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ON THE (n/a/M/I) QUEUES AND ERLANG’S LOSS FORMULAS
J. SZTRIK

Abstract. The aim of the present paper is to give the main characteristics of the finite-source
-

G/M|1 queue in equilibrium under different s:rvice disciplines. Here unit / stays in the source for a
random time having general distribution function F(x). The required service times of all units are
assumed to be identically and exponentially distributed random variables with means 1/p, but the ser-

-
vice rates depend on the state of the system. It is shown that the solution to this G/M/1 model is
similar in most important respects to that for the M/M/1 model.

As an application the Erlang’s loss formulas are derived. Finally under preemptive priority service
in exponential case we minimize the steady-state probability of refusal.

1. Introduction. The (n/G/M/1) queue is a closed G/M/1 queue in which units
emanate from a finite source of size n and are served at a service facility according
to different service disciplines. Let us suppose if k£ units are at time ¢ in the source
then the customer under service obtains during (£, £+ %) an amount of service equal
to r,h. Hence the attained service time increases with rate 7, O<r,<co, k=0, 1,
..., n—1. The requred service times of all units are assumed to be identically and
exponentially distributed random variables with means 1/u. Therefore the probability
that a unit is served in the interval (¢, £+ 4)provided that there are £ customers in the
source is pgh+o(k), where p, =pr,. After completing service, unit i returns to the
source and stays there for a random time having general distribution function F{x).
The service and arrival times are assumed to be mutually independent of each other.

Such a finite-source queueing model is often called the “machine-interference prob-
lem.” In recent years this model has been effectively used, for example, for the mathe-
matical description of multiprogrammed computer systems, c. f. [1, 9, 11, 13].

Furthermore, the analogy between this problem and the M/G/n/n loss system,
which is of considerable importance in the field of telephone systems, is well-known,
c. f. Takdcs [15, p. 190]. Since there is a sizable literature on “machine interference”
and “Erlang’s loss formulas,” we refer only to the most related results. Bunday
and Scraton [2]) have recently proved that the probability distribution of the number
of machines running in steady state is the same in the M/M/r and G/M/r cases.

Sztrik [14] has generalized this result to the G/M/r case. The G/M/n/n Erlang model
was treated by Takdcs [15], while the M/G/n/n for arbitrary service time distribu-
tion with finite expectation was discussed by Sevastyanov [12]. These results have
been generalized by Fakinos [4] in the case of non-identical servers. For state-
dependent arrival rates and homogeneous servers the model can be found in [8). By
allowing different service times and state-dependent arrival rates the validity of Erlang’
formulas has been proved by Sahbazov [10]. For time-dependent arrival and service
rates the model was treated by Gnedenko (7). The Erlang loss system M/G/n/n
with speeds is discussed in Franken et al. [5, p. 174]. This paper then deals
with a generalization of the G/M/1 model under first-come, first-served (FCFS), last-
come, first-served (LCFS), random selection (RS) service disciplines and gives the main

21 Cn. Cepamxa, xn. 4 SERDICA Bulgaricae mathematicae publicationes. Vol. 12, 1986, p. 321—33l.
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steady-state characteristics of the (n/G/M/1) queue. As an application the Erlang’s loss
formulas are derived. Finally, under preemptive priority service in exponential case we
minimize the stationary probability of refusal.

2. The mathematical model. 2.1. FCFS service. Let the random variable
v(¢) denote the number of units staying at time £ in the source and (a,(?), ..., avws(t))
indicate their indices ordered lexicographically. Let us denote by (B,(¢), ..., Ba—vi (%))
the indices of units waiting or served at the service facility in order of their arrival.
Clearly the sets (ay(f),..., avwy(£)) and (By(£), ..., Br—ws)(?)) are disjoint. Let us intro-
duce the process

Y&)=8); a)(t) .., aun(®); By(8), ..., Ba—wrf?))
The stochastic process (¥(¢), £=0) is semi-Markovian.

Let us also introduce the supplementary variables &q,()(¢) to denote the random
time, which unit a/(f) has been spending in the source till time ¢ [=1,..., v(f).
Define
(1) XDO=8); ay(®), ..., aweft); Eayalth - -+ s Sayylt)s BaE)s . -+ s Ba—win(8))-
Then the process (x()(¢), £=0) satisfies the Markov property.

Let V7 and C7 denote the sets of all variations and combinations of order % of
the integers I,..., n ordered lexicographically, respectively. Then the phase space of
the process x()f) consists of the sets

(G eeon gy Xpyewoy Xy Jov oo Juoi)
(ip---, ig)(C:v (jl- ---yjn—k)ev:—h x"(R-p- l'=_6.—k. k=_0._’l-

The process is in state (iy,..., ix; X3 ..ey Xp3 J1s--v» Jo—p) if £ units with indices
(4 ..., i) have been staying in the source for times (x,,..., x,), respectively, while
the rest need service and their indices in order of arrival are (j,..... Ja—»)

For the distribution of x@X¢) consider the functions given below:

Q4 .. - 1 O=PV)=0; B(O)=Ju---, BaO)=Jn),
QM it P ‘(xl. ces X =PV =k; oy()=1iy ..., ayt)=1i,;

2 Ei(f)<xy ..., é:.(t)<xh3 Bi®O =1+« s Baeal®)=Jn—s)-

22. LCFS service. In this section we also introduce a stochastic process
@) xMO=0); al®)- .. o B (B Gagyn B BB .. .. Baoviol®)).
The only difference between ,5“)(1) and {")(t) is the order of service. In {")(t) unit

By(#) while in x(£) unit Ba_vs(f) is under service.
For the distribution of x(¢) let us introduce the functions:

Q... O=PMO=05 BO=Ju .. BO)=])

Q‘lz) Lidyesens A x‘;t)“P(V(t)=k; a(O)=iyy .o, ayl)=1i,;

(4) EL(H)<xyy o vny §4‘(1)<xﬁ Bi®)=J1s s Baerlt)=Jjuep)-

23. RS service. Under this discipline if a new unit arrives to the service faci-
lity the service is immediately interrupted and the server starts serving a randomly
selected unit (of course, the earlier one can be selected, too).
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Let us introduce the process

(5) XO)=(V(); @yf)..-s aunrs Saymn -« -r Saypn (8)-
Define the distribution of x*(¢) by functions:
(6) Q(t)=P(\(£)=0),

QY ,-(xu---v X )=PVO=k; al)=iy, ..., at)=lp; §(O)<xp.... § ()<xy)

24. General treatment. Let &, be defined by 1/A;, = [& xdF{x). Then we
have :

Theorem 1. /f O<l/A,<oo, i=1,..., n, then the processes (1), (3), (5) possess
a unique limiting (stationary) ergodic dtstrzbutton which is independent of the ini-
tial conditions, namely

o Q. y, =lim QP ., (O
Q. gy e =M QD G i 3
®) Q... =limQP @
Qi fp ety Koo X0)= lim Q"’...‘. it (Kieees Xas 05
® QY= lim Q).
Q(:f.).....'k(xv---' X.)—hm QP (kueens Xas ),

respectively.

Proof. Notice that the processes belong to the class of piecewise-linear Markov
processes subject to discontinuous changes treated in Gnedenko-Kovalenko [6]
in details. Our statement follows from a theorem on p. 211 of this monograph.

Furthermore we have the following result.

Theorem 2. If £>max (xl... Xx,) then the distributions (2), (4), (6) possess
k-dimensional  densities q()) G endy s X B .. I RYRUIN C

'k

,(xl..... X, t), respectively, independently of the initial con-

ditions.
Proof. Defining p by p=max(pg ..., Hp—y) based on the treatment found in
Sevastyanov [12] we get

Pv(t)=k; aft)=i; x,s& (O<x,+A8, s=Lk; B(t)=j, I=T,n—k)
t—x

—— L]
SPMt)=k; aft)=i,; x,=§ ()<x,+4, 3==1-k)su‘,£l‘ ‘__I_‘ (1—F,,(t— u,)) du,
5 s
l'+A‘
=pt n 'f (1 =F, (y)dy,spt 1 =F(x)] ... [1=F, (x2)] . Ay . Ay .. Aw k=1,....m,

from which the statement follows.
Corollary 1. The steady-state distributions (7), (8). (9) po:se:s " densities

O’: ..... g Jyo e e Jur (Xp - o0 Xa) QS’ R Y XS P (x1,. .., X3), and dr,"" (%4

<y Xy), respectively.
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Proof. If we take the ergodic functions (7), (8), (9) as initial distributions, then
these distributions remain unchanged at any time £ By choosing #>max(x,..., x,),
Theorem 2 provides the existence of the corresponding densities, (xy,..., x,)€R%

k=1,..., n.
In order to formulate the next theorem, introduce some further notation, namely
)
2R £y i aneens (x1, ..., x,)
e _ k71 n—k .
A0 g iyisgy (e X (=F G O=F G
@ (%1000 %)
e _ LR SEARERE jn—k [ad .
(11) @ dyideniss J g Xa) (=F Gl T=F, Gr
. qff) . ,k(xl ..... x,)
) —
(12) g Ky Xa) I ACY RN NENE

which are the so-called normed density functions, 2=1,..., n. Then we have:

Theorem 3. The normed density functions (10), (11), (12) satisfy the follow
ing integro-differential equations (13), (15), (17) with boundary conditions (14), (16)
(18), respectively. For FCFS discipline :

9 9T 00
(13) ae T +‘,x.] "5:3----'.:/1 _____ /,._.(x" ceey X)
— 1)* .. - 1)* , , ,
ERLC R fpidvooe ’n_n(xl' seer Xa) +£ qs, ----- T AUPLLI i ideeondy )y (xps
vy y" ey X;ﬁF/._‘(y)'
(14) q(l:-). cen kgt /u—h(xl’ ey Xp—p Ov Xidgy o v oy x‘)
:=Ilk—-1‘]$:!‘_ Y P TE R Y XY TRy M (Xps ooy Xpmgy Xpg o oo s Xa)
fofl: ,...,k. k=l’...,n'
W@y = W OMFL (D)
For LCFS discipline :
d a.*
(15) [a—;‘-f-.--+;k—.] 45?...,:‘;/‘ ..... /n__‘(xl...., X
= -, :,"...,1‘;/,....,/»_.(&.....x,)
i (2). : 4 L] " ‘e ‘
+J q,l' Y MIRIIEY 030y voes S at 5y seer ¥ . x)dF;,_ (y),
(16) qsf.).....l.;/‘ ..... /»_‘(xlu-.-. X,_l. 0. x‘+|..... x‘)
=M1 4,‘:".....1‘_.. Loy ror iy d gy (xy, - y Ximy Xpgpr - or Xa)h

for l=1,..., k& k=1,...,n,
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1oQ o) = f sy WD)

For RS discipline :

9 0 1% 40 — . g®*
a7 [dx,+"'+3?;] qf-‘?,._,lk(xn---v XO=—Mqs). .., i (X3 -+ X)
X z (.a'). x" ol | ,' ’ x')dFA y)'
1.4:"'_.."*([11,‘ .......... i ( 1 y k
q(i’" ey "0 Xy Xp)=Hp/n—R+1
i k
% l]‘,’?‘. B 'il_l. 1l+l ..... ik(xl’ eeey Xi—1» Xigprovooe .X.);

forl=1,..., k k=1,...,n

(18) N3 [ g®

Ro QS “,E:J g (Y)AFAY)-
The symbol | |* will be explained later while (iy,. .., J,_s - -+ 1i,) denotes the lexico-
graphical order of indices (iy ..., iy ja) Gnd (X5, ..w ¥'s.... X,) indicates the
corresponding times.

Proof. Since the processes (1), (3), (5) are Markovian, their densities must sa-
tisfy the Chapman-Kolmogorov equations. A derivation is based on the examination of
the sample paths of the processes during an infinitesimal interval of width h. The fol-
lowing relations hold:

(19) qf‘:.)....i.;/l ..... /u_k(xl"'h""' x,+h)=q$‘l?“_‘,.:,r._‘

& l—F,‘(x‘+h) & I—F,‘(xl.,.h)

X(1—peh) ‘l;‘l T=F, (x) + E‘ T=F, (%)

(Xg0 e+ o0 Xa)
&

In—

F/'_.(y""')—F/ (¥)

= o) - . , n—k
X .!; q(il ----- {_. ..... AT MR A [CHPPREE ATRPRIEN 1-F,_» dy+o(h),
l')..”‘ Seeenns J (Xl+h,o-.. X,._.l-i-h, 0. xl+l+h,.--. x.+h)h
1 IR} n—k
="h—lhq$:.).. R PERTT TR fpidplyeees In_‘(x” cees Ximp KXo oo Xa)
R l—Fl‘(x,+h)
(20) X M —ZF (x)+d")-
Sl l‘ s
sl
Q(o'?/, ..... /.=Qg;)/‘...../.(l—"v")
- F, (y+h)—FI [€9)
(1 2 ——YL—
+ Jq/.;/‘ ..... /._lo’)'_' _PI.U dy+dk)-

Similarly,

q’ﬂ‘ W /h.(xl"'h--"' xr*")-ﬂ:?....: 3 i ..../H(xl'v“'- xh)

1 LR )
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* I-—-F'l(xl+h) & l—F‘.l(xl+Il)

21 - — 4
(21) X (1—pph) n 1=F, (%) n =F, (%)
- F, (y+h)-F; (y)
@ . ’ N In—n In—r
X 6[ qil' ..... j;__* ..... i;;/, ..... VR (xl' e Ve X) l—-Fl._.(y) dy + O(h)-
98 tyiens, Gt xR O Xt b xR
=Hp—1 hqf:.) o il—l' ’l+| _____ ik AT jn—k' il (xl. veey Xy Xiglr ooy X.)
(22) 2 R
I
I ——— + ’
x i=F, %) o(k)
s=i
) \ - F; (y+h)—F "'(y)d
Q‘U);/l ..... /na%;)/l....../n(l_poﬂ)"" { q(j";/l_,_,;/n_.,(” I-FI,,(;_ 'y + olh).
Finally,
2 l-Fl (x,+h)
@3) g0tk 0t D=0 (e x) (= ) T
TEEERIA i dy L=l iy %
o 1=F, (x+h) -
N 1=re I 2 I € 2P
* puc Sl SN ) Meyeenndy Jq'l """ Sonees ,.(x, Y
Fly+h)—F(y)

ooy x;) Wdy"f'o(h)'

qtf_’ . '1‘ (x1+k, ey x,_1+h' 0- xl+]+h, ey x.+h»,
u.—'lh )
= Th=k+T flﬁ’ ..... T TR iy (Xp v v os Xmps Xpgry o+, Xy)

p 1 =F (x,+m "
+
(24) X Ll| “—FL_TI— e o(h),
sl

n Fi(y+h)=FLy)
Q= QN1 ko) + T [ g LR dy otk

Hence the derivation of the equations (13), (15), (17) and of the boundary conditions
(14), (16), (18) is quite simple. Dividing the left-hand side of eq. (19)—(24) by factor
IM[1 —F,(x,+ &)), taking the limits as &—O0 and taking into account the definition of
normed density functions, we get the desired result.

In the left-hand side of (13), (15), (17), used for the notation of the limit in the
right-hand side, the usual notation for partial differential quotients has been applied.
Strictly considering, this is not allowed since the existence of the individual partial
differential quotient is not assured. This is why the operator is noted by [ |*. Actually
this is a (1, 1,..., 1)€R* directional derivative. (See Cohen [3, p. 2g2) .

Let Q;:]”_. Gyidye ooty Qﬁi’{_,__,.: PRNVER denote the steady-state probabilities

that units with indices (4,,..., {,) are in the source and order of arrival of the rest
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to the service facility is (ji,..., j.—s), respectively. Furthermore, denote by Q(l.:) g

Q‘.” the steady-state probabilities that units with indices (i, . .., i,) are staying in the
source, 4 units are in the source, (i, ..., i) €CF £=0,1,...,n,s=1, 2, 3, respective-

ly. Finally, let Q...., i» Q, denote the steady-state probabilities that units with
indices (,, ..., iy) are staying in the source, £ units are in the source irrespective of
the service discipline, respectively.

In the sequel we solve egs. (13), (15), (17) subject to boundary conditions (14),
(16), (18) to determine the steady-state distribution

@), k=0, 1,..., n, s=1, 2, 3.

Theorem 4. If 0<l/k;<oo, i=1,...., n, then
(25) 0% = Qu=(n—k)! S,/ z"o (n—j)! Sh
Jj=
1
where S,=1, S§ = Hy... Hj— z —j=1,...,mk=0,1,...,n,5=1,2,3.
0 = Mo .- Wy e )(c;',’-il---",/ J
Proof. If we set Qg?, . /"=C°' q(;:?"_”,k:jl _____ ,._k(xl,..., Xp)=Cp 5=1, 2

_____ i (X ovy Xp)=(n—Fk)! Cp,

then they satisfy the equations (13), (15), (17) with boundary conditions (14), (16), (18).
respectively. Moreover, it is easy to see that cy=Mo...01pCop k=1,..., n. By the
help of this relation it can be readily verified that

Ho---H
(s) b Dl .~ =
Q'l ,,,,, I.;j‘ ,,,,, 7 x“l“‘li‘ CO! S 1‘ 2)
and
_ Moy _
Q({:,)...,/‘ =Qip...es W= Aot 11. (r—k)! Gy 5=1, 2, 3.
So we obtain that
A(I)=A = z i = n—k ! S -Cv
==, T Qg (=R 51y

where C, can be determined by the norming condition £ Q,=1, s=1,3.
It is worth noting that this distribution is insensitive to the form of the distribu-
tion functions governing the system, depending only on their means.
In particular, if
r , Osk<n—r,
"= {n-k. n—rsksn—1, reN, r<n,
then
(rny, Osk<n—r,

oo Mok Ll et sk

Defining Ax by Ax= X : we obtain
B ARy S rLR
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_(n—k)! "uk. 1 /["_{'1 (n—j)! r/u/A 2" (n—j)t rt Pk rt oA,
=T Lk : " j (n
H i ix Jj=0 rir M

for 0=k<n—r,

__(n~l;);r!r""u" r! 1

T (n—k)! lil....li‘

n—r—1 J - —7 R
(n—j)! ru n (n—=j)r1 A"y rl _
y aoptrw o, K i 1
j=0 riAt" s+ j=§'_, r A" (n—j)! Al

ST j=n—r LA (n—J)

X[

for n—r=k<n.

After elementary calculations it can be seen that the processes (1), (3), (5) are*
stochastically equivalent to the process treated by Sztrik [14].

Before determining the steady-state characteristics of the system we need one
additional theorem. In order to formulate it we introduce some further notation. Let
Q® denote the stationary probability that unit / is in the source, i=1,..., n. It is
clear that the process

YA =M8); ad)...., avld)
is semi-Markovian with state space
U .. i)+{0)
k

Let A, be the event that unit / is in the source and ZH‘(t) its characteristic func-

tion, i. e. L i yReH
1 i
Zn i(t)—{ 0 otherwise.
Then we have:
Theorem 5.
. 1 7 1,
lim 7 | Zn (0t = g =Q%

where T, denotes the mean sojourn time of unit i at the service facility.
Proof. The statement is a special case of a theorem concerning the expected

sojourn time for semi-Markov processes, sec Tomk 6 [16, p. 297].
Sometimes we need the long-run fraction of time the unit / spends in the source.
This happens e. g. in the “machine interference model.” In that case for the utilization

of machine / we have
—Q= %
4=Q N R YRR tecy
3. Performance measures. (i) Utilization. As usual, using renewal-theoretic argu-
ments for the server utilization, we have u,=1—Q,. In particular, if F,(x)=1—exp(—Ax),
i=1,..., n, then the following relation is also valid
1—Q,=Ma.[Mn*+Mad|,

where n*=min(n, ..., n,), random variable n, denotes the source-time of unit #*
i=1,..., n, and M0 the average busy period of the server, respectively. Thus the
expected length of the busy period is given by
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(ii) Mean sojourn times. By the virtue of Theorem 5 we obtain Q®¥W=(1
+3,T)~". Consequently, the average sojourn time of unit / at the service facility is

Ti=(1—Q®)1,Q®), for i=1,..., n.

Since !y (1—Q®W)=n, where n denotes the mean number of units staying at the ser-
vice facility, by reordering and adding we have

n -
T 2,T,Q9 =n.
i=1

This is Little’s formula for the finite-source alM/ 1 queue. In particular, if r,=1,
viz. py=p, £=0, 1,..., n—1 for the mean waiting time of unit / we obtain W;=T7,—1/p.

4, Erlang’s loss formulas. Let us consider an M)G/n/n loss system in which the
probability that a customer calls for service in the time interval (t, t+h), provided
that at time # k& requests are under service, is p,2+o(k). An arriving unit randomly
selects among the idle servers and it is lost if all servers are busy. The servers are
independent and stochastically different; the i-th server is characterized by 1/A; mean
service time; i=1,..., n. Notice that there is an analogy between the 2.3 case and
this problem. Therefore for the steady-state probability that & servers are busy we
obtain (25), which can also be written as

~ n—R)! o
Qk=(*;;‘)‘ S Qo-
This coincides with the result derived by Sahbazov [10}
Consequently, the probability of refusal can be given by

~ Moo H, 60
Q.= M...%, al’

The busy periods can now be considered for individual servers or for the system
as a whole. Considering the system as a whole first, it will be empty only when there
are no customers in the system, and will be busy otherwise. The average length of

busy period for the system can be derived by Mo=(1—0Q,) (1Qo)", since the system
utilization is ~
U=1—Qq=MOJ[1/po+ M),

When individual servers are considered, they will alternate between busy and idle
periods. Applying Theorem 5 for the utilization of server i, which is the long-run
fraction of time the i-th server is busy, we have

. 1
U,*’—‘Qm": z z Q’\""" 0 =

Bl 46 Uy oo ey ipecy L W
where /, denotes the expected idle period length of server i. Hence
Ii=1-Q)(AQM)~', for i=1,..., n
Clearly the total utilization is U,=X U, which is the mean number of busy servers.
orollary 2. /f Ay= ... =M\, =\ then (25) implies that

Ho---M =
Q===
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which can be found in (8], p. 152.
Corollary 3. If py= ... =p, =W then (25) can be written as

~ —k)! ~
Q=22 1t AR
which is due to Fakinos [4].

Corollary 4 [f A= ... =k, =Xk and py= ... =y, =p then (25) coincides
with the result of Sevastyanov [12], e. g.

O ikt
B 5 Yl
j=0

5. Optimization problem. In this section the service times in an M/G/n/n sys-
tem are supposed to be exponentially distributed random variables. We assume that
each customer when he arrives goes to the available server with lowest index and
remains there until his service is completed. If n=2 the stationary state equations
are as follows:

Qokto= Q1A+ Qaha, Qa(Xo+1y) = Qy.2h,

Qi1+ 1) =1oQo+ Q1220 QoM +2Ag)= Qg+ Qs
It can be readily verified that the solution to this system is

_do  Mthatiy =He 1
Q= urtry @ Q= mrr O
Agpy  MiMo 1
Qua= M M 2mAMk, Qo
where Q, can be obtained with the aid of the norming condition

Qo+ QA+ Q+Qua=1.

S (M) () o
Q= Zmnih, A Qo

a (A radugiy ’Q
LI WL IR W W R

Clearly, this distribution differs from (25).
In practical applications the probability of loss is of great importance, therefore
we have:

Theorem 6. If n=2 and po= ... =pp_ =W then b. is minimal when

So

M>Ag> ... DA,

Proof. Notice that this model corresponds to an exponential finite-source preemp-
tive priority queueing system with homogeneous service, in which the i-th customer
has priority over customers of index higher than i. Since

Uy=1-Q,= MIMI+1/ T X]7,

our statement follows from Theorem 3 in Asztalos [1].
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