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APPROXIMATION OF A CONVEX FUNCTION BY ALGEBRAIC
POLYNOMIALS IN L, [a, b] (1<p< =)

MILENA P. STOJANOVA

We prove that the best algebraic approximation of a convex function in
2

L,(1<p< o) is o(n 7).

1. Notations and main results. We shall use the following symbols:
H, — the set of all algebraic polynomials of a degree at most n; K™|[a, b] —
the set of all convex and continuous in [a, 8] functions, such that max{f(x);
a<x<b}—min{f(x); a<=x=b} M. K is the set of all convexand continuous in
[ 1, 1] functions such that max {f(x); —l=x<1}=1; min { f(x);—1<x<1}=0.
By E,,(f),p we denote the best L, approximation of f by polynomials of a

degree n, i. e.
(1.1) E, (), = nf{||f=Ple,; PeH,}.

If D—L,[a, b] then the best L, approximation of D by polynomials of a
degree n is

(1.2) E, (D), =sup {E,(f)r,: f€D}.

Let
o(f; 8)=sup{|f(x)—f (V] |x—y|=8 a=x, y=b}

be the modulus of continuity of f and
T (f38)p= @ (f,. 8 () HL,,

be the K" modulus of L, continuity, where

8(x) , ,
ou(fo 2800 (1128 () T [ALF (0 P de)

and
;- wpm [ R if ke
A f (x) ,.Xu(*l) (m)f(X+m'v) if x,x+ku[a,b)
0 otherwise.

We set A, (x)=\1—x?%n+1/n*
for —lsx=a
£a (%) {(x a)/(1—a) for a—-x<1
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The aim of this paper is to estimate the best algebraic approximation (1.1)
if fis a convex function, and the best approximation (1.2) of class of convex
functions K*[a, b]. In the case p=-cc Jachson's theorem gives (see. e. g. [1])

(1.3) E,(f)e=ci0(f: (b—a)n) for feK*[a,b]
and .
(1.4) E (K |a, b]).=caM,

where ¢, and ¢, are absolute constants. In the case p=1 K. Ivanov [2]
shows that

(1.5) E,(f),=c;M(b—a)n—? for feKv[a,b]
and
(1.6) E,(K¥|a, b)), =c;M(b—a)n™2.

We shall get similar estimates in the case 1<p<co. The following two
theorems are proved in this paper.
Theorem 1. There is an absolute constant ¢>0 such that
2
(1.7) E,(K),<cn 7.

From here we get immediately the following
Corollary 1. There is an absolute constant ¢>0 such that

E,(K"[a, b)), <c M (b—a)» n=2r, 1<p<co.

Theorem 2. There is an absolute constant ¢>0 such that E,(f),
<cw (f; n=#=VPyn=2r for each feK and 1<p< co.
From here we get

Corollary 2. There is ¢>0 such that E,(f)t, = ¢ (b—a) " o (f;
n—(»=We(h—a))n—?» for each f¢ KM|a, b).

Taking the limit in Corollary 1 and 2 we get (1.4) and (1.3) if p—<o and
(1.6) and (1.5) if p—1.

2

This theorem shows that E,,(f)L' o(n #) for every fe KM|a, b). But we
can not characterize this effect. For example, for the function f(x)=2e¢—(1—x)*
(0<a<1, —1=x=1) the order of E,,(f)Lp is better than this, given by Theo-
rem 2.

2. Preliminaries. We shall use the following resuits.

Theorem A. (3] There is a constant c(k)>0 such that E,(f):
(k)T (f3 A ps 1 =p’<p, for each feL,[—1,1].

Theorem B. [4] There is a constant ¢>0, such that

r

W A= @t E SHIPE (),

The following lemma is well known.

lLemma A. For every f¢ K and every >0 there are numbers a,, ay. . . ay;
b,b,...b,, where —1-—a,<1;i 12...N; —1=sbsl;i=1,2...,M, and
positive numbers a,, ag...0y; By, By ... By, such that
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N M N M
'21 a,=f(1), ‘Z‘ B:=f(—1) and | f— _zl U; 8ai— E‘ Bihyi | <e.

Lemma B. [3] If | x|, |y =1, |x—y|=XA,(x), n=2]k, then A, (x)/(41+2)
ZAL(Y)=2A+3/2) A, (x).

3. Proof of Theorem 1. To prove this theorem we need the following
three lemmas.

Lemma 1. /If —1=<a=1, then there are numbers b, and b, such that
—l<=b,~a=by,<1, and x+2A,(x)>a for b,<x=1; x+2A,(x)<a for
—l=x<b;; x—=2A,(x)<a for —1=x<by ; x—2A,(x)>a for by<x=1.

Proof For —1=a -—1+2/n? b= — | is the only number which meets
the requirements. For —1+2/n?2<a<1 we consider the function F|(x)—x
+2A,(x)—a.F(a)>0, F(—1)=—1+2/n2—a<0. The equation Fj(x)=0 has
at most two solutions. Therefore there is unique b,(—1<b,<a) such that
Fy(b))=0 and F,(x)<0 for —1=x<b,, F(x)>0 for b,<<x -1. Thereby all is
proved for b,. The existence of b, we verify in the same manner.

Lemma 2. There is a constant ¢>0, such that
79 (gas Ap=c(A,(a)?+V7/(1—a)

for each a¢[—1,1).
Proof. From Lemma 1 and the definition of w, we see that

3.1 0y (gay x, A(x)), =0 for —1=x=b, and bysx=l.
Let b,~x<a. Then
0 for —A(x)=v=(a—x)2,
A? g, (x)=1{ (x+2v—a)/(1—a) for (a—x)2=v=min(A,x), a—x),
(a—x)/(1—a) for min(A,(x),a—x)=7v--A, (x)

and we get
(32) (& ¥, Ay (X)) =(a—2)/(2(1—a))+ (3(a—x))(B(1 —a) A, (x))
= (5/4) (@~ x)/(1—a))

for b,—~x<a.
In the same manner

(3.3) (g X, Ay(x)),==(5/4) (a —x|/(1 —a)) for a -x-b,
From Lemma B and Lemma 1 we have
(3.4) A,(x)<10A,(a) for b,—=x-—b,

From (3.1)—(3.4) and the definition of t, we obtain
(35) (s Arp=(5/Nsup{|x—al/(l—a); bysx=by}|[ 1] . 0
Pl
= 25(A, (a)/(1 — a)) (bg—8,)""7==1000 (A, (a)) 7 (1 —a).

Lemma 3. There is an absolute constant ¢>0, such that 1,(g, A,
2

—cn ? for each ag|—1,1), n=1,2,....
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Proof. For —1=a<1—#n"2 from Lemma 1 we have

P+l ? p p+1

Ta (ga' AA)LP C(An(a)) 2 /(l—a)—" {(l +a) (l—a) ptlp 1+(1—a) p'“fl_’} r

p—1 2p,A 2
sc{n_l+p+l+ p+1’ }~—_ 7
Let 1 —n2<a<l.
0 for —1=x<=b,,
0 , XA, = -
2 (& X An (X)) = { for b<x~—;1

1

Ty (& Ao =4[/ 1l oy =4(1—b 1)" >C(A,.(a))" ~<c(A,(1))? <cn >,

This completes the proof.
Proof of Theorem 1. From Theorem A for £=2, Lemma A, Lem-
ma 3 and Lemma B we obtain (1.7).

l.et us consider the function
for —l=x<1—n—2,
G"(x)_{n’(x—l+n—2) for 1—n2<x<l.

_2 1
G.€K; %(GasAh,=n 7 /8(p+1)7).
This inequality with Theorem B for £=2 shows that we can not improve the

estimate in Theorem 1.
Proof of Theorem 2. From Theorem A and Lemma 2 we obtain

P+1 p+1

(D) Ep(ga), =% (&a As=c(Aa) ? /(1—a)=cn” 7 /(1—a).

Let f be a convex, continuous in [—1, 1] function with the following two
properties:

(4.2) f(—=D=min{f(x); —1=x=1}=0
and there are numbers a, b, —1<a<b<1, such that
(4.3) f(x)=f(1) g.(x) for b=x=<I1.
Then the numbers a;, ¢y, . .. ay; By, Boy ... By in Lemma A can be chosen

such that B, -0, i—-1,2,...M, and

N
[hen f(x):’f‘ a; 8, (x) for b=<x<1.

. N N N
() (x—a)[(l —a)—-f(x)=‘_§| A Lai ()c)—~(i2l a,/(1 -a,))x—‘zl aa,/(1 —a,).
for b<<x--1. Therefore

N
(4.4) f(1)/(1—a) ‘)i'a,/(l —a,) il f satisfies (4.2) and (4.3).
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From (4.1) and (4.4) we obtain

p+1

N N N
E, (f)l.ngn(,z'l u.'gai)Lp+5§5+_zl ok, (gaz)LP>8+C _zluin__"/’(l_ai)
= = fmm
_ptl
=e+cn 2 f(1)/(1—a).
And since & is an arbitrary positive number then
_etl
(4.5) E,(f),=cn 7 f(1)/(1—a)
if f satisfies (4.2) and (4.3).
p—1

Let f satisfy only (4.2). We set 8,=n #,g,=o(f 8)=f(1)—f(1-3,).
We consider the functions
fg(X)~{f(X) for —'1$XSI—5n,
£ =8 ) +f (1 =8, —(1=8,) f (1—8,)7) for  1—8,=x~1,
(f((1—38,) ) is the left derivative of f at the point 1—38,), fi(x)=7f(x)—fy(x).
f, and f, are convex functions and f,¢K[—1, 1]. From Corollary 1 we have

(4.6) E,(for,scen 7,

f, satisfies (4.2) and (4.3) with a,=1-—3,f,(1)/( fy(1)—/f.(1—38,)) and from (4.5)
we have
p+1 p+1

(4.7) Er(for,=en # fy(D[(1—a)=cn 7 /5,

From (4.6) and (4.7) we obtain
»

(4.8) En(f)LPEl‘fl—Tz’ o(f, n ,,‘) if f(x) or f(—x) satisfies (4.2).
At last if f¢k, then there is x,¢[—1, 1] such that f(x,) =0. We set
> for —1--x=Xx,
1) {f(x) for x,<x=1.

feo=1 (0 —F(x).
For f and f (4.8) holds true. Then

B - ) N - - P! _
Edf) 1, SELDe, +ELP,=cn P{olfon 2 )+olfin 2 )}sen
This completes the proof.

For example for the function f(x)=|x| Theorem 2 gives the order of
the best algebraic approximation,

2 !
ro(fin 7)),
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