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OPTIMAL CONTROL OF STOCHASTIC DISCRETE-TIME SYSTEMS
UNDER MARKOV DISTURBANCES DEPENDING ON CONTROL PARAMETERS

PHAM T. NHU

The paper deals with a stochastic maximum principle for discrete-time systems under Markov
disturbances depending on control parameters. For the case of controlled Markov chains the principle is
also discussed.

1. Introduction. Stochastic discrete-time systems under Markov disturbances de-
pending on control parameters were considered in [1]. The optimal control problem
for them includes as special cases the dynamic systems with jump Markov disturbances
(see [2, 3, 4]) and the controlled Markov chains (see [5, 6, 7]). In [1] we gave one
example to show the motivation for studying such optimization problems.

Note that the dependence of disturbances on control parameters arises in the
situation when the change of the system structure is influenced by acting of control
strategies. On the other hand, disturbances can be regarded, e. g, as reactions in eco-
nomic processes. Thus we come to a more complicated problem in economic dynamics:
finding an optimal strategy in the case when the disturbances are able to “recognize”
the control strategies and to change the probabilities of jumping to more or less ex-
pensive models to prevent attainment of gains accordingly.

For such systems we followed in [1] Bellman's dynamic programming approach.
It is therefore of general to establish Pontriagin’s maximum principle for them. In Sec-
tion 2 we formulate the optimization problem with non-anticipating control strategies
and then consider Pontryagin’s maximum principle. In Section 3 we discuss this prin-
ciple for the case of controlled Markov chains.

2. The stochastic maximum principle. Let (Q, #, P) be a basic probabilistic
space. We are given a family of transition probabilities depending on the parameter v:

P, v) pli, j. v), veU=R™ i jel={1,2,..., s}
0<p(i, v)<1, 0<=p(i, j, v)<1,
and functions
fo=(f% firoo s O RP™XUXI—R",
0,=(0} 0% ..., 08): R"XUXI—R",
gt R"XUxI—R, 0<t<N-1.
By an admissible control process we mean here a sequence of measurable functions
(x, &, ¢°)=({x0, U}, {x[0), n,_y(0), uf0) 1<t=N-1,
{xp0), uy_y(@)}; pMdo). &), p(1(©), NA©), 1))
1< t<N-—1)
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with x,€ R", u, €U, n,¢/ and satisiying the following relations:

21 () X,+1frf,(.\’,, u; M)
'\_O(w):quRn' O";t'_;v—l.

(i) X p(, ug)=1 and for every function
i=1
l: [—][0, +20) we have

(2.2) E{/(Mes) [N Myeys o - s Mo} =

J

<o

1 U )Py o Begy)-

(i) For every 1<t=<N—1, ufw) is o(ny My, ..., N,_;)-measurable, that means
the control parameter at time ¢ depends only on the past information until time £—1.
(iv) For every 0<¢£<=N one holds

(2-3) (pu(-\'uv UU)‘§0
0fxp Uy M—)=0  (g¢—a. s.),

where the probability measure ¢“=(g“(i. iy, ..., i,—,)) is defined on the set I=/X/
X ... X[ (¢t times) by the following relations:
(24) q?+1:p(it——l? in ”t)ql;’ I=t<=N—-1

gt=plip U)o Go=1.

The optimization problem consists in finding an optimal admissible control pro-
cess (x*, u* ¢*) such that the performance function

N1
(2.5) Ju, xo)=E* Eo 8l Xy Up Mp—y)

attains its minimum value at (x* u* ¢*). Here by E“ we denote the expectation with
respect to the probability measure ¢“

Remark 1. Relations (i)—(iii) show a symmetry role of x, and n, for the control
problem (see [1]) in the sense that both state variables {x,} and disturbance variables
f1.} 1:p211 on the control variables {u,}.

Nevertheless, it is interesting to see that if we introduce the new state variable
vy={x, m,}, then the first part of y, is defined by the difference system (2.1) while
the second part is defined by the distributions (2.2). Thus this seems to be the natu-
ral type of situation to consider for a generalization of statement of control problems,
In this situation the variable g% (see (2.4)) will play an important role in what follows,

We shall introduce the following assumptions on the functions f,, ¢, g, and the
set U=R"™.

(A) The functions g,, f,, ¢, are continuous in (x, #), differentiable with respect
to x and such that their derivatives are continuous in x.

(B) For every x¢€R" w'¢U, u"c¢U, a¢l0, 1), i€/, there exists an element u=u(x,
u', u”, a, i)€U such that the following relations hold:

glx, u, iy=agx, u', )+(1—a)glx, u", i)
flx. u, = of(x, @, )+(—a)fhx, i, j). 1=j=s,
PG, J, wy=ap(i, j, u')+(1—a)p(i, j, a"), 1=j=s,
O x, u, i)y=ag,(x, u', i)+ (1 —a)p,x, u", i).
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(C) There exist functions x,: /*—R" q,: I'—R, u,: I'=U such that for ever
t y

BV=(igy by ..o i) €L, 1<t=N,

we have

(26) Koy = 5 [AXD ey X0+ f X0y U i) — filoxis i 1)
Xo=0, 0=t=N-—1,

(27) Ger1=P Uy by U0) QtPli—rs By U) G —Plir—r, I UEGE

go=0, 0=t =-N—1,
and for every r=1,2,..., k i "¢l* with g/9](xz s i,_,)=0,
« 0 r, * ., — * g . — r, * = -_—
q: ”E‘Pt(xt- Upy Byy) Xp +qe0i (Xey Upy Lpy) QU Xe, Uz, E1)q,<0.
Here we denote by ({x;=x:(i6 )}, {ur=us (i)} ¢* =¢*) the optimal control

process.
To formulate the main result we introduce the following Hamiltonian functions:

(28) Hyaris s o W, % M (s @) @)=1/5G. 8%, 1, ip_1)—V' . f{x, 1, iy)
=X plig—yy by g+ 1/sq. M . 0x, U, iry),

where &7 =(ip iy, .. by €L, i€l g: I'—[0, 1],
yi IR i I—R, h: I—(RY, R¥=[0, +co),

s is the number of the elements of the set / and a prime “’” denotes the transpose.

Theorem 1. If Assumptions (A)—(C) hold and

(%, u*, g*)=({x}, {ush {¢¢)

is an optimal admissible control process in Problem (2.1)—(2.5), then there exist
functions v,: I'—R", 1,2 I'—R, he= (A}, M, ... M) FF—(R*}, 0<t<N—1, such that
for all iy ' €I the function of variable u

KT u)= 2 Hy (67" i Wer G5 i) e (67" i)y M X0, g ), 1 SESN,

"E‘ 4

Ho(Xo u)= _:‘ H(io, W1 %1s Xor Gor 1)

attains its minimum value at u; =u;(iy '), i. e.
min H u)y =, 57wl (@57
ug
Moreover, the functions v,, ¥, satisfy the following adjoint systems :

B} _ ., 4 d ,
Ve=—7%2 x’,(tf) ' g (ib |)) = — q: axg,(xp Up bty
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s .9 e el P
+ I et oo flxnuni)—qi he O ofxty ur, i), 1St<N—1,
i =1 ox ox

\VN=O,
s

‘l; X = ‘—q; g,(x;, uz, i)+ ; E‘ Xr+1(if§_l- il in u;)q:,
=

XN:O’ 1:\:t§N——]-

and the functions L\, satisfy the condition qh:9, (xr, uz, i) =0, 1=<t<N, for all
(lo By ovny fpq)EL, 1=<E<N.

Proof. First of all we reduce Problem (2.1)—(2.5) to some equivalent determi-
nistic convex-smooth optimization problems to which the maximum principle given in
[8] can be applied.

Problem 1. Denote by y,=(x; ¢,), t=1, yo= (x0 1) fd¥e U i—1s i)=(f(Xs

Uy &) plis—y in u)q), (¥, W)=(Y:=Y; (i{’_l)' u= u(i{)-l)v i<1)~16 I, 1<t<N), where
w,=u i) €U and y,=y,i5") is defined by the following relation:
Yer=F Yo Uy iy, i), 0<SESN—L

Associate with each (y, #) a performance function
N—1

(29) Ay, )= X % . & Yo U i)

t=0 is—l ¢r
and constraints on the pair (y, %)
(2.10) 0L Yo tp ir1)=0, 0o Yor U)=0,

where Et( Yoo Uy b1)=qe8 (Xps Uy Fry), 0 (Vo U Hp—y) = 0 (Xp Uy iyy), ao(J’oa i)

=qo 9oxor o). . .
The first optimization problem is to find among all (y, #) one (y*, u*) at which

the performance function J attains its minimum value.
Problem 2. Introduce the sets

2.11) A= {7 el ¢FT)>0), 1<t<N,
and consider the following problem which is a restriction of Problem 1 on all if)—‘ CA;:
(2.12) Yer=fd Vo U bgr, i), 0=t=N—1
Vo= (%o 1), io " €An (i, i)€Ais
~ N—1 ol
(2.13) Jy, u)=2% z gAYy Uy ipy)

f=0 lé—l(A;
(2.14) 0, (Vp Up b)) =0, B0 €A, 1st=N.
Problem 3. Set & =2 =TI/, ,(A;, R™), and
U={u=(g Uy, ..., Uy_y), u,=ufic"")VeU, i7" € Ar, o= tte(%o)}
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where the finite dimensional space [,(A;, R™*') consists of all R"-valued sequences
y=(x,q):(x,(if)—l), q,(tf)_')), i6 '€ A;, 1=t<N) with the Euclidean norm.
Consider the transformations F: ¥ X U—2Z, d)’(iff'): UXU—R, 1 =t<N, i €A,
1 <r=<k, which are defined by the relations
Ay, u)=2z=(2,, | =t=N),
21 =X —flxp Up i) Ger—PU—1s B UG,
(i) =y, w)=0U yiio ) udis ), i)
Thus the third optimization problem is to find the minimum value of the func-
tion J on the class of all pairs (y, u) satisfying the constraints F(y, #)=0,

o5, y, 0)=0, i €A, 1<r=k

Our purpose now is to discuss on the relationships between Problem (2.1)—(2.5)
and Problems 1—3.
Lemma 1. The optimal admissible process in Problem (2.1)—(2.5) is also opti-
mal admissible for Problems 1—3.
Proof. First we transform (2.5) into (2.9):
N—

N—1

1 N
Jx, w)y= T E“glx, ur,mer)= X I pliy, ty)
=0 =0 41, ,t
Ar
.. , . o ot 41y
Pligy By @)« vvv s Plig—ys ip 1) - 8L (i07 ), wio ), ir—y)
N—1 _
= I S g, glxp b )=HY, w).
=0 yt—1g st

The constraint (2.3) is equivalent to (2.10) and in its turn (2.10) is reduced to

(2.14).
Hence the optimal admissible process in Problem (2.1)—(2.5) is also optimal admis-

sible for Problem 1.
Obviously Problems 2—3 are equivalent and therefore in order to complete the

proof of Lemma 1, it is sufficient to show its assertion for Problem 2.
Let (x;, 4 g;) be an optimal admissible process in Problem (2.1)—(2.5) and let
(3, w)=(ydis") ufic™"), io~" € A7) be any admissible process in Problem 2. Put

afi )=o) BT €A w6 ) =w o) i €1\ A
From (2.11)—(2.12) it follows
y ~(; A)A { Ve=(xp qo), if io ' €A
Y e Q0= (2 0), it 7 eI AL
Then (y,, E,) is admissible for Problem 1 and (see (2.13))
Ty, wy=70y, w) =J(y* w*)=Ju* xo)

where (Vs u7) is admissible process in Problem 2 corresponding to the optimal admis-

sible process (x:, 4z, qr).
The proof of Lemma 1 is completed.
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The second step of the proof of Theorem 1 is to show that Problem 3 with
Assumptions (A), (B), (C) is a convex-smooth problem satisfying the assumptions of
Theorem 3 in [8, p. 79].

o By.a nelghbourhgod V=% of the point y* we mﬁ? all Possmle sequences ¥y =((x, q,),
o €A 1<t<N) with x,¢R" ¢,>0, 1=t<N, iy €A:s

The restrictions of the mappings F and ® on V have the following properties.

Lemma 2. (a) For every u¢u, the mapping y—F(y, u) and the functions
y— O’ (i5", y, u) belongto the class C' at the point y*,

(b) For every y¢V the mapping u— F(y, u) and the functions u'—of( v, u), u—o,
x(tff‘, v, u) satisfy the convexity condition: for every u'¢¥«, u" €U and 0<axl1
there exists u¢U such that

Ry, u)y=aFy, ') +(1—a)Ry, u')
J(y, wy=ally, u)+(1—a)X( y, u”)
(5, ¥, )=a® (i y, @)+ (1—a)o (@5, v, u”)
(c) Im F,',(y', u*)=2.

(d) The image of the set % XU through the mapping (y, u)—F,( y*, u*)y+F(y*, u)

contains in it a neighbourhood of the point 0¢Z and there exists a point (y, u)
such that

£—1

F(y* u®)y+F(y* u)=0, (@, (5", y*u*), y)+ o (i, y* u)<0

for all r, i~ for which ®'(i5~", y* u*)=0.
Proof. The convexity condition (b) and the regularity condition (d) for the map-
pings F, J, ® (i, y, u) follow from Assumptions (B) and (C) of Theorem 1.
Condition (A) implies Condition (a) and for any y=(¥;, Vs ..., Yx) We have

— — d - L —
F(y, @y ={ys+1 _Eft(y” uy, i)y, 0<t=N—1}

— — . 0 — —_—
Sy wy= T 50 & (Ve Uy i)Yy
P

t
rpd— ™" 0 —r o — . o —
O, y, )y =g 0L (967, )L,

where y,=0, 0<{=N—1, 1=r<k

Moreover, the above mentioned formula for F implies Assertion (c) of Lemma 2
and thus the proof is completed.

We are now in a position to prove Theorem 1.

From Lemmas 1—2 and the extremal principle in [8, p. 79] for the convex-smooth
Problem 3 it follows that there exist elements (yz xi)€L(An R™), v = wdio ),
i €A, xe=(x (67", &' € A7) and sequences of nonnegative numbers A=),

57 ¢ A;, 1<r<k) such that
(2.15) Mo qeoc (X0, hy i_)=0, i €A
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and the Lagrange function

N—-1 —
Lyt v Qe WEN= 20 2 @ (e bie)

i ea,
N1 N1
+ }‘_0 Wesye Xegy—fo(Xe w i)+ [‘-_‘0 Utry Ger—P(i—y i U)qe)
N—1 PR N—1 -~
+ X S (M@0 ) 0 yi, Un B )= X S (gl ye w, i)
(=0 -1, (=0 41,
fh €4 it

s ’
+ 3 el i) (e (5 i) —filxn wn i)
-

satisfies the following conditions:

(I) the Lagrange function as a function of the variable u¢ % attains its minimum
value at u*=(ug, 4y, . . ., Un—1)

(1) the Lagrange function as a function of the variable y¢% satisfies the loca
minimum condition

where

Ly=Iy(y% w)+ e BAYS WP+ S @y @67 v u).
iu_ (A‘
Putting (w,(tf)“l), x,(tf)“l))=0 for all t’f)_lel'\A;, from (I) and (I) (for the case

&.=0) we obtain the maximum principle and the adjoint equations for v, described
in Theorem 1.

Also from (II) (for every element of the variable ¢) we deduce for all i ¢Al  that

it—1

25,07 = g™, w17

. Lo 1) (—p G s 0D) N ()00 Ceri™" ), uis ™) i1—1)=0.

| 4w

+.
‘t

Hence
1"y = —gdxelio ), i), ry)

s . s LN
£ D g7 ) (sl =200 (i), w6 de)
>

for all ié™" ¢ A.. By the definition of A; (see (2.11)) and g:(io"") >0 we deduce that

x: and ¢, satisfy the relation
e i) = — qiltsT"gdoedle ™), wii™). i)
+ 121 Lea(l6 s i) plis—yy i, u;)q;—l'(iﬁ")q;tm (X;(‘f)—l)o w(io " ir—y).

¢
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From (2.15) and the definition of g;41, the last equation becomes

giis ) s )= — qrgieiGT), w6, i)+ S Al igea(@d).
iI:,
which is also true for x,(tff’);O,tfj“‘el’\A;.
The proof of Theorem 1 is completed.
3. The case of controlled Markov chains. Consider a controlled Markov chain
{n?, t=0, 1, 2,...} with transition probabilities p(i, j, @), u€¢R™, i, jeI={1, 2,..., s}
and the performance function
N—1
(3.1) J)=E* I &My M. ).
The control #; is of the form u,=une My, ..., Nr—y) and the constraints are
(32) QdMNi—y, u)=<0, (g —a.s.).

Here the functions g, ¢, take values in R and ¢% ¢=0, 1, 2,... is defined by
(2.4).
The optimization problem is to find «#* such that the function J(«) attains its
minimum value at uz*.

Taking f;=0 as a special case of Problem (2.1)—(2.5) we can apply direct Theo-
rem 1 to Problem (3.1)—(3.2) with suitable assumptions on g, ¢; and the assumption
that p(i, j, «) is linear in u.

If p(i, j. u) is nonlinear in #, but the functions g, p, ¢; are differentiable in «
we shall apply Theorem 1 to this case as follows (see [4]).

We introduce the variables (2, y/) defined by

Rty =Ut

Ver1 =9t =PMt—gs Ni—yy Ut—1)@t—1=PMp—-2 Ne—y, Ze)Ys
and the functions

(3.3)

(3.4) 6:(‘1!-2' 20)= 01— (Nt—a, Us—y), Et(flt—z, 2y) = E_l Gty Mi—gs & 2¢) . p(Me—g» i 2¢).

Then the performance (3.1) becomes
N1

(3.5) Ju)=E* Z X g(ney, iy u)pMi-y, &, )
=0 i=1

A s Ao
=E* = Sl 8t—1(Mt—ay & 2) p(Me—g, i, 2)=E" EI g(Mi—g 2¢)

t=1 i=

Note that in (3.3) we consider the transition probabilities p(n:_s, M¢_;, 2¢) depend-
ing on the state parameter z. Thus Problem (2.1)—(2.5) would be generalized to the
case of transition probabilities p(i, j, #, x) in the sense that (see (2.2))

s
(3.6) E[{Met1) | M Mezpp e ooy M) = /-‘-:l Py J, dtsrs Zegq)-

The inclusion of x in the function p and w, in gy @ (see (3.5), (2.5)) causes
no difficulties and all of the results go through with minor modifications.
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Theorem 2. Assume that Assumptions (A), (B), (C) hold for the functions f;
g 01 pli, j, u, x) and for their derivatives with respect to x.

Then the maximum principle formulated in Theorem I remains true for the opti-
mization problem {(2.1), (36), (2.3), (2.5)} in which y:, ¥, are defined by the follow-
ing relations:

- df.t—l .1 + J . ., S 2 . .
V= —"7%% dio ", udiv ")) = —q: o}'gt(xh U ir—y)+ = \Vt+lafx(Xt uy, i)
=
t

I S

. 0 . . . * . .’ . * *
+ . At+1 O;P(lt_p ify Wty Xt) Gt — qt)»r;; Olxt, e hey l—yy 1st<N—1,
, :

1
WN=Oy

gi-t=— qugdxn uey i)+ 2 w570 i) p (it—y s ey XO)gi 1SE=N—1,
lt=

yy=0.
Applying Theorem 2 to Problem (3.3)—(3.5) we obtain the following maximum
principle:

-2 . o~ . - PER R |
H(io % Gy Ue)=Y18t(it—g, Ze)— _El Vet (o Nudio)
}::

s . . * \d . — .
- .2:.‘4’14-1(‘6_" P (=g, f—1y 20) Vit YAOLit—g, 2:)=min,H (@677 ity ),
/=

where H#(i52 iy, u) is His ", iy, u) With replacing u: by u.
Hence the principle becomes
s
(3.7) - jz_:l Vipy(i67", j)u—min,,

where the adjoint variables v, x: satisfy the relations

. L0~ .
(338) wiio *, 1))=Yt oz & (it—a 21)
4 d—1 . 0 . . o s e, 0~ ..
+ i:l Ye+1(d0 ,])F;p(t,_,, iy, 2¢) Yt—qt A -07(Pt(lt—2- 2t);
(3.9) Y= — YiBlimy 20+ (67 WPl 20 20) Y03
=
(3.10) Ve hi@e(ir—g 2)=0.

From (3.8) it follows that iy (i§™" /)= — —=Hepa(is ™, J. qir i), where

@3.11) Ko i o g w)=qi = &y, by WPlir—y, b 1),
i=1

— X eali 6 4o Bplie—y Jo W)@t @ik @ic—1, 1).
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Then the maximum principle for Problem (3.1)—(3.2) is the form
§ e .o . * . { d g — . * *
@B12) (S O A G g w)] w=min] S 2, (67 o gi ude.
j=1 u j=1

In the case when ¢,=0 and for some 7, p(r, k, u)=0, k=1, 2,..., s, we get

-

. s . S ea e o e & e .
q: | o ¥ gdr, youp(r. jo ue)] we=min,qe [ - = g(r, j, us)p(r, j. ur)lu.
ou j=1 ou Jj=1

Obviously, we consider only the relations with g;>0, that means

N . x R . 0 3 R D .
[;,‘2; ,El gdr. j, uop(r, Jj, welus=min, [5- ,-i. &dr, J. u)p(r, j. ue)lu.

Therefore,

% N . e ..
ou [ =, &dr . udp(r, j u)]=0.

If X1 gdr, j, w)p(r, j, u) is convex in u, we obtain

min, X g(r. j, wp(r, j, u) = = edr . u)p(r, J, uz).

J=

Thus is the result given in [1].
Instead of a conclusion we summarize the results for Problem (3.1)—(3.2) as
follows.

Theorem 3. (a) If p(i, j, u) is linear in u and Assumptions (B), (C) on the
functions gui, j, u), p(i, j, u), @i, u) hold, then

min,{ 21 8y, iy, Wp(is—_y, i, W)— g‘ll Koo ip(ie_y i 1) + IS VO iy, W)}
i= -

| B ~

. I3 o, . 3 .
= ‘El Gillie—y, b we)p(is—y, in W) — )
i = i
t t

where

| a5 iy, )M 00 iy ),

N * . 3 — . . . *
xi6 )= — iz_:l Glis—q, & w)plis—y, i, us)+ El Xewa(o ", Dplie_y, i u),

An=0.

(b) Iy 180 jo wp(i, j, ), p(i. j, u) and ofi, u) are differentiable in u and
their derivatives satisfy Assumption (A), then the maximum principle (3.12) holds
for Problem (3.1)—(3.2) in which #.,, 1, and ), are given by (3.11), (3.6) and (3.10).
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