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THE DIRICHLET PROBLEM FOR A NONLINEAR
CONVEX ELLIPTIC EQUATION

JANA D. MADJAROVA

The paper establishes CXQ)-a priori bounds for the classical solutions to
the first boundary value problem for a nonlinear convex elliptic equation. In
the case of two variables there is a C*%(Q)-a priori estimate and a unique
solution is proved to exist, belonging to C2¢Q).

1. Introduction. Let Q be a bounded domain in R” with smooth boundary
(0Q€ C?), ®¢C*R") and ¢ be the restriction of ® on dQ. Consider the problem

1 f(D2u)+ g(x, u, Du)=0 in Q,
(1) don= 0,
where f¢C2(R™), g¢ CAR"XRXR"), f=f(r), g=g(x, 2, p), D and Du are the

Hessian matrix, respectively the gradient of #. We shall suppose that the equ-
ation is uniformly elliptic, i. e. there exist constants 0<0<=©< o such that

2 0]6Ps £ fANEY=OIEE vreR™, EeR, f(0)=0,

where f,;=0df/0r ;= f;.

The main assumption under which (1) will be considered is convexity of
f and g with respect to the arguments r and p. According to the smoothness
this is equivalent to assuming

3) 2 SR =0, yreR™,  EeR™,
(4) ;‘J/ gPIPj(X' 2, P)§’§/20. V§ER"- xER"' ZGR' pERn-
We shall further suppose that
©®) gdx, z, p)=n<0,
or
(5) glx. 2. P)=0, max g, (x. 2, p)| <G,
:(R
and
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(6) (i) max|g,(x, 2, p)|=G=G(K), i=1,..,n,
lak
(i) max |g.(x, 2 p)|=G+Glp|. G=GK), k=1,..., n.
x€EQ
lzl=K

In [1] Evans considers (1) under the same assumptions as above for the
function f and g==0. Using Bernstein’s method he establishes global C2-a priori
estimates for the solution, then he proves local C%*®-estimates and applying the
method of continuity achieves an existence and uniqueness result for the
problem.

In this paper we obtain C2-a priori estimates for the solution of (1) and
in the case n=2 we prove the following

Theorem 1. Let Q be a bounded domain in R?® with smooth boundary
and suppose f and g satisfy (2)—(6). Then there exists a unique function

ueC**(Q)ac(0, 1)) such that
f(D2u)+ g(x, u, Du)=0 in Q,
ulmz(P.
Acknowledgements are due to T. Genchev and N. Kutev for their
helpful advice given to me during my work.
2. A priori estimates for u, Du, D% . The equation from (1) may be
written in the equivalent form

(7) an a’u, . + .‘: biu, +cu+g(x, 0, 0)=0,
i j=1 i%j i=1 i

where

() a/(D%) =;[ f.(tD2u)dt,

®) (i) bi(x, u, Du)= 0{' g (. u, tDu)dt,

(iii) c(x, w) = j g.(x, tu, 0)dt.

The condition (5) yields ¢<0 and thus implies the validity of a maximum

principle and hence an estimate for # of the form (if we use (5§), n is to be
replaced by (%))

max |u|=M=max | ¢ |+ C(6, n, max|g(x, 0, 0))).
Q n o

The gradient of # will first be estimated near the boundary with the help
of a standard barrier construction. The smoothness of dQ implies the uniform
exterior sphere condition. Let x,€0Q and B(y, R) be the respective exterior
ball, i. e. BN Q={x,}. We shall suppose that y=0 (that is no loss of gene-
rality since translation preserves all the properties of the problem). We shall
use the barrier @w(x)=1t(R°—r~°), where r=Tx| and o, t are sufficiently large
positive constants which will be chosen later. We have: w(x)=0 for x¢Q,
w(xo)=0.

14 Cn. Cepanxa, kn. 3
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We set
L=Xa"(D%)0,; + X b'(x, u, Du)o,
ij J
and apply L to w:
Lw= Xa'w,  + Zbw,
ij ! i !

=tor°4(—(c+2) 2 a’x,x;+ r*E(a’" 4+ b'x,))
i,j i
<tor—°—4—(o+2)0| x 2+ r2Z(a’ +b'x,))
=10r—°"—(c+2)0+ Z(a¥+ b'x;))<0
for o large enough, as the uniform bounds on f, &, give us uniform bounds
on a‘/, b
Applying L to v= +(u—®)—w gives
Lv=+LluFLO—Lw=TFgx, u, )0FLO—Lw>0
for t sufficiently large, as
max | g(x, u, 0)| < co.
x(-(_l
|luj=M
It follows now from the ellipticity of L that v attains its maximum on
the boundary; but on dQ we have
"den: :t(u Im—@fm)—w|m=—wlan§0
and consequently v=<0 in Q, |[u—®|=w, i. e.
—w(x)+ o(x) = u(x) s w(x)+ O(x).
Now, if v denotes the normal to 0Q in x, and x—x,=V, we have
— (@) —@x0)) + (B x) — B(xo) = 1(x) — (o) = (W(x) — W(xp)) +(B(x) — Pixo))
and it follows immediately that —o,w(x,)+ 0v®(xy) = 0vli(x,) < Ovi(Xo) + Ov®( xo)
wherefrom

[ 0vta(x0) | = [0vB(xo) |+ | Ovwlx) | = | 9vD(X,) [+ oTR™N

The tangential derivatives of & coincide with those of ®. Finally we reach
an estimate of the form

9 max |Du| <C.
on

Further we shall use Bernstein’s method in order to achieve an estimate
for Du in Q. We shall show that for N, N,, appropriately chosen, the function
w(x)=| Du [+ Nu+M)>*+ N, |x|? can’t attain its maximal value in Q.

Suppose that @ has a maximum at x,€Q. It follows then from the ellip-
ticity that

(10) SIADM Y 5 S0
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and
;-;fi/(Dau)wx,xi(xo) =2 l_-;:k fi/'uxkx‘-uxkx,- + 2N, ‘_Zfii

+2Z fi/uxkuxkx-r'i‘ QNE fifux-x~ (ll+ M) +2N X fi/ux u,.
ij.k iy ij iy ij i ]
229’”\/14_262: uix +29N|Du |2+2 z fl]uxk xxxk+2N(u+M)2fi/uxlxi.
ik i ij
In order to eliminate the term, containing third derivatives, we differen-

tiate the equation from (1) with respect to x,:
0=d/0xk(f(D’u)+g(x, u, Du))

== ,Ej f,.,(Deu)u,ixi,k+ & (X 1, Du)+ g(x, u, Du)u,k+ ‘E g (%, u, Du)u,l,k.

We get
Qi:k fil(Dau)uxkux‘.xixk: -Q‘E gxk(x’ u, Dll)llxk

- 2(“u2 )g,(x u, Du)— 2 ) g, (x, u, Du)u, u

e Xi%k
Let G be the constant from (6) correspondmg to K=M. By (5), (6) and
the obvious inequality
(1D ab=a?4e+¢€b?, wa, beR, ywe>0,
we have —2|Du|2g.(x, u, Du)=0,
2 .‘.}gxk(x u, Duyu,, | <2nG|Du | +2nG| Du|2=nG+3nG| Du 2,

21 z g, (x, u, Du)a,,‘r “'lxkl <(nG/2¢)| Du ]?+2802: uxx ,

wherefrom
2 .‘.‘. f,-,u,‘u,l_, _,kg—nG—QeG Eui - —(3nG+nG/2¢) | Du 2.

To estlmate 2N(u+M) z f,,u,‘, we shall make use of the convexity of
the functions f and g. For f it follows that

0=0)=DM)= L.‘:I'f"’(D?u)aﬂxi + "2” i./:Ek.l SO e o,
2f(D’u) - :“3 fi/(mu) ux‘x,- = _g(x' u, Dll) —15 fl/(D.u)ux,xl
and since u+ M =0 in Q, we have
2N(u+M)2 f,,u, ,,2—4MN[g(x. u, Du)|

(with = we have denoted a point in the interval with endpoints 0 and D%).
The convexity of g with respect to p yields

&(x, u, Du)=g(x, u, 0)+.;.g,‘(x, u, O,
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1« 8
Ty S Gy (Nt = elx 0, 0+ 2 gy (x w Oy,

g(x, u, 0)=g(x, u, Du)—ZX g,(x, u, Duyu,,

1\
+5 ).} gp‘_,i(*)uxiu,,iz 8(x, u, Du)—?g,,‘(x, u, Du)ux‘_,

wherefrom
g(x, u, O)+21;gpi(x, u, Oy, =g(x, u, Du)=g(x, u, O)+:f3g,,i(x, u, Duju,,

and we get an estimate on the growth of g with respect to Du: |g(x, u, Du)|
=G, +nG|Du|, where G;= max | g(x, u, 0)].

xEQ
| al=Mm

Consequently
2N(u+M)Z f;; (D“u)uxlxl, = —4MNG,—4MNnG | Du |
i,

= —AMNG,—AMNnG(e, | Du 2+ 1/4g,), €,>0,

and finally B
z f,‘,(D?u)wx'xj =2(0—¢eQ) T u?  +(20N—3nG—nG/2e —4AMNnGs,) | Du |?
i ! ik ik

+(20n N, — Gn— AMNG,— MNnG | ¢)).
We see that for
e<0/G, £, <0/(AMnG), N>(3nG+ nG/2¢)/0, N,> (Gn+ AMNG,+ MNnG/g,)/(2n0)
the last expression is strictly positive — a contradiction, according to (10).
Recalling (9), finally we get max|Du| <C.
Q

To find estimates for the second derivatives we shall use ideas from [2)
and [3]. It is necessary to straighten the boundary locally and consider the
problem with ®==0. As we shall see later, this is no loss of generality. Let
X, €0Q and y be the diffeomorphism that straightens the boundary in a neigh-
bourhood U of x,; assume that y(xo)=0, (U N Q)={y,>0}, wU( N 0Q)= {y,=0}.
We set w(y)=u(y(x))=uoy~'(y) and now we have

(12) (D%, Du, y)+g(Du, u, y)=0,

where
Fis = 0F 0ty y )= = fu O,/0,)(0w/0x1); fo, =0]]0 (@) = Z fur (0°,/0x, 0x,);

7depends on y through the derivatives of y; hence f;,* has linear growth
with respect to the second derivatives of the solution.

Obviously the equation (12) is elliptic and I f,',l are uniformly bounded.
We set M,—=max | D% |, My=max |Du|.

Consider the function w(y)=2MY*y, — M3'y)? + b|ly'|* in the cylinder
Q={|y'| <38, 0<y,<Mi""}. For b6>1/8" we have w(y)=0 on the boundary
of the cylinder, w(0)=0. In Q:
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[ —

~ 10 - -
;-‘vjﬁl’”"yiy,- =2b kEl fkk _(3/4)A43/4}’:];2 7M§ Cl — C1M2.

Further we shall use the auxiliary function z=—*_-zl}k—tw, k=1,..,n—1.

Having in mind the properties of the derivatives of f~and differentiating
(12) with respect to v, we obtain

| l-\-'] iJ (Eyk)y‘.y’- |<Ca+ CoM,.

If z attains its maximum at an interior point y,, then

0 23}1/‘ 2y¥; (Vo) = —(Co+ CaMy)—1(C,— C,Mp) =(C, — Ca)My—(<C,+ Cy)-

For 1>C,/C, we get /T'fgg(tCI+CZ)/(tcl—C2), i. e. an estimate for D2u.

Let z attain its maximum on the boundary of Q. For y,=M:""? or |y’|
=38 we have z= i—lz,k—t<0 for t large enough; on the other hand, z<0 for
v,=0 since 171),,,___,(,:0 and k<n—1; consequently — tTw giz}k zww, k=1,..,
n—1, in Q.

Recalling w(0) =(0)=0, we get —2tM;”<z,,, (0) <2tM)> k=1,...,n—1
in a way similar to the one used for obtaining (9) and from the equation
4, , (0)=C'+C' M.

Finally

max | D% |<C+C(max | D2 [)'2.
Q

For non-zero boundary conditions we set v=u—®; then v/sa=0 and v
is a solution of the equation f(D*v+D*®)+ g(x, v+®, Dv+D®)=0, which
after straightening the boundary acquires the form (12).

Further we once more apply Bernstein’s method with the auxiliary function
w(x) =(ugz)?+N|Du*+N; x|, where E€R” |E|=1 and ug;=min (0, uz). We
shall use an idea of Evans [1]: it is sufficient to establish one-sided bounds
on ug: for arbitrary &; canonizing the equation we can get two-sided estimates
for any second derivative.

Suppose that W attains its maximum at a point x,, where u(x,)<0, i. e.
uz:<0 and ug =uz in a whole neighbourhood of x, At x, we have

0= -I‘-"lfu(D?”)wx,xii’QenNﬁ‘Q “; fiider dge  +2uge 12' Stz
g i *i X W

x,xl
~ \ o
+2N 2 fiptapfixpo t 2N D SifleBepn, 200N, + 080y +INO B,
—NGn—N@BnG+2G+nG/2¢) | Du|® —2eNG = u?  +2ug: T fijutes
L) *ry ij xi%je
Again we made use of the ellipticity and the inequality (11). Let §=Za,x,
|la||= 1. Differentiating the equation twice with respect to § gives

S furd DNy x ity at E fity cxntZBisgy « (X, @, Da)+220,8, (x, u, Duug
l'./;ﬁ.l l/ "'l i.J i) 'l )
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+2[“"; aigx‘ﬂk(x' u, Du)uxkl+g23ug+2‘::‘ gzP‘uiuxli +g}l5§ +“";gﬂju.xiiﬁ
+ Z gpp (X, tt, Dy, gtz =0.
iJj

The convexity of f and of g with respect to p yields

z f; =0, = u =0.
Y f:/.kl ux‘xlﬁuxkxlﬁ =0 by, gp,pi xﬁuxl& =

Since uzz(x,)<0, we have

2ug; il;f e =—2 X By er— 42 0,8 selten—4 T 0,8x p lhx, sl
2 2 3
—28esltfuzz— 4 T g, Uellx plle— Billgy — X &p U piliez:

To the last term we apply (11). For N, N, large enough we obtain the
contradictory inequality 0=X f"/w‘z-‘i>0’ which shows that w attains its maxi-
i
1/2

mum on the boundary, i. e. "w(x)g(C+ CMP*?+C and consequently
(13) uyz=—(C+CMP),

Canonizing the equation at a fixed point gives us [y, |=(n— 1)C(M,)
+C(0, ®)max | g|, choosing &=y,+y; n=y,—y; and making use of the one-
side bounds on u: and u,, we finally get mgx]D?u P=C+(C+ CMP3 i e

Q

max | D% |<C. Thus we proved the following
Q

Theorem. Let u be a smooth solution of (1) under the assumptions
(2)—(6). There exists a constant C=C(Q, 6, ©, n, G) such that

max |z|<C, max|Du|<C, max|D%u|<C.
Q Q Q

3. The case n=2. In the case n=2 we can obtain C?“-a priori estimates for
u. Let us differentiate the equation from (1) with respect to x, and set v=u, :

2 2
(14) [y (D)o, ., + I g (% u Du)v, + 8,0+ g,~=0.
i, j=1 i=1

Equation (14) is uniformly elliptic as well. We can apply - Theorem 11.4
([4], p- 247) and thus establish an interior C'<“-estimate for v: |¥[ia 0 = C,
where Q'CQ. As a result @20, 0°=C, Q'C=Q, where C depends on 6, ©, @,
Q’, Q, lu'z; 0-

To obtain estimates near the boundary it is necessary to straighten it;
we shall suppose, that in a neighbourhood U of x,¢0Q the boundary is given
by the equation x,=0 and Q) Uc {x,>0}. Again we consider (14) with v=u,,
v is a solution of the problem with boundary condition o|r =, [r=@,,
r=unon.

A C'e-estimate for v in «U T results from [4, p. 248] (i. e. an estimate for the
tangential derivative of #). What remains is to establish a bound for the
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Holder norm of ... We shall use the implicit function theorem: the equation
is of the form F(x, @, ty, Uy, Uy o> Uy xyp 1¢,2Xz)=0.
The function F is well-defined and smooth in a neighbourhood of (0, z(0),
u, (0), u, (0), u,.(0), u; .x,(0)), and F,,xzxz#o (by the uniform ellipticity). That
makes it possible to solve the equation, i.e. locally u,,, is a smooth function
of the remaining variables, whose C®-norms have already been estimated. Finally
(15) |l¢!2,¢;'ﬂ§C.
Now we can apply the method of continuity. Consider the problem
0(1—2N)Au+AF[u]=0 in Q
ulon=0,
where 1 ¢[0, 1], Flu]l=f(D%)+ g(x, u, Du)=F(x, u, Du, D). Since the func-
tion Af(r)+6(1 —X)(r;,+rgg) is convex, this is a problem of the same type as
(1) and the a priori estimate (15) is valid for its solutions. Let A be the
set of all A, for which (16) is solvable. We know that 0¢ A. We shall show

that A is closed and relatively open in [0, 1], and thus A=[0, 1]. Let w. be
the solution of (16) for A¢[0, 1]. Without loss of generality ®==0. Let us

denote B={u¢C2%Q)|u|sa=0}; obviously B is a closed subspace of C**(Q).
The problem (16) is equivalent to
a7) Ou—A—Y(ONAu—AF[u]), u¢B.

It is easily seen that |0Au—Flu)loea<C|u|2.qa; since A=1:C{{Q)— B is
linear and bounded, for A small enough (17) defines a contraction mapping,
i. e. (16) is solvable. Hence, A contains an interval of the form [0, A,].

Let us show that A is closed in [0, 1]. Let A, ¢ A, A,—A’. By the uniform
a priori bound

(18) |, 2a;asC
follows that we can choose a subsequence of {uy }, converging in C*%Q) for
some 0<B<a; by (18) ux-=limux € C>%(Q) and |ur |z0;a = C. Continuity im-

plies that u,- solves (16) with parameter A’

To prove that A is relatively open in [0, 1] we shall use the implicit func-
tion theorem in Banach spaces [5]. Let iglo._):(A. We denote wy(x, A, u)
=0(1—A)Au+AFlu).

By supposition A€ A, i. e. there exists u;-¢ B such that w(x, &, uz)=0.

The Frechet derivative of y with respect to w, is

(Do Wh=0(1—1)0 412 [ ADMI, i+ 5 8o b, + 8.
oJ

(16)

The operator D,y is linear, elliptic and according to (5) it is an isomor-
phism from B onto C%Q). Consequently we can apply the implicit function
theorem and conclude that for A¢(A —8, A+8) there exists u#=u(A)¢B such
that w(x, A, #(A))=0, i. e. (A — 8, A+8)=A.

This means that A=[0, 1] and (1) is also solvable in C?%(Q). Thus Theo-
rem | is proved.
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Remark. The solution u belongs to C>%(Q) for arbitrary B¢(0, 1). The
coefficients of (14) belong to C¥Q), consequently v¢C*%Q), i. e. u¢C*Q)
and standard imbedding theorems imply that uz¢ C*#(Q) for each 0<B<1.
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