosen and fixed.

Definition 1. The smooth mapping f: M— M satisfies the condition
(%) if there exist g, a ¢ F(M), g=g(f), a=a(f), such that

) l. ffy—y=dg;
2. a—af=g.

Clearly f*®=® if f satisfies () and 1. of () follows from f*®=®, be-
cause of n(M)=0, universal coefficient formula ([3], Chap. 6, § 4) and the
equality H'(M, R)y=Homgs(H,(M, R); R) (see [1], Theorem Al). Thus f*® =2
is equivalent to 1. of (). An example where a smooth mapping f, f*®=0
and 2. of (x) is not satisfied will be given later.

The importance of the condition () is determinated by the following

Proposition 1. The smooth mapping f: M— M satisfies the con-
dition () iff there exists I-form wv,=vy,(f)¢T*M such that dy,=® and
froi=v..

Proof. Let f satisfy (+) and g a be the corresponding functions. Let
v,=vy+da. Then f*y,=f*v+d(af)=vy+dg+d(af)=v+d(g+af)=y+da=y,
Now let there exist y,=wy,(f) € d7'®, f*y,=vy,. As dy,=®, [y—vy,] € H(M, R)
=0, i. e. there exists a¢F(M), da=vy,—y. Then dg=f'v—y=f*y,—y,
+d(a—af) and as f*y,=vy,, the equality d(a—af—g)=0 holds. Thus a—af
=g+c, c=const. Then f satisfies (*) with g'=g+c¢ and a.

Let us note that Proposition 1 proves the independence of Definition 1
on the specific choice of .

Definition 2. SpyM, ®)={f: M—M, ff*d=0}; Sp(M, d-'®)={f,
there exists wy,€d'®, ffy,=v/}; «(M)={f: M— M, satisfies the conditi-
on ()}

T}heorem 1. Let f: MM, fr=idlk=Fko€¢Z,). f€Spy(M, ®) iff
feSp(M, d—'D).

Proof. It is enough to find a solution of the 2. of‘(-I). Let ffy—y=dg.

A—1 —
Let B=rog~|-v.‘::l rg.f; BeFM). B—Bf= (fo—f.-x)g+v_3' (re—rv—1) gf*. Let
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k—1 k—1
rj=—Jj, 0=j=k—1. Then p—pf=(k—1)g— = gf*=kg—(g+ = &)

k—1
On the other hand, f*w—vy=dg, f'v—f—Vy=dgf—' so dg+ = gf)=0.
v=I1

Thus B—Bf=kg+c, c=const. Let g'=g+c/k a=B/k. Then f*y—y=dg’ and
a—af =g, i. e. f satisfies (*).

Example 1. Let M=R(x, y), ®=dxAdy. Let f(x,y)=(x+sin(x+y)
+cos(x+y), y—sin(x+y)—cos(x+y)). fE€Sp(R2.O)\Sp,(R?, d7'®). This
fact is proved in [7]. Thus there is no function a¢ FM, a—af=g, where
dg=f*y—vy (dy—=®), i. e. 2. of(*) is not satisfied.

Corollary 1. For any €>0 there exists f¢€ SpsR?, dxAdy), || f—id]|
<e and f*y==y for any vy ed (dxA\dy).

Proof. Let f,(x, y)=(x+gssin(x+ y)+gcos(x+y), V—& sin(x+y)
—g, cos (x+y)). As Jacoby matrix Df,(x, y) € SLy(R) for any (x, y)€R?, fi®@=2®.
On the other hand, fiy=+vy for any y¢d~' @ (this fact is easy to obtain using
Example 1). || f,—id||<6¢,. Thus || f,—id ||=e for & =¢g/6.

Corollary 1 characterizes the set of the symplectic mappings close to the
identity. It "is possible to generalize it using Darboux theorem [4] on a
class of manifolds. Let us note that the set of the immovable points of the
symplectic mappings on a smooth simply connected, exact symplectic manifold
are considered in [5]. The mapping f in Corollary 1 possesses (more than one)
immovable points and this fact is the basic one, used in the proof of Exam-
ple 1. ([7])

Now let M be a paracompact manifold (no requirement for the funda-
mental group of M) and ® ¢ A?T*M, d®=0 (® is not required exact).

Theorem 2. Let f: M— M be a smooth mapping and f*=id (k=ke
€Z,). f*O—=® iff there exists 1-form w=vw(f) such that for a convenient
partition {n,}r of unity

I ffy=v;

2. dy— 0= %rdny/\wr' where n,=n,of, f*'y,=vy, on suppn,=F, av./r,

Y
=<!>/Fy and U is a convenient index set, ¥ n,==1.

Proof. Let x¢é M and U, be a ngighbourhood of x such that fi(U,)
NAU)=@ or filU,)=fA(U,) for any pair (i, j)€Z@Z. Let U, be so small
that ji®=dy, in U,. Let V.= | f(U,) and T be a subset of M such that

jez
{V.},r =7 is a covering of M. Let vy, be extended to a smooth 1-form on M,

Let {o,},, be a partition of unity, connected with ¥". Then n,=k""(o
k—1

a ) o, f*) defines a partition of unity, connected with ¥  and n,=n,of. Let

v=1
v= X nyw, and f.j;Wv:W*r- YEeT, j,: vy = M. ffy=2n,f ffy,= X nvf*j:wv
Y

Y £
W, =V, dy= X dn, Ay, + X n,dy,= X dn, Ay, +® Qe dy—®
Y Y Y
dn, Ay

< 4= 14

f*w,=w, on suppn,, j.dy,—j,® implies [*® - .

Let us note that the definitions and statements proved above are possible to
be formulated or proved for ® € A?T*M 2 p--dimM. One ought to modify
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slightly some details according to de Rham complex and Hurevich
theorem.

So the periodic authomorphisms on a smooth manifold M preserve a
(fixed) closed 2-form on M iff they preserve convenient 1-forms on M. These
1-forms in general depend on the mappings. So the question arises when a
set of authomorphisms on M preserves a closed 2-form if and only if it pre-
serves a convenient 1-form — the same for all the mappings of the set?

Let us consider the simplest case again: m(M)=0 and dv=®.

Definition 3. Let F={f,},,r be a set of smooth authomorphisms
on M. F satisfies the condition (=) if there exist smooth functions g @,
B, on M such that

L fiy—vy=dg, veI:

(*r) 2. ay—a,fy=gn YEI;
3. Byfy=By+cyn cy=const, yET';
4. B,—PBs=as—a,, 7. 8¢€T.

Proposition 2. Let F*®=®. There exists V¢ T*M, dy,=® and
F*y,=v, iff F satisfies (*r).

Here F*®=® means f,®=® for any vy € I'; the same is for v,.

Proof. Let F satisfy (*r) and let y,=v+da,+dB,. v, is correctly de-
fined because of d(a,+By)=d(as+ Bs)-.

f;\l’o=f;‘|’+d(avf7+Bv.fv)=‘|’+d(gv+uvf1+ﬂv)=‘l’+d(a1+ By) = Vo-

Let there exist y,, dy,=® and F*y,=y,. As f, satisfies («) there exist a, ¢ F(M),
o, —a,fy=8, and fi(yv+day)=vy+da, As d(y+da,)=dy,=®, there exist
B, € F(M), dB,=vo—vy—da, i. e. y,=v+da,+dB, Clearly B,f,=B,+¢y ¢y
—const and d(a,+B,)=d(as+Bs), i. €. By—PBs=as—a,+Cys Cys=const. It is
possible to make ¢,s disappear by using B;:B,-i-cm, where v, is a fixed index
in T.

The condition (*) is not trivial. There are examples of mappings each of
them satisfying (x) but the set of them doesn’t satisfy ().

Example 2. Let M=R3 ®=dxAdy, y=—ydx+xdy (as f* is a linear
mapping, the consideration is correct).

Let f,(x, y)=(—y. x) — rotation of —m/2; f'=id. fo(x, y)=(x+1, y). It
is easy to prove that f{®@=f®=® and ay—a,= —xy. Let us assume that
F={f,, fy} satisfies (*p.2)), i. e. there exist B,, By such that

Bi(x, ¥)=Bi(—y x);
Ba(x+1, ¥)=PBa(x, ¥)+¢;
Bi(x, ¥)—Balx, ¥)=—xy.

Thus Bo(—y, X)=PBy(x, ¥)—2xy. Let (m, n) € ZDZ. By(m, n)=Pyo(m—1, n)+c
= oee = By(0, n)+mc=PA—n, 0)+mc=PBy0, 0)+(m—n)c. By(m, n)=Py—n, m)
+2mn =PBy(0, 0)+2mn —(m+n)c. So ¢=2n which is impossible because of the
choicv;:j of (m, n). Now some properties of the periodic mapping on will be
proved.
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Theorem 3. Let F={fo fu,--..foh PE€Z, fify=f1fi for any pair (i, j)
and f}=id, i=0, 1, 2,...,p. F*O=0® Iiff there exists y, € d—'®, F*y,=y,.

Proof. Let F*®=®. So fly—y=dg. As f?=id, a,=g/2 (it is clear that

o—a; fi=g) and g—g;=g fi—&fi as f.fi=fif
Let p=2.

Bo=&1t+ & fo; Bo=Bofo:
Bi=8+&f1: Bi=Bif1;
Bo—Bi=281—8&+ & fo— 80 f1 =2(81— &)= Ha;—ap)-

Thus {f,, 1.} satisfies (1, 2)).

Let p=3. As f,f;=fif» the following equalities hold: g, fafs+&afs+&s
=& 1 fat+&fi+ &= 8&fifat & fot+ & Let

Bi=8+1+8Gvat &usrfit+ G it 8 fivat Qivafins
+ 81 fifivat o fifirr, =0, 1, 2, i+k=(i+k)mod 3.

It is easy to verify B,—B;=4(a,—a,), i=0, 1, 2, i. e. {f,, f1, fa} satisfies
(*{!. 2, a;)~

Using the same kind of expression of B; it is possible to prove the
proposition for any integer p.

Proposition 3. Let fi=id, fi=id and f,fo=fof,. ffO=® (i=1, 2)
iff there exists y, € d7'®, fiyo=v,, i=1, 2,

Proof. Let hy=f] and hy—=f2. As h?=h2=id and h,hy=hyh,, there exists
v, €dD, k] Vi=hoy, =Vv,.

Let g=fivi—Vi 0=fPvi—v,=d(&fi+8)=f{(fvi—v)+(flvi—w) i.e.
& fi+&]=ci=const. It is easy to prove that g0f2=g? and g)f?==gJ. Let B,=g5
+&fi and By=g7+ g0 f,. Then B, —B,=2(g)—gY)=2(a,—a,), i. e. {f,, fa} satis-
fies (#1,2)). Proposition 3 is possible to be generalized for the mappings of the
type f*=id, k=2", using the same way.

So two statements for simultaneous preservation on a potential of ® of
periodic authomorphisms are proved. Nevertheless the question of simultaneous
preservation of a general class of authomorphisms is open. However, three
theorems hold:

Theorem 4. Let M be a smooth closed, not boardant to zero mani-
fold and ® be an exact 2-form on M. Let F be a set of mappings {fs}, r
satisfying (»r). Let f, be a smooth involution on M. Then there exists sub-
manifold M, of M, dimM,;=(2/5)dimM such that F\){fo} satisfies (*ryo)
on M,.

Proof. Let M, be the max. dimension component of the set of immov-
able points of f, According to [2], [6] dim My=(2/5)dimM and let M,=M,
be chosen in a proper way. According to Proposition 2, there exists y,, dy,=®
and F*yo=v, As f*| M, vo=W,, then the restriction of FU{f,} to M, preser-
ves v,, restricted to M,. Thus F|{f,} satisfies (»).

Theorem 5.Let M** be a closed manifold with odd Euler characte-
ristic. Let ® be an exact 2-form on M and f, be a smooth involution on M.
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Let F={f,},r satisfy (#r). Then there exists submanifold M7 of M such
that the restriction of FU{f,} to M, satisfies (*ryo), m=k.

Proof. M, is the set of the immovable points of f, according to [2].

Theorem 6. Let (M*, J) be an almost complex manifold and f, be
a smooth involution on M, possessing at least 1 immovable point. Let J
fox+foxJ =0, and F={fy}, r satisfy (»r). Then there exists M,=M,
dimM,=n and the restriction of FU{f,} to M, satisfies (*ryo).

Proof. As the proof of Theorem 5.

Finally, let us note that Theorem 2 and Theorem 3 immediately imply

Theorem 7. Let M be a paracompact manifold, ® be a closed 2-form
on M and F={fo fr.....fo} fj=0d. fify=Ffifo & j=0, 1,...,p. F*o=o
iff there exists y, ¢ T*M, such that:

1. F¥yo=vy,;

2. dy,—®= Xdn,Av, where n,=n,f; fjv,=v, on suppn,, dy,=® on

Y
suppny, (Y€, j=0, 1,...,p), where T is a convenient index set, and {n,}”r
is a partition of unity.
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