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GENERALIZED B-MANIFOLDS WITH BOUNDED
HOLOMORPHIC 4-CURVATURE

MARIA K. VASSILEVA

Lately, pseudo-Riemannian manifolds with a complex structure ana a bounded holomorphic sectional
curvature are examining. In this paper we study some properties of the generalized B-manifolds with
a bounded holomorphic 4-curvature. We prove, that in such manifolds the holomorphic sectional curva-
ture vanishes. Some relations among sectional curvatures in arbitrary linear non-degenerate holomorphic
4-dimensional subspace in every tangent space are obtained.

et M be a pseudo-Riemannian manifold with a metric tensor field g and an al-

most complex structure J. If

gUux, IV)=—g(X, Y), X YeaIM,
then M is called [1] generalised B-manifold. Let us denote by GB the class of gene-
ralized B-manifolds. A subspace E™ in T,M is said to be non-degenerate holomorphic
one, if JE™=FE™ and the dimension of the restriction of g on E” is m. Evidently, E™
is even-dimensional. In [1], it is proved, that £™ admits orthonormal J-base:

(X1s Xao v ooy Xgo JX1 IXgy oo, IXg), 8(Xi X))=8y &Xs Jx;)=0.

For example, every non-degenerate holomorphic 2-plane £? admits such a base

{x, Jx}. (&x, x)=1, g(x, Jx)=0),

as well as every linear non-degenerate holomorphic 4-dimensional subspace E* admits
a base

(x, v, Jx, Jy), (gx, x)=g(y, y)=1, gx, v)=gx, Jy)=0).

Let ~ be the Levi — Civita connection generated by g and R be the curvature
tensor field of 7, i.e

[«X, Y)Z:‘- ’T’vaZ—-vavxZ-~ V_ﬂ[x_)'] /\’. X' Y, ZE fM.
We shall also denote by R the curvature tensor field of type (0, 4) such that
RX, Y, Z, U)=gR(X, Y)Z, U).

Let {x, y} be a base of a non-degenerated section E? in T,M. The value
____ Rxy.y®
(1) K(x, y)= glx, x)g( v, v) -g4x. y)

is the sectional curvature of the E®.

In particular the holomorphic sectional curvature K(x, Jx)=H(x) of a non-dege-
nerate holomorphic section in 7,M, with an orthonormal J-base {x, Jx} is given by
the formula
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(2) H(x)= —R(x, Jx, Jx, x).
We denote, that the tensor R*, defined by
3) R*(x, v, z, 0)=R(x, ¥, Jz, Ju)

is a Riemannian tensor, so we can also calculate a sectional curvature with respect
to R* Let us denote this curvature by K*.
The value
R(x, Jx, Jy,
0 hx, Y= — e BN
Ve, )+ g (x JxngH(y, ¥)+gH(y. Jy)

is called [2] holomorphic bisectional curvature of the non-degenerate holomorphic sec-
tions with bases {x, Jx} and {y, Jy}, respectively.

Let M¢GB and pe M. The manifold M is said to be of pointwise constant holo-
morphic sectional curvature, if the holomorphic sectional curvatures of all non-dege-
nerate holomorphic sections in 7,M are the same. The manifold M is said to be with
constant holomorphic sectional curvature, if the holomorphic sectional curvature does
not depend on p.

Now, let £* be an arbitrary linear non-degenerate holomorphic subspace in M
and let {5, v, v, v} be an arbitrary base in E* Let vip=g(v, v,) be the Gram
matrix and V/;, be the opposite matrix. The value

i
(5) K(f:‘)_; ; b3 V)-tvut R(T'}.‘ Uy Vv -z;t)‘
Apv,t==1
is the holomorphic 4-curvature [3] of E*. Especially, if {x, y, Jx, Jy} is an orthonormal
J-base in L£*, then (5) implies

(6) K(EY = K(x, v)+K(x, Jx)+K(x, Jy)+K(y, Jx)+K(y, Jy)+K(Jx, Jy).

Theorem 1. Let MEGB, dimM 6, p¢ M and let E* be an arbitrary non-
degenerate holomorphic subspace in T,M. If there exists a constant c(p), such that

K(EY) o p),

then M is with zero holomorphic sectional curvature.

Proof. Let « be an arbitrary non-degenerate holomorphic section in 7,M and
let {x, Jx} be an orthonormal J-base in . There exists linear non-degenerate holo-
morphic 4-dimensional subspace £' with an orthonormal J-base {x, y, Jx, Jy} (1] 1t
is clear that E£* contains a. Then (6) is true for E* We state that for [¢{<1 the
vectors

xttly tix—y Jx—ty —tx—=Jy

J—e' e’ Ji—e’ 1o
form an orthonormal J-base in £4 too. Then according to (7) we have

cHtly  tix—y Jx—ty —tx—Jy

®) « Jioe' Jiee e o 1-e ) =elp)
Now, using (6) and (8), we obtain
(9) K(EY - 200K(x, y)+EKES) < o(p)(1—1),

where K(x, y) = K(x, y)+ K(x, Jy)+ Ky, Jx)+ KX, Jy).
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From (9) by continuity we get
K(EY)—K(x, ¥)=0,

for £= +1, which implies
(10) H(x)+H(¥)=0,
where H(x)=K(x, Jx) is the holomorphic sectional curvature of a.

Since dim M=6, then there exists a linear non-degenerate holomorphic subspace
E® in T,M, with an Jbase {x, v, 2, Jx, Jy, Jz}. Evidently E® contains E*. Thank’s to
(10), the following equalities
(1D H(z)+H(y)=0, H(z)+H(x)=0
are valid.

Using (10) and (11), we get

H(x)=0.

So the theorem is proved.

For brevity, every manifold satisfying the conditions in theorem 1 will be called
manifold with bounded holomorphic 4-curvature.

From (2) and theorem 1 we get immediatelly the following assertion.

Corollary 2. If M¢GB, dinM=6 and M is manifold with a bounded holo-
morphic 4-curvature then

(12) R(x, Jx, Jx, x)=0,

where x is a vector in an arbitrary non-degenerate holomorphic section.

Let M be manifold with bounded holomorphic 4-curvature, M¢GB, dim M=6.
If {x, y, Jx, Jy} is an orthonormal J-base in E*, then x+y is not null-vector and
consequently by corollary 2 implies

R(x+y, Jx+Jy, Jx+Jy, x+y)=0.
Now using (12), we find
(13)  2R(x, Jx, Jy, ¥)+2R(x, Jy, Jx, x)+R(x, Jy, Jy, x)+R(y, Jx, Jx, y)=0.
Applying Bianchi’s first identity in (13), we get
(13" AR(x, Jx, Jy, V)—2R(x, v, Jy, Jx)+R(x, Jy, Jy, x)+R(y, Jx, Jx, y)=0.

Now using (1), (3), (4) and (13’), we establish
Theorem 3. Let M¢GB, dimM—6 and let M be a manifold with a bounded
holomorphic 4-curvature. Then

4h(x, ¥)+2K*(x, y)+K(x, Jy)+K(y, Jx)=0.
Let M¢GB. Then M is in the subclass L of GB (2], if
(Ly) RUX, JY, JZ, JU)=R(X, Y, Z, U), X, VY, Z UcIM.
Theorem 4. Let M be a manifold with a bounded holo:n07hic 4-curvature

in Ly, It dimM=6 and {x, y, yx, Jy} is an orthonormal J-base of an arbitrary li-
near non-degenerate holomorphic subspace in T,M, then

(14) 2h(x, ¥)+K(x, Jy)+K*(x, y)=0.
Proof. From (13') and (Ly;) we have 2R(x, Jx, Jy, ¥)—R(x, y, Jy, Jx)+R(x,
Jy, Jy, x)=0. By virtue of the above relation, (1), (3) and (4) we get (14).
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