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ON ISOMETRY GROUP OF SOME PSEUDORIEMANNIAN MANIFOLD
HALINA FELINSKA

Let (M, g be an n-dimensional (n>2) pseudoriemannian manifold. We denote by
TM the tangent bundle of M. We will consider 7M as a pseudoriemannian manifold
with the metric g (a complete lift of g). It is known that the dimension of the iso-
metry group of TM is at most n(2n+1), (see [1], Th. 3.3, p. 238). In this paper we
give an exact dimension of the isometry group of (TM, g°) provided that (M, g) is a
riemannian manifold of constant curvature.

Let (M, g) be an n-dimensional (n=2) pseudoriemannian manifold, F{(M)— the
Lie algebra of vector fields on M, ;7 —a riemannian connection on M, and R—the
curvature tensor of 7.

Similarly as for riemannian manifolds ([1], p. 42) we can prove

Lemma 1. If LG is the Lie algebra of the isometry group G of M and F} (M)
is the Lie algebra of complete Killing wvector fields on M, then LG is isomorphic
to Fi(M).

Let TM be a manifold of the tangent bundle to (M, g).

We introduce on TM the metric g, which is a complete lift of g. It is known [2]
that, if a matrix of the metric tensor g in a local coordinate system (U, (x¥)) on M
iS Of the fol'm (g‘/)i,/=l.....m then

is a matrix of the tensor g¢ in the associated coordinate system (= (U), (x4, y7)

In the sequel, we will consider a linear connection 7* on pseudoriemannian ma
nifold (TM, g°), which is a complete lift of Levi-Civita connection ¥ on Mto TM,[2)
¢ is a Levi-Civita connection, too. Moreover, we will consider the isometry groups
or equivalently Killing vector fields. It is well known, non-zero Killing vector fields
do not exist on each pseudoriemannian manifold. It can be proved ([2]. p. 79) that
each Killing vector field on TM which preserves fibres is of the form X“+V”, where
X¢, Y® are complete and vertical lifts of Killing vector fields X and ¥ on M to the
tangent bundle TM, respectively.
We prove

Lemma 2. Let (M, g) be a riemannian manifold of the constant curvature
k+0 and A be a tensor field on M of the type (1,1). The condition a) R(A(Z), Y)W=0
for arbitrary Z, Y, W¢ F\(M), b) A=0, are equivalent.

Proof. In arbitrary coordinate system (U, x) on M the curvature tensor R sa-
tisfies the Identities R/, = k(g/48)— 8ia8)) AR}, =0.
Hence we get Aj(g,8—gnd;)=0. ({ontracting it with g* we get Al=0 for all
L1=1,...,n Now we are able to prove the following theorem:
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Theorem 3. If (Myg) is n-dimensional riemannian manifold of constant cur-
vature k%0, then the isometry group of pseudoriemannian manifold (TM, g°) is
n(n-+1)-parameter group.

Proof. Let (M, g) be n-dimensional riemannian manifold of constant curvature

k+0. Thus the dimension of the isometry group G of M is equal to m=2ln(n+l)

.

Lemma 1 implies that the Lie algebra LG of G is isomorphic to the Lie algebra F} (M)
of complete Killing vector fields on M. Let vector fields Xj,..., X, forms the basis
of R-algebra Fl,(M). Then, the vector fields X7,..., X%, Xf,..., X, are Relinearly
independent complete Killing vector fields on TM, [2]. Now, (by virtue of Th 12.16,

p. 79 [2)) it is sufficient to show that there exist no a non-zero (1,1) tensor field A
on M, which satisfies the identities

RIAZ), Y)W=ARZY), W)=RZ AY)W=R(Z Y)AW)=0

for arbitrary Z, ¥, W¢ F'(M). Lemma 2 implies that such A has to be equal to zero.

Corollary. Let (M, g) be n-dimensional riemannian manifold of constant cur-
vature k=0. Then the equation L.g°=0 on pseudoriemannian manifold (TM, g°) has
exactly n(n+1) R-linearly independent solutions.
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