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SHAPE-PRESERVING INTERPOLATION AND APPROXIMATION
K. G. IVANOV
Interpolation of k-convex data (k¢ N) by functions with non-negative k-th derivative is

considered. Necessary and sufficient conditions for existence of such kind interpolation is gi-
ven when £ >3.

1. Introduction. Let the points X={x,:i=1, 2,..., N} be given and
let x,<x,< ...<xy For each y¢RY one may consider the data (x;, y,), i=
1, 2,..., NV as a graph of the discrete function y: X—R.

Definition 1. The k-th divided difference is given by the quantity
Vxo oo, Xigal=Xiga—x) (Y[Xid1s o ooy Xigr| =YX .- Xitr—]) determin-
ing by induction, where y[x;|=v..

For each i=1, 2,..., n=N—#% we denote

(1.1) Ai=y[xy ..., Xita]

In the sequel the numbers x,,..., xy, £ and n (n=1) are fixed and the
connection between y and A is always given by (1.1).

Definition 2. The data (x; y;) are called k-convex (k-strictly con-
vex) if A, =0 (A;>0) for each i=1, 2,..., n.

In particular the l-convex data are the non-decreasing data and the 2-
convex data are simply the convex data.

For given {(x;, v):i=1, 2,..., N} and p¢[l, o] we define

FA)={f€Clx,, x5t f&DEAC, fP€L, fB=0, fix) =y, i=1,2,..., N}.

Problem 1. Find f¢ Fj(y) for fixed k-strictly convex data (x, y)), i=1,
2,..., Nand pe[l, -]

Problem 1 can be divided into two subproblems:

Problem 1 a. To establish that F(v)is non-empty.

Problem 1 b. To construct an algorithm for finding some fGF:(y).

There are many papers on Problem | for 21 or £ -2 We shall men-
tion only few of them: McAllister, Passow and Roulier [5,6,7],
Hornung [1,2], [liev and Pollul [3,4]. For 21 the existence and the
construction of an increasing interpolating function is trivial. The case for
k2 is more complicated. However, F";’(,v) @ when the data are 2-strictly
convex. Having in mind that Problem la is solved positively, different kind
of restrictions are posed on the solutien of Problem 1, e. g. f should mini-
mize a given functional on g y) or f should belong to a given class of
functions, say spline functions.
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SHAPE-PRESERVING INTERPOLATION 399

It is known that Fj(v) may be empty when 2=3. The aim of this paper
is the investigation of the set Yi={y¢R¥: F(y)+@}. For y¢ Y% we present
an algorithm for finding some f¢ F3(y).

The paper is organized as follows: In Section 2 some preliminaries are
given. In Section 3 we characterize the set Y;. Section 4 is devoted to Pro-
blem 1 b when the function solved an additional extremal problem. An algo-
rithm for checking whether yv¢Y, is given in Section 5. In Section 6 the
condition A,>0 is replaced by A;,>0. The problems arising in connection
with the replacement of the condition “ f(¥=0" by « f(*-1) is non-decreasing”
are considered in Section 7. In Section 8 the case y¢ Y% is considered and
the problem for approximation of these by by means of elements of Y* is for-
mulated. Section 9 is devoted to some generalizations and non-solved problems.

The author would like to thank Dr G. L. Iliev who introduced him in
this field and Dr G.H. Ivanov and Dr A. Donchev for their helpful remarks.

2. Preliminaries. For a€R, y, 2¢RY we use the notations y=(y;,..., V)

“)’:(“yn cee ayn)7 J’+2=(,V1+21, e ey yn+Z,|),

(3 2)=21+ - os + Va2 | Y] =V, ¥)
If f is defined and integrable in the interval [& n], then [f= [ f(t)dt
= [ f(t)dt, where we assume that f(£)=0 for £<& or ¢£>n. The notation gt
means that the function g is non-decreasing. We set (a),=a if a=0 and
(@), —0 if a<0. The closure of A—R” is denoted by A.

Definition 3. The functions B{t)=Bixt)=kfd{x; ..., xi+x] (£€R)
are called B-splines of the k-th order, where f(x)=(x—ty:~".

The following properties of B-splines are well known: B{f)>0 for
te(x; xiex) and B(6)=0 for £ €(x;, Xizr), [B;=1, B;¢ C*~*R), B; is a poly-
nomial of £—1-st degree on each of the intervals [x;, xi41],..., [Xigr—1,
xirk].

(2.1) flXo e Xeeal = [B® if  fED € AC[x,y xisal.

For given k& we set B:[xy, xy]—R", B(t)=(By(®), - - -, B,,(t))..

Lemma 1. Let ¢; (j=i—k+1,..., i) denote the polynomial coinciding
with Byx on the interval (x;, Xis1]. Then the polynomials {9;:j=i—k+1,
i) are linear independent. . '

Lemma 2. The following two conditions are equivalent :

a) yevyy: -

b) there is geL,[x, xyl. =0, such that [B,g=A; for i=1, 2,..., n.

Proof. a) =b). Let fe Fy(y). We set g=f*. Then g=0, g¢L, and (2.1) gi-

ves [Bg— [Bf®=flx, ..., Xixs]=Y[Xir .. ., Xizal=A,

b) = a). We set f(£)—~g(t) fAH) [, fw(H)dt for j=k—1, k—2,...,0 and

each f¢[x,, xy) Let Q be this pol_vnomia} of k—1-st degree for which Q(x,)
Vi—folx) for i=1,2,..., k. We define f=f,+Q and it is easy to see

that £ F4(y).

In view of Lemma 2 Problem 1 can be replaced with its equivalent.

°9



400 K. G. IVANOV

Problem 2. For given A,>0, i=1,2,..., n find gelL,[x,, xy]. g0,
such that [B,g=A, for i=1, 2,..., n.

Problem 2 can be devided into two subproblems.

Problem 2a. Check whether A¢D,, where
(2.2) D,=D:={A€R":A,>0 and there is g€L,[x, xy] such that g=0 and
[Big=A, i=1, 2,..., n}.

Problem 2 b. Construct a solution g of the system [Bg=4, i-1, 2
.., m if AeD,.

Let 1< g< <o. We define the functional ®:R* —R by ®(«) = [TMa, B(t)ydt
for each a ¢R”.

Lemma 3. a) ® (s convex;

b) if a;,=b;, then ®(a)=d(b).

Proof. a) follows from the convexity of the functions (x); and x7(¢g>1). If
a;,~b, then (a, B(¢t))=(b, B(t)) because of B,(f)=0. Therefore (a, B(¢))7,
<(b, B(#)y, and ®(a)=D(b).

Now we shall prove a lemma for the quadratic forms.

Lemma 4. /f y>0 and

(2.3) 89 =0, 485+ 2J(1+7)8,05 0. 8y 83>0.

(2.9) 4, <0, ay>0, a3<0, 2ya;—a,—az=y(a,+as)*+ 4va,as,

then (a,8)<0. Also we have (a, 8)=0 only for

(2.5) ay= —a(3,3,+8WT+7), ag=ay8,8; @y=—aydds+8,(VI+7). a>0.
Proof. Let 6 and a satisfy (2.3), (2.4) and be such that (a, 8)=0. Then

(2.6) 90y — @0, —A403.

Frzm (2.4) and (2.6) we get —a,(2y0, + 8g) —a3(2703+ 85) == O3\ (@) + az)+4ya,a,

an

(2.7) A &+ Aga,ay+ Asaj=.0, where

(2.8) A =8,(¥0, +0g),  Ag=278,85+ 8,0+ 828583, Ag(Y65+3y).

From (2.8) and (2.3) it follows that A2 —44,4;=0 and A,<0. From here and

(2.7) we get(a,JA, —az/A,20 and this is possible only if

(2:9) a, - —aJA; ay——&A (u>0).

From (2.9) and (2.3) we get the prescribed values of @, and a, (2.9), (2.3)

and (2.6) give a, -u/8,0, and (2.9), (2.3) and (2.4) give ay~ay8,8; This pro-

ves the lemma.
Lemma 4. If y>0, a satisfies (2.4), 6, -6,>0 and 063=0, then

(a, 8)<0.

Proof. From (2.4) if follows that —a,>a,.

3. Interpolation of k-strictly convex data. Instead of Problem 2 we
consider

Problem 3. FFor A, >0, i=1, 2,..., n find a¢R"” such that

3.1 [Bla, By '=4A, for i=1,2,..., n
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Obviously if a is a solution of Problem 3 then g=(a, B)?~! is a solution
of Problem 2.

Theorem 1. For given {x;}, k and A the following are equivalent:

a) A¢D, for each pg[l, =o];

b) there is p€[l, ==| such that A¢D,;

¢) for each b¢R* such that (b, A)=0 and b==0 there is t¢[xy, Xn—1] such
that (b, B(¢))>0;

d) for each q€(l, o) there is a,¢R" such that (a, A)=1 and inf{®(a):
(@, A)=1}=d(as)>0;

e) there are q€(l, =) and a,€R" such that (aq A)=1 and inf {®(a):
(a, 8)=1}= D(ag)>0;

f) for each g¢(1, o) Problem 3 has a solution;

g) there is q¢€(1, o) such that Problem 3 has a solution.

Proof. We shall prove the theorem following the scheme: 1. a) = b);
2. b) = ¢); 3.¢) =d); 4.d) = e); 5.e) = g); 6.2) = a);7. d) = 1); 8. {)=29).
The implications 1., 4. and 8. are obvious and the proof of 7. is the same as
the proof of 5.

2. The statement b) means that there is g¢ L,=L,, g=0 such that

(3.2) [B;g=A; for i=1,2,..., n.
Let 6+0 and (b,A)=0. We assume that for each Z¢[x,, x,] the inequality
Q(#)= (b, B(t))--0 holds true. This and (3.2) give [Qg=(b, [B¢)=(b, A)=0,
where Q=0 and g 0. Because of b=+0 Lemma 1 provides that Q is not the
zero polynomial in each of the intervals [x, x4 for i=j, j+1,..., j+k—1.
If we assume that g==0 a.e. in [x; X;yz], then nggf;:+ng<O, So g=0
a.c. in [x; x;44)- Hence [B;g=0 which contradicts with (3.2). Therefore there
is t€[x;, xy] such that Q(f)>0. This proves c¢) because of sign (b, B(¢))
—sign (b, B(x,)) for each f¢(x,, x;] and sign (b, B(f))=sign (b, B(xn—-1)) for
each Z€[xy—1, Xy)-

3. Let g¢(1, «). We denote H,={a¢R":(a, A)=0}, H,={a¢R":(a,A)=1)
and d=(d,, ..., d,), where d,=(A,+ ... +A)"". If a¢H, then b=a—d¢H,
and Lemma 3 gives ®(b)~®(a). Let b¢ H, be such that ||[6||=1 and ®(b)
=inf{®d(b): b€ H,, || 6||=1} (® is continuous). Condition ¢) yields that
D(b)>0. We set R - d((d)/®(b))"?>0. For each a¢H,, ||a—d||>R Lemma 3
provides ®(a)=®(a—d)=| a—d|?.¥(a—d)/| a—d|)>RI®(b)=d(d). Hence
there is aq€ H, such that

inf {®(a):a¢ H,}=inf{®(a):a¢ H), ||a—d| =R}=D(ay).
If a,—~d then obviously ®(a,)>0. If ag4d then condition c) and Lemma 3
give ®(a,)=d(a,—d)>0. ) :

5. In g) we choose the same ¢ as in e). Applying Lagrange theorem we
get a real A such that —:E (®+2(1—(agA)) la=a, =0 for i1, 2,..., n. Hence
q[B(t)(aq B(f)y—'dt =1A,. Because of ®(ag))>0 we have (aq B(f))+0 and
IB{agq, B),'+0 for some i. Then the condition A;>0 provides A>0. Hence

we get the solution of Problem 3 in the form a=a4gq/A)Ne—N,
6. We set g=(a, B),'. Obviously g¢Clx,, xy] and g=0. Therefore

Problem 2 has a solution for p—= o, i.e. A¢D.cD,.

26 Cn. Cepanxa, kn. 4
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The following two corollaries are an immediate consequence of Theorem 1

Corollary 1. D, -D, for each p¢[l, =]

In view of this corollary we shall denote in the sequel D, as D,.

Corollary 2. Problem 2 and Problem 3 are equivalent. If Problem 2 has
a solution then it has a continuous solution of the type (3.1).

Corollary 3. For k=2 we have D? -{A¢R":A,>0}. Proof. Let 60,
(b, A) =0. Hence there is 4,>0. Then Theorem 1 a) and c) proves the corol-
lary, because of (b, B(x;:1))>0.

Corollary 3 simply says that for any strictly convex data there exists a
convex interpolating function. This fact is well known —see the papers cited
in Section 1.

There are many possible generalizations of Corollary 3 for the case &=3.
The strongest of them — “Each A>0 belongs to D} is false as we shall see
later. However, one can prove

Proposition 1. D, is an open set in R"

Proof. We consider the uniform norm | a |=max{|g;|:i} in R" Theorem
1 b) and c¢) and the continuity of (b, B(¢)) give that inf{ (b, B) lfq,,,,‘\.lzilb”
=1, (b, A)=0}=B>0. We take y= | Z*_ B, ||cix, xy,;>0. Now our aim is to
prove that A’¢D, if A’>0 and ||A—A’llc<1/3.min{l, B}. min{l, y~'}.min{A,
:i). Let ||a|c=1 and (a,A")=0. We define b by b,=Aa;/A;. Then

(3.3) |b—allc=max|a,| 1—A)/A;|~max|1—A//A,|<1/3.min{l, B} min {1, y~'}.

i i
Hence ||b|c>2/3 and the equality (b, A)=(a, A’)=0 provides £, ¢[xy, Xy 1]
such that (b, B(t,))>2B/3. Applying (3.3) we get |[(b, B(f))—(a, B(t))|=| a
~b|cXr_ B(t,)<Py'.y/3-=PB/3. Hence (a, B(t,))>B/3. Now Theorem 1 a) and
c) gives A'€D,.

We define
D, -{A¢R":A>0, A, [Bg, i=1,2,.... n g>0, geL,[x,, xy]}.

Obviously D] D,=D,.

Proposition 2. D, - D,

Proof. Let A¢D,. Then Proposition 1 provides an &>0 such that
A*€D,, where A=A, —¢. Then Corollary 1 gives A€D,. let feL, be such
that f -0 and A*= [B,f. Then for g=f+e>0 we have A, - [B,g because of
/B, 1. Therefore A¢ D,

Proposition 2 and Corollary 1 give

Corollary 4. If Problem 2 has a solution then it has a continuous posi-
tive solution.

Proposition 3. D, is convex.

The proof follows immediately from (2.2).
We can summarize some of the results of this section as follows: The

set D, of all A for which Problem 2 has a solution does not depend on p
and it is an open convex cone with the vertex in the origin.

4. An extremum problem. The following extremal problem is a streng-
thened form of ’roblem 1 b.

Problem 4. For y¢ Y, find f, € Fj(v) such that
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| |, =int {I| /% [l f€ FA( )

This problem is solved in the case £-2 for p=2 in [2], for p=co in
[3] and for 1<p<eco in [4].

In this section we restrict ourselves to 1<p< - and K arbitrary. The
result — Theorem 2 —is obtained as a consequence of Theorem 1 and the
following lemma proved in [4].

Lemma 5. Let § be a finite-dimensional subspace of L, L be a linear
functional on S, G be the set of all g¢lL, (1/p+1/q—=1) such that g=0
and the functional { -, @ coincides with X\ on S. [f there exists h¢S such
that g,=(hy, ' €G, then &ll,=inf{| g|,:2¢G}.

In our case S={(b, B(¢)):0¢R"} and A is given by A(B)=A, for a fixed
A€D,. Then G is the set of the solutions of Problem 2.

Theorem 2. Let 1<p<oo and y¢ Ys. Then Problem 4 has unique
solution f, determining by f(?=(a, B)"', where a is the solution of Pro-
blem 3.

Proof. The uniqueness follows from the rotund of L, Theorem 1 b) and
f) gives that Problem 3 has a solution a. Then the condition of Lemma 5 is
fulfilled for %2 -(a, B) and we get the conclusion of the theorem.

It follows from the above considerations that the main difficulty in the
solution of Problem 4 is concentrated in Problem 3. Theorem 1 b), d) and
f) provides a good tool for solving Problem 3.

Corollary 5. For 1/p+1/g=1, A¢D, the solution a of Problem 3 has
the form a—aa, where a=const>0 and a, isthe point minimizing the func-
tional ® on the hyperplane {b€R":(b, A)=1}.

A variety of gradient methods can be used for minimizing ® on
{b:(b, A)=1).

5. Case k—=3. We saw in Section 4 that Problem 1b) can be solved un-
der the condition V¢ Y,‘; using Theorem 1b), d) and f). In this section we
shall show how to check whether y belongs to Yj using Theorem 1 ¢). This
is cquivalent (see Sections 2 and 3) to finding if A¢D,. In this section we
suppose that &£=3.

It is more convenient in the beginning to characterize the condition
A¢D, (but A>0). Theorem 1 gives _

Corollary 6. Let A>0. Then A¢D, iff there exists 540 such that (A, b)

0 and Q(f) (b, B(f))=0 for each #[x; xn1].

First we observe that if A¢D, and b is the vector given in the corol-
lary then necessarily b, .0 and b,=0 (Q(xy)=0,B,(x,) and B,(xy)>0).

Now let us see what Corollary 6 gives if n=2, 3 or 4.

For n -2 the simultaneous satisfying of the inequalities A,>0, A,>0,
b,- 0, by 0, |b,|+bg|>0, A +A30=0 is impossible and so we always
have A¢ D, (this is true for each & and n=2).

Let n 3. It is necessary at least one of b, to be positive. Therefore
b, 0. 1f b, -0, then Q(x3)=0,Byx3) >0 which contradicts the corollary. Hence
b,< 0 and in the same way b,<0. Under the determined values of the signs
of b, the inequality max %Q(t):te[x.,. x;]}=0 is equivalent to the inequality
max {Q(f): t¢|xy x,]} 0. Definition 1 and 3 give that in the interval [x; x,)
B-splines have the form

By(t)  3(t—x)M(xs— x3)lx— X W Xg—xy) ]
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By(t) = 3(t — x5 [ (x5 — x4 )(X5— Xa) x5 — X,)| ™!
—3(t—x,)[(x5— X N x4 — X3 X4 — Xa)| "5
Byt) = 3(t— x3)2[(x5— 3)( 65— xa)(x—x3)] "

It follows from the above formuli that B, is concave and B, and B are con-
vex. Hence Q is concave in [x, x,] and it has unique maximum. This maxi-

muom_is achieved at the point ¢ which is the solution of the equation Q'(%)
=0, L. e.
t= {— b, (xg—x30 X — X)) —x1)] ' + b?—":[(-"s_‘x4)(x4_‘xa)(xa"‘x2)]_l
—bax;[ (5 —2x W — x3)(x5 — Xo)] ' — b3x3[(x5— 23 X5 — Xa) Xy — X'}
X {—b,[ (6, — x3) (x4 — Xa)(Xg—x1)] '+ bl (x5— X4 Y —x3)x—Xa)] !
— by (x5 — X Wx5 — X3 ) x5 —x)] ' — s (X6 X3)(X5— Xa)lXe—xa)] '}
The restrictions over b, give x;<t<x,. Therefore the condition Q(¢)=0

for each £€[xs x,] is equivalent to the condition Q(f)=0. After some ele-
mentary transformations we get the equivalent inequality

(o5 — X)Xy —X3)

2
P P al—a,a,—a,a;—a,a;<0,

where
(5.1) a;=b,[(xi+3—x X Xig2—Xis1)] 7"
In this section we shall use the notations
(5.2) 8, = A(Xiy3— X N Xiv2—Xi+1)
and
(5.3) ¥, = (Xip3— X N Xip2—Xi 1) (Xi43— Xig 2l Xis1 —x)I

From the above considerations and Corollary 6 we get
Lemma 6. Let n—=3 and A>0. Then AeD, iff there is a such that
a,<0, a;>0, a;<0, (a, 8)=0 and

(5.4) 272‘135‘71+”a+\/(a|+aa)’+4hala—a-

The comparison of Lemma 6 with Lemma 4 gives
Proposition 4. Let n—3. Then A¢D, iff

(5.5) 8y 8, + 83+ 2y (1 + 729,85
If {x;}_, are equidistant then
A€D, <> Ay< A+ Ay + A A

These results show that there are 3-strictly convex data (x,y), i—=1,
..., 6 for which there are not any interpolating function with non-negative
third derivative. For example we may choose A, =1, Ay==6, Ay=1 if the
points {x,} are equidistant.
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Let n—4. It is necessary 6, =<0 and b,<0. So at least one of b, and b,
should be positive. But if 6,0, b;,=0 and b,+ b;>0 then (b, B(x,))— byBa(x,)
+ b38,(x,)>0. Hence either 6,>0 and b6;<0 or b,<0 and b,;>0. Thus the
following two cases are possible: 1) 6,<0, 6,>0, b;<0, b,<0; 2) b,<0,
b,<0, 3>0, b,<0. The same reasons as in the case n=3 give: A¢D, iff
either 8,0, + 83+ 2{(1+75)8,85 or 838,438, +2\/(1+73)050,. So we get

Proposition 5. Let n=4. Then A¢D, iff 8,<8,+8;+2J(1+7,)8,83
and 83<8y+38,+2\(1+73)8,3,.

These cases are typical and we are ready to begin with the case of ar-
bitrary n. -

Lemma 7. Let A>0. Then ACD, iff there is a==0 such that (a,3)=0,
a,=0, a,<0, and if a;>0 then a;_,<0, a;.,<0 and

(5.4%) 2v4;=~a; 1+ ai1+ \/(01_1 + Qi)+ 4y, a0 4,.

Proof. The “only if” part. Corollary 6 provides -0 such that (A, 0)=0
and Q(f)=0 for each £¢[xy xny—1). We get a from (5.1). From (b, A)=0,
(5-1) and (5.2) we have (@, 8)=0. From Q(x;)<0 and Q(xx_1)<0 we obtain
a,<0 and a,=0. If a,>0 then the inequalities Q(x:+1)=0 and Q(x;:2)=0
give a;,1<0 and a;+1>0. Now we get (5.4') as in Lemma 6.
The «if” part.

We shall apply Corollary 6 and so we need to prove that Q(f)<0 for each
t€[xy xn—1). For simplicity we set @,=an41=0. Let #¢[x;+1, Xi+2] for some
i=1,2,..., n. If a,>0 then (5.4) gives Q(f)<=0 as in Lemma 6. If a,=0
then a; =0, @;+1=0 and obviously we have Q(#)<0. Let a;<0. Then we
have three possible cases; 1) @i-1>0, a;,4+1>0; 2) a; <0, a,.,<=0; 3) either
a; =0, a;:1>0 or a;1>0, a;x1=0. If case 1) holds then (5.4’) gives
Q(xi:1)=0, Q(xi:2)=0, and in view of the convexity of Q we have
Q(#)=0. In case 2) we obviously have Q(£)=0. In view of the symmetry
in the case 3) we shall consider only a; =0, a;.1>0. We define p(1)=b:B{(1)
+b;41Bis1(7) for T€[Xis1, Xiy2). Then p is convex, p(xi41)=b,B/(xi+1)<0 and
(5.4") gives p(xiy2)=Q(xi42)=0. Hence p(£)<0. Finally Q(f)=b; 1B; ()
+p(6)=0.

p(lz emma 8. Let A>0. Then the statement A¢D, is equivalent to the
existence of j, s¢eN (1=j<j+2s=n) with the following property. If we
define by induction 8;.=8/ and

(5.6) 8 =02 —(1+2Ys021)8, 5, o —Big2i

+ QJ(l +‘Y/+2[—1)6/’+2"_2(7j+21—l6}+21_2+ 8/.’.21_]'

for i=1,2,..., s, then 8i42i41>8, >0 for i=0, 1,..., s—1 and 8/'+?Js(}

Proof. We set 5,’-;21=6/'+71—8}+2[ for i=1, 2,..., s.

1. Let j, s exist with the given property. Then (5.6) gives 8., 5,>0 for
i=1,2,...,s We set aj=—1. Now we define by induction the next “a”-s
as follows. If for some =0, 1,..., s—1 the number @;.9 is define then we
get from (25) @yp241=day and a;i94.2=ay, where 8,=8}+2‘. 89 =8, 02141,
838, 3 0 Y=Vss2—1 and a=—a;42(\8,85+8;/T+7)~". So defined {a,} sa-
tisfy signay4;=(—1)y*" for 1=0, 1,..., 2s. Applying Lemma 4 we obtain
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J+2s s ,
> Opld gy = \._‘ (0,.+2‘.<2(1,'+2,‘ _2+b/'+;[,_1(lj+‘_»[,.1 —f—bj+3‘.tll-,:,')-l— Oj'-i-Qx(lj+2"
m=j i=
=0 o djt2s —0.
On the other hand,
j-.»'-’f‘72 o i
- Smam+(5/~x-2v(’j+?x=8j+2_‘._2(7j+?:—‘2'?_8/+2:aj+'2r<0-
m—=j

Therefore there is a,.», .y such that 0<a;.2 1=<@;i21 and I/ 725, a,
o 18jh0s 1 + @25 =0. We  also set @,,=0for m<jand m>j+2s. The vec-
tor a (with a;,.s  instead of a;.2 1) satisfies the condition of Lemma 7 and

hence A¢D,.

2. Let A¢D,. Let a be the vector from Lemma 7. We separate the inte-
gers from 1 to n to the parts fo, /,, ..., [, as follows: 1) ie/, iff a; =0,
@,~0, a;.,—=0 (we assume that gg=a,1=—1); 2) ly(p= 1, 2,..., r) is of the
type {j, j+1,..., j+2s} and the following conditions are satisfied a) sign a,,m
Z(—1y** for m=0, 1,..., 2s); b) either j=1 or j—-1¢/,; c) either j+2s
—n or j+2s+1¢l, Because of a0 and (a,8)=0 we have r=1. Therefore
0=(a, 8)~X’  Yp/yapmd, and there is p such that Y1, AmOm=0. Let L,={l,
l+1,..., L+2s). Now we decompose &' 2=8 , +9, , in turn for /=0, 1,

., s using the formuli: a) 6"~ 0; b) if 6/ , =8/.2:41 then 0, 5005 0) if

8, ,, <0241 then

1+2i

8, piro=042s1+(1 +2Yi42i01)8, o

—2V(1 +Yi42+1)8,, Yia20018) 00 0i41)-
Now [Lemma 4 and LLemma 4’ give
§ . e
0-= .‘.-/ A O py = ) (al+21_201+21_.2+(11+21'——|81+3i—l +‘11+'.!i8,+-”)
mel, i1

+8“2j(11+2_‘.-§8 aAl42s.

1425

Therefore 5, , 0. Let j-max{m:5, =0} and s =(+2s —j)/2. We have

s’ -1 becausc of 3, , >0. Then the numbers j and s” have the property
given in the condition of the lemma.
Now we are ready to construct an algorithm for solving Problem 2 a
if £=3.
Algorithm L
Step 0. m: -0 and & is given by (5.2).
Step 1. m: =m +1, i:=m.
Step 2. If m>2, then STOP - A¢D,.
If m— 2, then §,: 5, Go to Step 3.
Step 3. If i<n—1, then go to Step 4.
If £ -n—1, then go to Step 1.
Step 4. 1f 8, 8,,1, then {:—i+2 and §;: =5, Go to Step 5.

It 8,<8.1, then i: i+2,
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v = (Xiro—Xia)(Xig1 —x0)/[(xir2—Xi1(Xi—Xi—1)] and

8, = 8,8 — (1 +20)8,_, + 2J(T+70,_,(v8, 5+ Bi2).

Go to Step 5. B

Step 5. If §;=0, then Stop — A¢D,.

If 3,>0, then go to Step 3.

Theorem 3. Let A>0. Then A¢D, iff there is i¢N such that 8, =0
in Algorithm L

Proof. The “if” part follows immediately from Lemma 8. Now we shall
prove the “only if” part. There are numbers j and s with the property given
in Lemma 8. If in Algorithm [ 3,0 before / takes value j, then Theorem 3
is proved. Now let us have 0<38 =3, If §,=3; then Lemma 8 gives §,<0
for i~ j+2s and the theorem is proved. If 3 <3, then all values of 3, from
Algorithm [ are less than these ones from Lemma 8. Hence we shall have in
Algorithm I 8,0 for i=j+2m for some m<s. This completes the proof.

Let us note that Algorithm I is very fast —it terminates after » times
taking a square root and O(n) times multiplication or division.

6. Interpolation of k-convex data. In the sequel we assume that A=0
instead of A>0.

We have required the strictly convexity of the data (A>0) in Problem 1,
while the condition f® =0 has been posed in the definition of F}(y). Propo-
sition 2 shows that the replacement of this condition by f® >0 does not lead
to any interchanges in the set of all data for which Problem 1 has a solu-
tion. Moreover the strictly convexity gives that D, is open but the replace-
ment of A>0 with A -0 in (2.2) does not provide that D, is closed. Never-
theless it is natural to combine f(*® =0 with A=0.

Problem 5. For A, ~0,i=1, 2,..., n check whether A¢D, where
D,={A¢R":A;= [Bg, i—=1,2,..., n geLyx,, x5}, g=0}.

We do not consider the problem for constructing of an f¢ Y yNA=—0)
because it is reduced to solving some times Problem 1 b if Problem 5 has a
positive answer.

Having in mind the results of Section 3 we see that D, does not depend
on p if we require g¢L, instead of ge’,.

If A>0 then Problem 5 coincides with Problem 2a. So we assume that
there is /i such that A;—=0. We introduce the following notations: /,={i:A;

0}/, + @). The other natural numbers less than n+1 form some non-inter-
secting sets 7y, Iy, ..., I, of the type [l,={iz+1,..., i+ j;}, where i;=0 or
ively, iy€l, for p -2, ip+jo+ 1€, for p=r—1, i,+j,+1¢€l, or i,+j,=n.

f i, 0 then /, will be called a left interval, if i, +j,—=n then /, will be
called a right interval and all other /,(p+0) will be called inner intervals.

lLet a,— x, if /, is a left interval and @y x; +a otherwise, B,—=x, if /Ir

is a right interval and Pp = Xip4ps+1 otherwise. If A¢D, then necessarily g(f)—0
if £¢|ap, Bo) for any p—=1, 2, ..., r. Therefore Problem 5 decomposes to r
independent problems: Forp-1, 2,..., r to determine if there is g, ¢ L,[a,, B,
such that g, -0 and A -IS:B,'A’ for i€ /.

The problems for the right and left intervals (in view of the symmetry)
are of the type
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Problem 2’. Check whether A¢D,, where

(22) D,~{A¢R" A;>0 and

there is g€ L,[x,, X,+1] such that g=0, [(**!Big-A; i—=1,..., n}
The problems for the inner intervals are of the type
Problem 2". Check whether A¢D,, where

(2:2) D,={A€¢R":A,>0 and there is g¢L,[xs Xn+1]

such that g= 0,]";;'“ Big=A;, i=1,..., n}.

Now we give two analogs of Theorem 1.

Theorem 1. Theorem 1 is true for Problem 1’ under the following
replacements : in c) [xy, xx—1] is replaced by [xa Xni1]; ®(a)— [[""(a, B(t))?dt
and in Problem 3 (3.1) is replaced by

‘n+1
(3.1%) A~ [ Bdtxa Bt for i=1,2.....n.

Theorem 1. Theorem [ holds true for Problem I'" under the follow-
ing replacements: in ) [xy, Xn—1] is replaced by [Xp Xn+1], n=k: ®(a)
= ["+Ya, B(t))7dt and in Problem 3(3.1) is replaced by

k

*n+1
(3.1") A;= [ BdtNa,B(t)'dt for i=1,2,..., n.
X"‘
The proofs of Theorem 1’ and Theorem 1" repeat the proof of Theorem 1.
The corollaries of Theorems 1’ and 1’ are similar to these of Theorem 1.
The results of Section 4 have the following analog. We consider
Problem 4’. For y such that A¢D, find f,€F,(v) such that |[f¥],
=inf{|[f® 1, : fe Fy( )}
Then from the above considerations, Theorems 1’ and 1” and Lemma 5
we get
Theorem 4. Let 1 <p< - and y be such that A¢ D, Then Problem 4'
has unique solution f, determining by f =x(tXa, B(t))Y . where x(t)=0 for
L€ irlxi Xivn) and  w(t) =1 for t€[x,, xy)\UurlXi, xivx] and the compo-

nents of the vector a are determined by (3.1') if ikl, and I, is a right or
left interval, by (3.1') if i¢l, and I, is an inner interval and a; -0 if i¢l,.
Now we shall apply Theorems 1’ and 1" for solving Problem 5.
Theorem 5. Let k2. Then A¢D, iff each inner interval has at least
two integers.
The proof is similar to the proof of Corollary 3.
The following two algorithms solve Problem 2’ and Problem 2'' respec-
tively if & 3.
Algorithm IL
Step O, Step | and Step 2 are these ones from Algorithm I
Step 3. If i<<n—1, then go to Step 4.
If i n—1, then go to Step 6.
If i~n, then go to Step 1.
Step 4 and Step 5 - from Algorithm [
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Step 6. If &, >8;;1, then go to Step 1.

If 6,<8:41, then STOP - A¢D,,.

Algorithm IIL

Step 0. m: =0, §,: =0 and §; are given by (5.2) for i=1, 2,..., n.

Step . m:=m+1, i:=m—1.

Step 2, Step 3, Step 4, Step 5 and Step 6 are these ones from Algo-
rithm IL

Using Theorems 1’ and 1”7 we get the proofs of these two algorithms
and of the following theorem in the same way as we get the proof of Theo-
rem 3 with the help of Theorem 1.

Theorem 6. Let k=3. Then A¢D, iff the following four conditions
are fulfilled :

a) each inner interval has at least three integers:;

b) if a left interval has at least two integers then Algorithm Il termi-
nates at Step 2;

) if a right interval has at least two integers then Algorithm Ill ap-
plied for x and A terminates at Step 2, where xj=xyi1—; j=1,2,..., N
and Aj=A 1, j=1,2,..., n;

d) for each inner interval Algorithm Ill terminates at Step 2.

An algorithm for solving Problem 5 in case 2=3 follows immediately

from Theorem 6.

7. A generalization of Problem 1

The following problem generalizes Problem 1,

Problem 1’. For k-convex data (x; y:), i—=1, 2,..., N find f¢ F*(y),
where

F(y)={feClxy, xy): f*1 is non-decreasing and bounded}.

Problem 1’ is equivalent to

Problem 2'’. For A=0 find a non-decreasing bounded function g such

that A;= [=_B(t)dg(t), i=1, 2,..., n.
Here [B,dg is an Stieltjes integral. We can also consider dg as a posi-
tive measure. We denote

D—=D*={A¢R":A;= [Bidg, i=1,2,...,n, gt}

Having in mind F. Riesz theorem [ can be consider as the image in R”
of the set C, of all positive linear functionals on Clx,, xy] under the maping
L:C° —R" L(O)=(UB,), ..., UB,).

Lemma 9. D—D,.

Proof. Let A¢D and A;= [Bidg g1. For m¢N we set g,(x)=m[m'g(x
+£)dt +xm ' (we assume g(£)=g(xy) for £>x,) and A"~ [B,g.. We have
A™¢D, because of g, (f)=m|[g(t+m")—g(t)]+m=" a.e. Now the proof fol-
lows from the inequalities

|Ai—Am| 2| [Bidg— [Bidgy |=| — [Bi&+ [Bgm < [|8—&m|| B, |
N m—! , XN
< [ l@t)—m [ gt+odc||Bit)|dt+m=" [ [Bt)|dt — 0.

Xy

Lemma 10. D is closed.
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Proof. Let A¢D and_gT be such that A,:_[B,_-dg.i-:l,‘_’,....n. We can

define g as follows: g(f) -g(t) for t€(xy xn—1), g(t) =g, for t=<x, g(f)-gy
for £ - xy_1, where

_ X, . N .
B\(xy)[g(xy+0)—g|= [Bidg Bn(XAV—l)[gN_g(XAV—I—O)] = [ B,dg.

*N—1

Hence A,— [Bidg. Let A™¢D, m=1,2,..., A" —A with respect to some

norm in R* and A”-= [B,dg,, where g, are functions of the type given above,
[f B>0 denotes inf{X} Bi(f):t€[xy, xna]}, then B[gu(xp)—&m(x1)]=B[dgm

~ ¥ Bidg, X! A" — X' A, This inequality and the possibility to change

g, with an additive constant provide the existence of M-=const such that
| &m e, xp1==M for each m. Now E. Helly theorem provides a function g1,

| g|lctn. vy -M and a subsequence {m,} such that g, (¢f) —~g() for each
t€[x,. xy]- Then we have [Bidg——[B.g=—lim, .. [B; 8n =lim, . [Bidgn
— lim, AT = A,. Hence A¢D, i.e. D is closed.

Theorem 7. D, =D.
The proof follows from D,—D, Lemma 9 and Lemma 10.

Let cone (B) denote the closed convex cone with the vertex in the ori-
gin generated by {B(f):t€[xy xn 1]}, i. €.

cone (B)- {a €R":a~ X wB(t). ti€[xq xx1] a0}
i1

Theorem 8. For A~0, A0 the following are equivalent:

a) A¢cone (B);

b) A€D;

¢) for each b, (b,A) =0 there is t¢€[x,, xny 1| such that (B(t), b) -0.

Proof. a) = b). Let A= aB(f;) and ,<t,<...<t; Then we set
2)=0 for t<t, gt)—_ja, for t;—t<t;y and j=1,2,..., s—1, gf)

¥ a; for t £, Then A= [Bdg for i—=1,2,..., n

b) = c). In the representation A, = [B,dg, i=1, 2,..., n we may assume
that g(f) - g(x,) for t==x, and g(f) -g(xn-1) for t—xn. (see the proof of
lLemma 10). Therefore 0=(b, A)— [I¥-'(b, B(f))dg(t) and hence there is
t¢(xy xy_1] such that (b, B(f)) -0 because of the inequalities [dg>0
and A+0. _

¢) = a). Let us assume that A¢cone(B). We set

8:£ A>0, H-={a¢R": g.‘u,:S} and K- H)cone (B).
i=1 i==1

The hyperplane F contains the point A and the closed convex set K. Then
the separation theorems provide a hyperplane F/, of / such that H;)A and
H,NK~(. Let H, be this hyperplane of R" for which 4, H H, and
H,30. Then H,)A. If we assume that there is a+0, a¢/ () cone (B), then
a-— (8/Xr ,apaccone(B) and a¢H. So a¢K and a¢H(\H, H, i e KIIH,
© (A which is a contradiction. Hence /1, (1 cone(B8) {0}. Let b0 be such
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that A, —{a¢R":(a, b)=0}. Let (b, B(xy))<<O (the equation (b, B(x,))=0 is im-
possible and if (b, B(x,))>0, then we consider —b instead of ). Then (b, a) <0
for each a¢cone (B)\{0} because of the convexity of cone (B). On the other
hand, (b, A)=0 which contradicts with c).

Theorem 8 can be used for constructing an algorithm checking whether
A¢D in the same way as Theorem 1 has been used for proving Corollary 3
and Theorem 3. For =2 we get D={A¢R":A>0}. For k=3 and A=0 the
arguments of Section 5 give

Algorithm IV.

All steps are the same as in Algorithm [ except

Step 5. If 8;<0, then STOP — A¢D.

If 3, —0, then go to Step 3.

Of course the Stop in Step 2 gives A¢ D.

let K denotes the set of all extremal directions of D, i.e. K is the set
of all a¢D such that a=0 and if a=Bb+vyc for some B, y>O0, b, c¢c DNJ{0},
then there is «>0 such that a=ab. Theorem 8 says that

K=K, ={oB(#t): a>0, £¢[x5 xy]}.

Proposition 6. For k=3 we have K=K,.
Proof. Let f,€[x; xi+1), 2=i=N—2 and B({))=Bb+yc for some B, y>O0,
b, c € DN{0}. Then Theorem 8 gives

(7.1) B(t,) = Ll a;B(t;), t;€[xq, xn—1]. a;>0.
J=

Obviously #€[x;, x;+1] because of B(t,)=0 for r<i and r>i+k. Now
Lemma 1, #=3 and (7.1) give .\-‘-;:;‘ajzl. I ati=t, and .‘_‘;:lu,t';’.:tg. Hence
S5 aft,—1)?=0. Therefore #;=£, because of a;>0. This completes the proof.

8. Approximation. In the previous sections it was shown that for £=3
there are strictly convex data which do not belong to Y% Hence the pro-
blem for the best approximation of these data with elements of Y} can be
considered. But Proposition 1 says that D, and Y* consequently are open
sets. In Section 7 we have investigated the closure of D, — the set D — and
now it is possible to formulate correctly the approximation problem.

For v¢R" fo find E*y)—inf{{|y—z|[:z€Y*}, where Y*={y¢RN:F*(y)
+@) and || .| is some norm in R¥, For example ||a |.—=max{/a,|:{} or
|a%, (=¥ a9V for 1=g<ceo. We also may consider

EXy)=inf{|A—a|": aeD},

where v and A are connected with (1.1) and | .||" is a norm in R”
The following equivalences are obvious

- ENy)=0<syeYr<s A¢D<>E4(y)=0.

Proposition 7. If A=Y[Xn..., Xisal=2[Xp ..., Xizs] for i=1, 2,

., n, then E*y)—E*2).
Proof. We have (v—2)[x, ..., Xis4/]=0 and hence there exists a poly-
nomial p of k—1-st degree such that y,=p(x,)+z2, for i=1, 2,..., N. Also
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there is y€ ¥* such that E*(y)=| y—y| because Y* is closed. We set
zi=y,—p(x;). Then z¢Y* and ||z—z||=|| y—y||=E*(y). Hence E*2)—E*y)
Analogously we get E* y)—E*(2). ’

It seems that in general the computation of FE*(y) is more complicated
than the computation of E%*( y).

Finally we give an example. Let n—=k=3, x;=i for i=1,2,...,6 and y
be such that (A,—A;—A3)?—16AA3=38>0, A,>0 (cf. Proposition 4). Then
EXY)e=3(y+\Vr2+738)"' and E* y)o=3E¥ y)./4, where y=>5A,+3A,+5A;.

9. Remarks and non-solved problems

9.1. The restriction on the data (A>0 or A=0) and the restriction on
the interpolating function (f® ~0) can be generalized as follows: ¢, >A>0q,,
v, > f® >y,, where ¢; and vy, are functions from R” and [x,, xy|, respectively,
to the extended real line. For example Hornung [2] consider the case k=2,
@, =+ o, py=y=const, y,=+ 0, yy=7y and called this y-convexity. Under
some consistency conditions on ¢; and y; we can get results similar to the
results of this paper.

9.2. A. Donchev pointed out that the subject of this paper can be treat-
ed of the optimal control theory point of view.

9.3. We have not cosidered in Section 4 the cases p=-o and p=1.
When p=co the minimizing element for Problem 4 is not unique (see [3] for
k—=2). When p=1 in many cases we have not any minimizing element in L,.
It is not difficult to find an interpolating function with a minimal L, norm of
the k-th derivative, considered as a positive measure, using the interpolating

conditions A, [B,dg and the fact that E/‘lhl,_k“—x—”; B(t)-1 for each

te[xp xp41). .

9.4. The problem for constructing an algorithm solving Problem 2 a in
the case k£ -4 is open. In our point of view the best situation here will be to
find an algorithm similar to Algorithm | in the case k£=3. Another possibility
is to use Theorem 1 d) and to minimize the functional ®. The main difficul-
ties here come from the fact that [, is open and ®(a,) may be very closed
to zero. Moreover if A belongs to the boundary of D, then ®(a)>0 for each
a but inf {®(a): (a, A)=1}=0.

9.5. Let {B,} be a given system of functions in Problem 2 (not necessa-
rily B-splines). It is interesting to see which minimal conditions on this system
ensure that a theorem similar to Theorem | can be proved using the same
arguments.

9.6. There are many problems arising from Section 8. We mention here
only one of the simplest: To construct an algorithm for computing EXy) if

|” is the Euclidean norm.

|
1S
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