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POLYNOMIAL APPROXIMATION OF HYPER-ANALYTIC FUNCTIONS
DIMCHO K. STANKOV

A proposition of the type of the classical Runge theorem is proved for hyper-analytic functions.
For an arbitrary open subset of the big plane it is shown that every hyper-analytic function is genera-
lized-analytic.

The representation of analytic functions in an open disc as a sum of power se-
ries is a fundamental fact in the classical theory. In the case of more general regions
we can use the Runge’s theorem: if K is a compact polynomially convex set and f is
analytic in an open set U>K, then f is uniformly approximable on K with polynomi-
als. Analogous proposition is true for analytic functions of several complex variables
(Oka-Well’s theorem [1]), too.

The possibility for a uniformly (polynomial or rational) approximation is connected
with the existence of a holomorfic functional calculus for Banach algebras and the in-
troduction of an analytic structure in their spectra [1]. The consideration of these prob-
lems and their generalizations can us take out of the class of classical analytic func-
tions. For example, one generalization [2] of Gleason’s theorem [3] introduces new
structure in the spectrum, namely, a generalized-analytic structure.

Let I' be a subgroup of the additive group of real numbers R with discrete to-
pology and G be the compact group of all characters on I'. Each continuous character
on G has the form y,(g)=g(p), g¢ G for some p¢T. The closure A; of finite linear
combinations of the characters y,, p -0, with complex coefficients is a uniform alge-
bra on G. The elements A, are called generalized-analytic functions in R. Arens-
A.Singer scnse [4]. Each character 1, p € [, =T (1 [0, <) is continuously extendable
on the generalized (big) plane C;= [0, <) G/{0}XG, equipped with factor-topology,
as follows:

ip()t- g) =M1, for 2>0, p+0;
L0 for pF0, where »={0}xG and %,- 1.

The finite linear combinations with complex coefficients of the functions ){,, per,
are called generalized polynomials. Notice that if I'=Z, then G=S', the big plane C;
coincides with the complex plane C, the open generalized disc A;=Agy(1)=(0, 1)
G0} < G with radius 1 coincides with the open disc A={z¢ C/ z|<1} and the alge-
bra A, is the classical algebra A(S").

We consider the case when the group I' coincides with the additive group of ra-
tional numbers Q.

Definition 1. The function f in the open set Uc=C, is said to be hyper-ana-
lytic in U if it is uniformly ~approximable in { with functions of the type hoYim
where n¢ Z*=2Z()(0, «)and A is analytic in ¥, (U)=C.

The hyper-analytic functions are defined by T. V. Tonev [5]. It is proved that
the algebra of the bounded hyper-analytic functions in A, has no corona [5).
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In this paper we consider hyper-analytic functions in an arbitrary open set of the
big plane Cg.

The main result is the following

Theorem 1. Let U be an open set in the generalized plane C; and K be a
compact polynomially convex subset of U.Then for every hyper-analytic function
f in U there exists a sequence of generalized polynomials converging uniformly to

f on K.

In the proof we shall use the classical Runge’s theorem. First we need some de-
finitions and lemmas.

Definition 2. A subset A of C; is a polynomial polyhedron if there exist
generalized polynomials Py, Py, ..., Py such that A={(, g)€Cg/A=1 and |PA%, g)|
=1, j=1, 2,..., k}.

Evidently A is }a compact set in Cg.

Lemma 1. If B is a polynomial polyhedron in the complex plane C, then

-Z;‘(B) is a polynomial polyhedron in the big plane C; for every p¢ Q*.
Proof. Let B={z€C/|z|<1 and |P{(2)|<1, j=1, 2,..., k} where P; is a poly-
nomial of single complex variable.
We shall see that x;‘(B)={(k, Q/A=1 and |(Pjo Z,) n 9=l j=1,2,...,k}.
If (A, g):f;‘(z); z ¢ B we have:

| %% g)|=l2l i. e AP=[2[<1 or A<l
(Prot,) (M @|=IPAD)| =L j=1 2., &

On the other side, let (A, @) €{(r, @/2<1 and |(P;o x,) (A, g)|<1,j=1,2,...,k}
and z=7,(, g). Then -

el=w=1 and [PA2)|=| (Pre ) (b @) <1, j=12,..., k.

Hence z ¢ B and (A, g)(i;‘(B).

As we shall see later, it is not always true that the image of a polynomial poly-
hedron in C; by x, is a polynomial polyhedron in C. But for a suitable p¢Q* it
holds.

Lemma 2. If A is a polynomial polyhedron in Cg then there exists a me¢Z*

such that f;,,,(A) is a polynomial polyhedron in C.
Proof. Let A={(A g)éco’)vngl and |PAA, g)|<1, j=1, 2,..., k} be a polyno-
mial polyhedron in Cq If Py =§0 al . %oj, s and p(j,s)=1(j,)W/B () ji=12 ... k;

k n.

o
s=0, 1,..., n;, we denote m = _l'IlnoB(j. s)€ Z+. Every generalized polynomial can
J=1s8=
be represented in the form:
o 50 Tae S vy i
P/ =X a‘J/) cAplisy = N a&”'(ll/m)“/'”=P} ° Xim»
§=0 §=()

where k(j, s)=m.p(j, s) and P/[2) = zlo‘l‘,”-l“’"’ is a polynomial of a single com-

plex variable.
We shall prove that Xym(A)={z € C/|z|<1 and |P)(2)|s1, j=1, 2...., k}.
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If 2€%m(A), then z=%im(r, g) where A=1, | Pj(h, @) <1 for j=1,2..., k&
and :

2= T @) =M1 P2 = (P o Tum) (O @)= PO g)|=1.

On the contrary, let z belongs to the polynomial polyhedron {z¢C/|z/=1 and
iPlf(z);;;l, j=1,2,..., k} and (), g) is an arbitrary point of C,; for which yuym(X, g)
=2z. Then AMm=|z <1 i e. A=1

Pk, @) = |(Pjoxum) (h @)|=|Pf2)|=1.

We obtain that (., g)¢ A.

It is easy to see that Lemma 2 holds true if instead of the chosen m we take
some multiple of m. The number m can be also the least common multiple of the
numbers B(j, s), j=1, 2,...,» k; §=0,..., n; or some its multiple.

Definition 3. Let K be a bounded subset in C;. We define the polynomially
convex hull K or K by:

K={ g €Cs!|P(, 8 gm,?xIP[ for every generalized polynomial P}. K is said

to be polynomially convex if K=K.
Lemma 3. Fvery polynomial polyhedron in Cg; is a compact polynomially con-
vex set.
Proof. Let A={(a, g)¢Cq|r=1 and |Pyk, g)|=1, j=1.2.... k} be a polyno-
mial polyhedron in C, For (hy, 2,)€ A it holds | P(k,, &) =sup P(k, g)| for every
A

generalized polynomial. Then | Pfk, g&)|=sup|Pj=1forj=1,2,..., k and Ay =[x, (ke
A
g)|=sup iy [=suph=1i. e (ko &)€A.

Notice that Lemma 1 is true for polynomially convex setsin C. Let B be a poly-
nomially convex set in Cand p¢ Q. We denote A=y, '(B). If (A, &) € ANA, then
2o= Lplhor 80) ¢ B and for every polynomial P, of single complex variable we obtain:
| Pi(zo) | = (Py 2 %p) (hoy &)|=8upsIPyox,|ssupp| Pyl i€ 206 BNB.

Lemma 4. Let K be a compact polynomially convex subset of A; and U be an
open set containing K. Then there exists a polynomial polyhedron A such that
K—int Ac AcU.

B Proof. Since K is polynomially convex and K< U then for every point z=(}, g)
€A, U we can find a generalized polynomial Q, such that 1Q.(2)| >max, | Q.|

1) if maxy|Q,|=0 we denote P,=¢,.Q,, where &>0 and ¢,.Q,(2)|>1. For the
generalized polynomial P, it holds | P(2)/>1 and max,|P,|~¢,.maxy| Q.|=0<1.

2) if max, Q,|>0 we denote P,=(g5.Q,)/maxy| Q, , where 0<g,<1 and &,.|Q.(2)
~max |Q,|. For the generalized polynomial P, we have

K

| P(2)=¢€,.]Q2) !/m:_lx |Q,/>1 and
| P,|= 59-|Q:'/"}"|Q:[<30:‘/"A‘,ax Q. <1 on K.

Since A\ is a compact set and the generalized polynomials are continuous,
there exist points z,, 2y, ..., 2, their neighbourhoods V., V., ..., V., and generalized
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polynomials P, P-., ..., P such that UleiDA—a\U,YPzi|>l on V. and max P: |<1for

Jj=
Jj=1,2,..., k
We consider the polynomial polyhedron:

A={(, £)€Cs|hs1 and [P, (h, @ |=1, j=1,2,.... k}.

If 2=(, ) € K, then A<1 and | P{2)|=maxy ‘P,j[<1. Hence z¢int A and we obtain
Koint A If z=(h, g) € A,\U. then this point belongs to V., for some jand ’;P,’_()., 9)|

>1,i. e 2¢ A 1f 2¢ U and 2 ¢ A it is clear that z¢ A. Hence AcU.

Example. In [6] it is proved that the compact set K={(1, ¢;)/s € [0, 2x]} is poly-
nomially convex in C, By Lemma 4 there exists a polynomial polyhedron A in C;
which contains X and =¢ A. Then y,(A)is a compact in C containing the unit circle
%(K). Since «¢ A, then 0 ¢ %,(A). Hence C\1,(4) is not connected and therefore
x,(:l) ianot polynomially convex in C. Then %1 (A) is not a polynomial polyhed-
ron in

Notice that in the same way as in [6] it can be proved the polynomial convexity

in C, of every compact of the type {(1, e,)/s € [a, B]}-

Let [a, B] be a finite closed interval in R, g € G and ,>0 be arbitrary. The set
D={(ho & -€,)'s €[a, B]} is said to be an arc in C;. Every arc is a polynomially con-
vex set in Gg. In fact, the mapt : Cg— Cg defined as follows: (A, ©)=(A2e g.£5") is 2
homeomorphism and ©(D) is the compact set K={(1, &)/s € [a, B]} which is polynomi-
ally convex. If (1, g,) ¢ D, then (A, 8))=(A/20, g-87") ¢ K and there exists a gene-
ralized polynomial P =Xa; Yp( s for which |P'(h/he & -&5")/> maxy|P’|. For the ge-
neralized polynomial P(, g) = (P’ o 1) (b &) = P'(Mro &- 87" = Ty0570. g7 (p(J))
Lo ©)=EBXpi(h @) where B;=a;. k.5 '(p())) we obtain:

[P(hy, &)= P (Mo & go-')|>n;ax|P’!=n;3x |P|.

Hence (A,, )¢ D and D is polynomially convex in Cg.
Lemma 5. If f is a hyper-analytic fanction in the open set U=Cgq, then there

exists a sequence {h,,k ° )(1,,.,(};‘;l which uniformly approximates f on U such that:
1) ha, is analytic in Yyn(U), ny € Z* for every k.
2) 1ny=1/(n,.Bms)i Bms € Z* for every m>s.
P rwoof. Since f is a hyper-analytic function in U then there exists a sequence

{hn; ° Xy’ )5y which uniformly approximates f in U and h'; is analytic in 'i,m;(U),
. k ’ .
n, € Z*+ for every k. We denote n,=n; and ng="n, .ny>n,. Then the function h,,,=h,;

)

o @g, where @,(z) 2" is analytic in Xus(U) and in U we have: h,z' ° ~X,,,,5=h,.2' o (Aym)™

"""n.; o Qo Yim= hn o Xim. If already we have a n, € Z% h,.k—analytic in 'i.,,,k( U)

such [_hat n, is obtained from n,, by multiplication with a positive integer and

Ry o Xy =ha, o i"’u then we do the following step as above. Denote myy=m,.n,
& k

>n, the function k.  =h, [° Pt is analytic in xmﬂl(U), where ¢4,(2) = 2" and
k+
> . X o g et . o pot
b S h"nal °x et h";n ° (myy ) k—h"nl ° Pat1 © Xtimyyy Ragyy © Kiimgyy *
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In this way we obtain the sequence {Ax, o f,,,,k }i., which satisfies the conditions 1)
and 2). Since k,,_ o i,,,,k:h”' ° in;n' in U for every &, then the sequence is uniformly
k k

convergent to f in U.

Let ¢ be an arbitrary positive integer. It is easy to see from the proof of Lemma 5
that we can choose the indices n,<ny<--- to be multiple of £. .

Proof of Theorem 1. Let K be compact polynomially convex subset of Ag,.
By Lemma 4 there exists a polynomial polyhedron A in C; such K—=A=U. Applying

now Lemma 2 we can find a positive integer # such that fl,,(A) is a polynomial po-
lyhedron in C,

Let f be a hyper-analytic function in U. Then we choose the sequence {h”k° i“"k e
as in Lemma 5. We may assume that n, is multiple to £ for every k£ For an arbi-
trary positive ¢ there exists a n, such that max,|f(X, &) (%, ° T n,) (A )l <e/2.

In accordance with the notice to Lemma 2 the set )a,,,," (A) is a oolynomial
polyhedron in C. For the function #4,, , which is analytic in the neighbourhood
imkl,(U) of the compact polynomially convex set i“,,,,_(A), we may apply the classicall
Runge’s theorem. Hence there exists a polynomial P such that:

max | hn, (2)P(2) |<e/2.

Tn 2

For the function f and the generalized polynomial P;=P o {”"k« we obtain that |f(%, @)
_pa()" g)l‘—:’f()" g)"'(h"ko © x‘/’lk") (X' g): + l(h"k.o xl.’ﬂk") ()"'g)'(P o X! "kn) (k' g)'
<¢ for every (A, g) € A. Hence f is uniformly approximable with generalized polyno-
mials on A. Then this is true on KA, too.

Let K be an arbitrary compact polynomially convex set in Ci, We consider a
homeomorphism 1 : C; — C,; defined as: (X, g)=(r/A, &), where A >max{}r/(2, )¢ K}.
It U=tU), K, -dK)=Ag F=for ! and {H, =hn, o Oy Where @y (2)= Al 2 it
is easy to see that /{, is analytic in xT,,.k (U,) for every k and F is uniformly appro-

ximable in U, by the sequence {/,, o xu,/,.k};":,. The compact set K, is polynomially
convex in the big plane C, (see the example). For the hyper-analytic function F in U,
we apply the proved above. In the opposite direction we obtain that f is uniformly
approximable with generalized polynomials on K.

Definition 4. The function f in the open set U=Cg is said to be generaliz-
ed-analytic in U if itis locally a uniform limit of generalized polynomials.

Evidently every hyper-analytic function in the big disc A, is generalized-analytic
in A, For an arbitrary open set this cannot be seen directly. In fact, let f be a hy-
per-analytic function in U, (A, g) is an arbitrary point in / and the sequence

{hn, o ;,,,,k Y., is uniformly convergent to fin U. Le} k be fixed. In the open set V,
= il/,k(U) we can find a neighbourhood of the point 2§ ——;xu.h(k.,. &) where ,, is uniformly ap-
proximable with polynomials. Then the function %, © %y, is uniformly approximable with
generalized polynomials in the open set U =fw‘,~ (V)N U. The point (A, g,) belongs
to U, for every k but it is not clear is the set {‘1 U, a neighbourhood of (%, &)

or not.
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Theorem 2. If U is an open set in Cg;, then every hyper-analytic function in
U is generalized-analytic in U.

Proof. Since U= U5, (Ag(/)NU) it is sufficient to prove the theorem for an
open bounded set. On the other side, every open bounded set can be homeomorphi-
cally reflected onto an open subset of A, By means of this homeomorphism to a ge-
neralized polynomial corresponds a generalized polynomial and to a hyper-analytic or
generalized-analytic function — the same type of function. Hence it is sufficient to
consider the case when U is an open subset, which is containing in Ag.

Let f be a hyper-analytic function in U and (ko &) is an arbitrary point in U.
Then there exists an arc DU and (A, g)¢€D. Since D is a polynomially convex set
in C,, then by Lemma 4 we can find a polynomial polyhedron A such that D—int A
—~Ac-U. By Lemma 3 A is a compact polynomially convex set and applying Theorem 1
we obtain that f is uniformly approximable on A with generalized polynomials. Hence
f is uniformly approximable with generalized polynomials in the open set V=intA4,
which contains the point (ke &) It means that f is a generalized-analytic function in

U. The theorem is proved.
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