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NOTE ON A PAPER OF GROSSWALD AND SCHNITZER
M. M. DIMITROV

Let M be a compact Riemann surface of genus g=2, [,, n=1, 2, 3,... be the lengths
of the primitive closed geodesics and N(P,)=exp (/,). The Selberg zeta function is defined by

an infinite product
Z(S)={H} I (1—NMP,)~"*), Re(s)>1.

Here and in what it follows®IT denotes M and = denotes Z Let 2, =1/4+412
{ n=1 Ip} n=1
be the eigenvalues of the Laplace—Beltraml ‘operator on M, such that A,>1/4.
It is known (see [2]) that Z(s) can be continued as an entire function and all
its zeroes y with Im y5=0 have the form 1/2+i.r,, i. e.lie on the line Re(s)=1/2.
Let we select any real numbers M(Q,), so that MP,)=MQ,) and N(Q,)
<N(P,+,) for n>n,, where n, is arbitrary large. Then we form

Z(9)=T 1 (1-NMQ)™™*), s=o+i.t, o>1.
n=1 k=1

Theorem l. Z*(s) can be continued as a meromorphic function in >0,
where it has the same zeroes as Z(s).

For the Riemann zeta function this theorem was proved by Grosswald and
Schnitzer, whose proof we follow.

Proof Let Z*(s)=o(s). Z(s), o>1, where

o) =TT (1-NQ)~—*). (1 —N(P) =4,
{p} k=0

We shall verify the absolutely and uniform convergence of the above infi-
nite product on any compact subset of >>0. It is easy to see that this is
true for o> 1. Hence, it is sufficient to prove the absolutely and uniform con-
vergence of the series for logo(x) in |£|=7, 0<o,=oc=1. From this also
follows that ¢(x)=0.

We assume that M(P,)>2 and consider

logo(x) = X io T (l/m) (N(P,)=™ 6+h — N(Q,) ™ +h),
{p} *
We split the sum over £ and m into three parts
m,
X + X + Z 2 =31 432433,

m-=m,+ k=1 m=\
k

m==1
k=0 0
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where m, —[o~']+1 and [x] stands for the greatest integer function.
For the second and third sum we easily estimate
53]<2.5 3 F (m.N(PYeth)1=2.T T N(P) ot (1=N(P) o)
p k=1 m=1 {7} k=1
<2 (1—N(P)-)E I NP~ —+=C, T NPy o .(1—NP)™"
(P} #=1 )
<C,.(1=NP)H 1. T NP,
7

Consider the first sum. Let MQ,) = N(P,)+ S,

From the prime number theorem for NV(P,) (see Huber [3]) it follows that
s,~ N(P,)*'+¢, where £¢>0, n is a sufficiently large number and from this
0-—s,= NP,)"* for n>n,. lf we set x,-— NMP,)/N(Q,), we have x;>1
— N(Q,)'® and consequently x2>1/3, for n>N. Thus we obtain

NP, " —N(Q,)~™° | = N(P,)~"°| 1 —xm-°.exp (itmlog'(x)|.
Applying estimates from [1], we set

[1-—xm exp(i. t. m.log (x)) | =C,.(1—xm°) for 1-—m=m,.
Here C, depends only on o, and 7. From this

NP —NMQ) " =Cy T (VP —NQ)™")

n-N =N

S Gy T (VP = N(Py) ™) = Co - N(Py) 70 Cy . NPy

and | X' =Cy.m,. MPy) .

We note that knowing the eigenvalues of the Laplace-Beltrami operator
on M we can find the lengths of the primitive closed geodesics. Thus, we
have the following

Corollary. Let /, be the lengths of the primitive closed geodesics on M

and [,€[l, L, for n>N. There is no other Riemann surface M of the same
genus g with lengths of primitive closed geodesics equal to /,.

Proffesor .. Keen has kindly pointed out to me that the corollary essen-
tially follows from the so-called collar lemma (see [4]).

REFERENCES

1.E. Grosswald, F. Schnitzer. A class of modified and L-functions. Pacific J. Math.,
74, 1978, 357-361.

2. A. Selbery. Harmonic analysis and discontinuous groups in weakly symmetric riemannian
spaces with applications to Dirichlet series. /. /ndian  Math. Soc., 20, 1956, 47-87.

3. H. Huber. Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. —
J. Math. Ann., 138, 1959, 1-26; /I Math. Ann., 142, 1961, 385-398 ; Nachtrag zu 1/,
Math. Ann., 143, 1961, 463-464.

I. B. Randol. Cylinders in Riemann surfaces. Commentarii math. Helvet.. 54, 1979, 1-5.

Institute for Foreign Students Received 31. 1. 1954
Sofia 1111 Bulgaria



