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A-COMPACT SPACES
ALESSANDRO FEDELI

For each class A of topological spaces we have a closure operation [ ]: P(X)— P(X), called
A-closure, where X is a topological space and P(X) is the power set of X. In this paper we study the
A-compact spaces, i. e. the topological spaces (X, t)¢A such that the topology t, generated by the

A-closure is a compact topology.
We show that for many classess A the A-compact spaces play the same role in A that the compact
Hausdorff spaces play in the class of Hausdorff spaces.

0. Introduction. For each class A of topological spaces we have a closure ope-
ration [ |: P(X) — P(X), called A-closure, where X is a topological space and P(X)
is the power set of X [21]. Recently D. Dikranjan, E. Giuli (2, 3]) characterized
the closure operation [ | for many classes of topological spaces A.

A topological space (X, t)€A is called A-compact with respect to A (in short
A-compact) iff the topology t, generated by the A-closure is a compact topology.

The class of all A-compact spaces will be denoted by Kj.

If A is the class of Hausdorff spaces TOP, and X ¢ TOP, then [ |: P(X)— P(X)
coincides with the ordinary closure operation in X ([2]), hence Krop, is precisely the
class of compact Hausdorff spaces.

In Section | we prove that many classical results about compact Hausdorff spaces
are true for many classes A of topological spaces when we replace “compact Haus-
dorff” with “A-compact” and the ordinary closure with the A-closure, moreover we
give an internal characterization of A-compact spaces using the Kuratowski theorem.

In Section 2 some general relations between A-compact and absolutely A-closed
spaces are established.

Section 3 is devoted to the study of Ury-compact and absolutely Ury-closed spaces,
where Ury is the class of Urysohn spaces. In this section we give an example of non
Ury-minimal semiregular absolutely Ury-closed space.

In Section 4 we use the A-compactness to introduce the concept of p(A) mapping.

Notation 0.1 The following categories are denoted as follows:

TOP the category of topological spaces and continuous functions;

TOP; the category of topological spaces satisfying the T, axiom i=0, 1, 2;

FT, the category of functionally Hausdrorff spaces (points are separated by continuous
real valued maps);

Ury the category of Urysohn spaces points are separated by disjoint closed neigh-
borhoods);

TOP; the category of regular Hausdorff spaces;

Tych the category of completely regular Hausdorff spaces;

0-dim the category of zero-dimensional spaces (i. e. Hausdorff spaces with a base of
closen sets).

A full and isomorphism-closed subcategory A of TOP is said to be epireflective
if for each topological space X there exist 7X'¢ A and an epimorphism r, : X —rX
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4 A. Fedeli

in TOP such that for each continuous function f:X — Y, Y € A, there exists a conti-

nuous function f:rX Y such that f' or, =f. A is epireflective in TOP iff it is closed

under the formation of products and subspaces [13].

All subcategories above are epireflective subcategories of TOP.
We define, now, a closure operator introduced by S. Salbany [21].
Definition 0.2 Let A be an epireflective subcategory of TOP, let X be a to-

pological space and F a subset of X.

(a) A point X of Xis said to be apoint of A-closure of F in X if for each f, g: X—A4,
A€A, such that f|F=gF (where f|F denotes the restruction of f to F), f(x)
= g(x). The set of all points of A-closure of F in X is said to be the A-clo-
sure of F in X and it is denoted by [F]}

(b) Fis said to be A-closed in X if [F|{=F.

(c) A function [: XY, X, Y €A,is said to be A-continous if f((F|X)=[f(F)y F=X.

(d) A function f: X Y, X, Y€A, is said to be A-closed if for every A-closed
set F—X the image f(F) is A-closed in Y.

(e) the coarsest topology in X which contains all A-closed subsets as closed sets
is said to be the A-closure topology of X and, if © is the topology of X, it is
denoted by t,,

F:TOP —TOP will denote the functor which assigns to (X, t)¢ TOP the space

(X, t,)- For each continuous map f: (X, 1)-+(Y, o) in TOP the continuity of f=Fa(f)

(X, t,) (¥, a,) follows from 1.2(x) of [3].

The following results can be found in [2].

(1) ty=t for all (X, 1)¢€ A iff AcTOP,.

(2) For A=TOP,, TOP; Tych, 0-dim t,=7 for each (X, 1) €A,

(3) The TOP,-closure is the front-closure defined in [19]: FrCl(A)={x¢ X: for each
open nhood (U of x, {x}NU N A+Q}

(4) The TOP :closure is the identity for all 7',-spaces.

(5) For A=Ury let X ¢ A and M—X, we define Cly(M)={x¢ X: for each nhood
V of x, V(I M=}, this is the 0-closure introduced by H.Velichko [23].

For X ¢ Ury and M—X we have Cloy(M)—[M], and M=Cly(M) i M=[M]§,
thus the Ury-closure is the idempotent hull of Cle.

Finally we recall that the topological terminology is that of [24].

1. A-Compact spaces.

Definition 1.1. Let A be an epireflective subcategory of TOP. (X, 1) €A is
said to be A-Compact iff (X, ta) is compact.

We will denote by Kx the class of A-compact spaces, and by A Comp the class of compact
spaces X such that X ¢ A. The A-closure issaid to be hereditary (7], if for McYcX we
have [M]x=[M|X(1Y for all M, ¥ and X. In that case i=Fa(i): (Y, 0,) — (X, ta) is
an embedding, where t is the topology of X, o the relative topology of Y, and i is
the embedding map of the subspace (¥, o) in the space (X, 1).

Remark 1.2. For all categories A listed in 0. except A =Ury, FT,and for every
space (X, 1) € A the A-closure is hereditary in (X, 1).

Proposition 1.3. Let A be such that for all (X, 1) €A the A-closure is here-
ditary in (X, v). If (X, )€ Ka and M- X is A-closed then M, with the relative to-
pology ty, is A-compact.

Proof. M is closed in (X, ta)¢ Comp, therefore (M, t4) is compact, hence (M, ty)
is A-compact.

Remark 1.4. The space (X, t)¢ Ury given in ([6], ex. 4.2) belongs to K ury and
it has an Ury-closed subset M such that (M, t,) is an infinite discrete space.
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Remarks 1.5
(1) Kirop, is the class of finite discrete spaces.
(2) K=AComp=TOP, Comp of A=TOP,, TOP;, Tych, 0-dim
(3) Let A be the subcategory LM-T, of Lawson—Madison spaces (a space X is
LM-T, iff every compact subspace of X is T, [16], [18]), since t=7a ([5],
lemma 1.5) we have that K —AComp, moreover if (X, )¢ AComp then t=14 ([11],
corollary 4.2 (b)) hence K'x=AComp.
(4) Let X, denote a T,-space with cofinite topology and infinite cardinality /.
If A=Haus ({X;})={X ¢ TOP such that every continuous map f: X; — X is con-
stant} [16], then 14 is discrete for every (X, 1) € A ([5], prop. 1.11), hence Ka is the
class of finite discrete spaces and Kx<= AComp.

=
(5) The Ury-compact spaces are studied in the Section 3. A careful study of TOP,-
compact spaces will be the object of a separate work.

Proposition 1.6. For A=Top, Top,, Top,, Top; Tych, 0-dim let X ¢ Ka and
Mc X, then the following conditions are equivalent:

(iy M is A-compact
(iliy M is A-closed.

Proof. (i) = (ii) For A=TOP, the A-closure is the identity for all 7,-spaces.

For A=TOP,, TOP;, Tych, 0-dim we recall that the A-closure coincides with the
ordinary closure. For A=TOP, if M=(X, 1) ¢ TOP, is TOP,-compact then (M, t,) is
compact in (X, t,), but (X, t,)is a Ty-space ((3], th. 2.2 (e)), hence M is closed in
(X, 1)), i.e it is TOP,-closed in (X, 7).

The other implication follows from the proposition 1.3.

Observe that the implication (i) = (ii) holds for all categories A such that for
each (X, 1) ¢ A we have t=t, and every compact subspace of X is A-closed in X,
for some examples see [10].

Proposition 1.7. For A=TOP,, TOP;, TOP,, TOP;, Tych, 0-dim let (X, 7)€ Ka
and (Y, o)¢ A.

(1) If f:(X, 1) —~(Y, o) is a continuous and onto mapping then (Y, o) € Ka;
(2) If f:(X, ©)—(Y, o) is continuous then it is A-closed.

Proof. (1) Since f=Fa(f):(X, 1,)— (Y, oa) is continuous and onto, (X, 7,) is
compact, we have that (¥, o,) is a compact space, hence (Y, o) ¢ Ka.

(2) Let G be an A-closed set in X, hence from prop. 1.3 follows that Gis A-com-
pact, so by (1) we have that f(G) is A-compact, and from prop. 1.6 it follows that
f(G) is A-closed in Y, i. e. (G)=[f(G)]}.

Note that (1) holds for all subcategories A of TOP.

The functor Fa is said to be finitely multiplicative if it preserves finite products,
i. e (Ill t)a=1(t)a /=1,...,n We recall that if Fa is finitely multiplicative then

1

for each (X, 1) € A, (X, ta)€ TOP, (prop. 2.5, [3]).
Henceforth we consider only the epireflective subcategories A such that the
A-closure is a Kuratowski operator.
The Kuratowski theorem. For a topological space X the following con-
ditions are equivalent:
(i) The space X is compact.
(i) For every topological space Y the projection p: XXV -+ Y is closed.
(iii) For every 7,-space Y the projection p: X <X} VY is closed.
Theorem 1.8. Let A be anepireflective subcategory of TOP such that
(1) Fa is finitely multiplicative
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(2) For every X ¢ T, there exists Y ¢ TOP such that FA(Y)=X. Then the following
conditions are equwalent

(a) the space Z is A-compact

(b) for every topological space Y the projection p:ZX<Y—Y is A-closed.

Proof. (a) = (b). Let (Z 1)¢ Ka, (¥, 6)¢ TOP and let p:(Z, 1)x(Y, o)— (Y, o)
be the projection. Since (Z, t,) € Comp and Fa((Z, 1) X(Y, 8))=(Z, 1,) (Y, o,) then
the projection p=Fa(p):(Z, 1,)— (Y, 6,)—+(Y,0,)isclosed (by the Kuratowski theorem),
hence p: (Z, 1) <(Y, o)— (Y, o) is A-closed.

(b) = (a). If (Z, 1) ¢ K, then (Z, t,) ¢ Comp hence (by the Kuratovski theorem)
there exists (X, c,) € 7, such that the projection p=Fa(p):(Z, t,) X(X, 0,)—(X,0,)
is not closed, but there exists (¥, o) ¢ TOP such that Fa((Y, 0)=(X, c,) hence the
projection p:(Z, 1)X(Y, o)— (Y, o) is not A-closed.

A categorical interpretation of Kuratowski’s Theorem is given in [l14] (see
also [9]).

Next we give a list of well-known properties of compact spaces.

(1) X is compact iff every familly of closed subsets of X with the finite inter-

section property has a non-empty intersection.

(2) The continuous image of a compact space is compact.

(3) A subset of a compact Hausdorff space is compact iff it is closed.

(4) (A. Tychonoff) Let {X,|i ¢/} be any family of spaces. Then II,X; is compact

iff each X, is compact.

(5) Let Y ¢ TOP,Comp, Z€ T4 and f:Y — Z continuous. Then f is a closed map.

(6) Let X¢ T, and Y ¢ TOP, Comp. Then f: X— Y is continuous iff its graph

G(f) is closed in X< Y.

Remark 1.9. From property (1) above it follows easily that a space X €A is
A-compact iff every family of A-closed subsets of X with the finite intersection pro-
perty has a non-empty intersection.

Theorem 1.10. Let A be an epireflective subcategory of TOP such that Fa is
finitely multiplicative. If (X, 1) ¢ A and (Y,0) ¢ Ka then the following conditions are
equivalent :

(a) f:(X, 1)~ (Y, o) is A-continuous;
(b) The graph G(f) of f is A-closed.

Proof. (a)=(b). If f:(X, ©)— (Y, 0) is A-continuous then f=Fa(f):(X, t,)
— (¥, o,) is continuous, since (¥, o,)€ TOP, we have that G(f) is closed in (X, t
X(Y, 0,)=(XXY(1<0),). therefore G( f) is A-closed in (X, 1)<(Y, o).

(b) = (a), Let G(f) be A-closed in (X, 1) (Y, o), hence G(f) is closed in (X, t,)
<(¥, o,), but (¥, 6,) € Comp and it is a 7,-space, so we have that f - Fa(f):(X, 1,)
— (¥, o,) is continuous, therefore f:(X, 1)— (Y, o) is A-continuous.

Proposition L.11. Let A be an epireflective subcategory of TOP such that

Fa is finitely multiplicative, then 11 (X, t)¢ Ka if and only if (X, 1) € Ka,
i=1
i=1,..., n.
Proof. Let Il(X, ;) be A-Compact, since the projections p,: Il(X ) (X, 1)

are continuous and onto. it follows from prop. 1.7 that (X, t,)is A- Lomdet l—l Lo
If (X,, tv,) is A-Compact, i—1,...,n, then we have that (X, (1)) € (‘omp for

every i, hence I1(X, (r,)A)(Comp, but 11(X, (1))~ (1 (X, 7)), so (X, t) s
== (o] £ (o]
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A-Compact. Let {t,/a ¢ /} be a family of topologies on a fixed set X. The identity
function from the set X to the space (X, t,) will be denoted i,. Let t=sup{t,| a€/},
i. e. the weak topology induced on X by the mapsi.. LetA={x ¢ II(X, t.)|xq=xp for
all a, B}, (X, 1) is homeomorphic to A in the product space II(X, t.) ([24], 81.2.).

Proposition 1.12. Let A be an epireflective subcategory of TOP. Let
{(X, 1) |a € I} be a family of topological spaces such that (X, .)€ A for each a€l,
then sup{(ta), |a € I}=1,,

Proof. (X, 1) is homeomorphic to A in the product space II(X, t,) €A, hence
(X, 1) € A. Since every map 7, :(X, 1) — (X, 1) is continuous then every i,=Fa(i,):
(X, 1,) = (X, (ta),) is continuous too.

As sup{(t.), |a € /} is the weak topology induced on X by the maps iz=Fa (ia):
X — (X, (ta),) we have that sup{(t.), |a€/}=1,.

Corollary 1.13. Let {(X, w)|a€l} be a family of topological spaces such
that (X, 1) €A for every a¢l If (X, 1)€¢Ka then sup{(ta),|a €/} is a compact
topology.

Corollary 1.14. Let {(X, ta)|a € I} bea family of topological spaces such that
(X, ta)€ A and (X, (1a),) € TOP, for every a ¢ I. If (X, 7)€ K, then sup{(ta),|a€/}=1,.

Proof. sup{(ta),|@a€/} is a Hausdorff topology, it is weaker than t, and
(X, 1,)€ TOP, Comp, then sup{(t.), a € /}=1,,

Proposition 1.15. Let AcTOPy and {(X, t)|a €/} be a family of topoligical
spaces such that (X,ta) € Aand (X, (t.),) € TOP, for every a ¢ l.If (X, 1) is a compact
Space then sup{(t.),|a€/}=(1a),=Ta=1=1, for every a¢l.

Proof. From AcTOP, it follows that t,<t, by virtue of pfop. 1.12 we have
that sup {(t.), |a€ /}=t,, from the definition of sup{(t.),|a €/} it follows that (1),
<sup{(ta), | @ € 7} for every a¢/, then (1), <sup{(to),|a€/}=t,<t for every a¢l
Since (X, (ta),) € TOPy and (X, 1)¢ A-Comp — TOP, Comp we have that (ta),
=sup{(ta), |a€ /}=1,=1 for a € I Moreover, by the definition of t it follows that
1,=7 for every a¢/, but 1=(1.), <=7, hence t,=1 for every a¢/

2. A-Compact and absolutely A-closed space.

Definition 2.1 [4]. Let A be an epireflective subcategory of TOP.

X €A is said to be absolutely A-closed iff for each embedding f: X— Y, Y €A,
f(X) is an A-closet subset of Y.

The absolutely TOP,-closed spaces are the classical H-closed spaces [1]. For
A =FT, (respectively A=TOP;, Tych, 0-dim) we get the well-known functionally Haus-
dorff-closed spaces (resp. Ty-closed, Tychonoff-closed, O-dimensional closed spaces). Some
results about absolutely Ury-closed spaces (cf. [4], [6]) are given in the next section.
Every T-space is an absolutely TOP,-closed space, and for A=TOP, we get the well-
known sober spaces [15] (also called pc-spaces [19]).

Remark 22. By virtue of corollary 2.5 in [4] we have that Kpr,= Absolutely
FT,-closed.

Proposition 23. Let A be such that for every (X, ) ¢A either (X, t,) ¢ TOP,
or the A-closure is hereditary in (X, t). Then every A-compact space is an absolu-
tely A-closed space.

Proof. Let f: (X, t) + (Y, 0)¢ A be an embedding and (X, )¢ K,, (X, t,) TOP,
Comp and (Y,0,)¢ TOPy, f=F,(f): (A, t,) —~(Y, 6,) is continuous, hence f(X) is
compact in (¥, o,), therefore it is closed in (Y, o,) and A-closed in (Y, o) (recall
that we consider only the A-closures that are Kuratowski operators), so (X, 1) is an
absolutely A-closed space. The rest of the proof follows from prop. 1.7 (2)
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Proposition 2.4. /f TOP, Comp = A=TOPy then any locally compact and ab-
solutely A-closed space is A-compact.

Proof. Clearly we have A Comp=K,,

Let X be locally compact and absolutely A-closed, if X* is the Alexandroff compacti-
fication of X and %:.\'— X* is the embedding, since X*¢ TOP,Comp — A we have
that #(X) is A-closed in A* hence it is closed in X™, therefore A(X)¢ ACompcK, and X
is A-compact.

3. Ury-compact and absolutely Ury-closed space. From the theorem 2.4 in [6]
it follows that every absolutely Ury-closed space is a Ury-compact space. It is an
open question if there exists a Ury-compact space that it is not absolutely Ury-closed
(see [6]). We will prove that every almost regular Ury-compact is absolutely Ury-
closed. Let (.Y, 1) be a topological space, we will denote by 1, the coarsest topology on
X which has as a base of the open sets all regularly open sets of (X, 1). (We recall
that an open set U of a topological space (X, t) is said to be regularly open iff
U=Int (U)). This topology is called the semiregularization of t and (X, 1) is called
semiregular space iff t=1,. A Urysohn space (X, 1) is said to be almost regular [20]
if (X, 1,)€TOPs.

Lemma 3.1. ([6]) For each (X, 1) ¢ Ury, (X, t,) € Ury and tury=(T)ury.

By lemma 3.1 it follows that

Proposition 3.2. Let (X, 1)€ Ury then (X, 1) € Kury iff (X, 15)€ Kury.

Proposition 3.3. ((6]) For a Uryson space (X, 1) the following conditions
are equivalent:

(a) (X, 1) is almost regular

(b) Ts=Tury
We recall that a space (X, 1) is said to be nearly compact iff (X, t,) is a compact
Hausdorff space [22].

Proposition 3.4. Let (X, 1) be an almost regular space. Then the following
conditions are equivalent :

(a) (X, 1) is absolutely Ury-closed ;

(b) (X, 1) is Ury-compact;

(¢) (X, 1) is nearly compact.

Proof. (a)<>(c) Corollary 4.4 in [4]. (a) = (b) is always true. (b) = (c¢) If (X, 1)
is Ury-compact then (X, tur) is compact, hence by Lemma 3.1 and Proposition 3.3,
we have that (X, t,) is a compact Hausdorff space, i. e. (X, 1) is nearly compact. A
topological space (X, 1) € A is called A-minimal if "<t and (X, t/) € A imply t'=t.

Proposition 3.5. Let (X, t)¢ Ury such that it is Ury-minimal and (X, Tury)
¢ LM-T,. Then the following conditions are equivalent :

(1) (X, 1) is compact;

(2) (X, 1) is absolutely Ury-closed,

(3) (X, 1) is Ury-compact.

Proof. (1) = (2) and (2) = (3) are well known. Now let (X, t) be a Ury-compact
space then (X, tyny) € LM-T, Comp-TOP, Comp, hence (X, tyuy)€Ury and tyy=rt,
then tyry =1 and (X, 1) is compact.

Theorem 36. Let (X, 1)¢€ FT,. If (X, 1) is Ury-compact then (X, tuy)€Tych.

Proof. For every x, y € X there exists a continuous function f,:(X, t)—(/, o),
where /=0, 1] with the usual topology, such that f(x)=f(y), then the collection
{fx (X, ©)—(/, o)}x ¢ k separates points in X, hence the mapping f:(X, 1) —II(/,, o))
(where (/, 0,)=(/, o) for each k¢ K) assigning to the point x ¢ X the point {f,(x)}
¢ 1I(/,, o) is one-one and continuous ([8], 2. 3. 20). Since II(/,, o,) is a Ty-space
we have that Fun[ll(Z,, o,)]=11(/,, o) (|2]), hence f= Fury(F): (X, tury) — II{/,, 0,) is
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a continuons and one-one mapping. Since (X, tyy)€ Comp and TIl(/,, o,) € TOP, we
have that fuyr,(F) is closed, then f= Fy(F): (X, tury) — I(/,, 0,) is an embedding, hence
(X, Tury)é TYCh

Proposition 3.7. Let (X, 1) € FT,. If (X, 1) is Ury-minimal and Ury-compact
then it is compact.

Proof. From the theorem 3.6 it follows that (X, tury) € Tych <= LM-7, hence by
the prop. 3.5 we have that (X, 1) is compact.

It was proved by M. Katetov [17] that a semiregular absolutely TOP,-closed space
is TOP,-minimal. Now we give an example of a semiregular absolutely Ury-closed space
that it is not Ury-minimal. (H. Herrlich produced an example of non Ury-minimal semire-
gular Urysohn space such that it is closed in each Urysohn space in which it is em-
bedded [12]). The space (X, 1) described in [4] (example 5) is:

(a) functionally Hausdorff;

(b) absolutely Ury-closed;
but it is non nearly compact, hence from the prop. 3.4 it follows that (X, t) is not
almost regular, therefore tyy<t, (by prop. 3.3). Since continuous images of absolutely

Ury-closed spaces are absolutely Ury-closed spaces ([4], corollary 4.2), we have that
(X, t,) is semiregular and absolutely Ury-closed. Now we prove that (X, t,) in not
Ury-minimal. From Theorem 3.6 it follows that (X, tury) € Tych, hence (X, tuy) is a
Urysohn space and tyry < 7, then (X, t,) is not Ury-minimal.

+

4. p(A) mappings. In this section we consider only the epireflective subcategories
A such that for all (X, 1) € A the A-closure is hereditary in (X, 1) and it is a Kuratowski
operator.

P Definition 4.1. Let X, Y ¢ A, an A-continuous mapping f: X—Y is p(A) it
f is an A-closed mapping and all fibers f~Yy) are A-compact subsets of X.

Remark 42. For A=TOP,, TOP; Tych, 0-dim every p(A) mapping is perfect.

Proposition 43. Let (X, 1), (Y, 0)¢ A with (X, t,)€ TOP,. f:(X, 1)— (Y, o)
is p(A) iff f=F\(f):(X, 1) —(Y, o,) is perfect.

Proof. If f:(X, 1)—(Y, o) is p(A) then it is A-continuous, A-closed and for,
each y € Yf7'(y) is A-compact in (X, 1), then f=F,(f): (X, t,) — (Y, 0,) is continuous
closed and all fibers f~'(y) are compact in (X, t,) (since the A-closure is hereditary, hence
f=F,(f) is perfect. If f=F,(f) is perfect then it is continuous, closed and all fibers
f7'(y) are compact in (X, t,), hence f:(X, 1)— (Y, o) is A-continuous, A-closed and
z;ll fib((e)r\s f~'(y) are A-compact in (X, 1) (since the A-closure is hereditary), therefore

is .

grc?position 4.4. Let (X, 1), (Y, o) € A with (X, t,) ¢ TOP,. An A-continuous
and one-one mapping f:(X, 1) — (Y, o) is p(A) iff it is A-closed.

Proof. If f:(X, ©)— (Y, o) is A-closed then f=FA(f):(X, t,) — (Y, o,) is con-
tinuous, one-one and closed, and (X, t,)¢ TOP,, hence f=F,(f) is perfect, then by
4.3 follows that f is p(A).

The converse is obvious.

Corollary 45. Let (X, ©)¢ A and let (M, t,) be a subspace of X such that
(M, (tx),) € TOP,. The embedding iy : (M, 1y) — (X, t) is p(A) iff M=[M]%.

By 1.3 and 1.7 (2) follows that

Proposition 46. For A=TOP, TOP,, TOP, TOP; Tych, 0-dim let X¢ K,
and Y ¢ A, then every A-continuous mapping f:X—Y is p(A).

Let A be such that: (1) F, is finitely multiplicative, (2) for every X ¢ 7, there
exists ¥ ¢ TOP such that F,(Y)=.X, then by 1.8 it follows that
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Proposition 47. Let X¢K, and Y ¢A, then the projection p:XXY
— Y is p(A).
Theorem 4.8. Let A be such that Fa is finitely multiplicative. The cartesian

oroduct f_ lI fs, where fo: X;—Y,and X, =@ for s=1,.. .k, is p(A)if and only if all

mapping f; “are P(A).
k
Proof. Let f— lI S II (X, r)—» II (Y, o,) be a p(A) mapping, since Fa is

finitely multiplicative we have that II (X, (tJ)A)=( I[ (X,, T, is Ty ([3], prop. 2.5),

hence by 4.3 follows that f=F, (f): II(XS, (ts)p) — H (Y,, (o5),) is perfect then eve-

ry fo=FA(f) 1 (X, (1)) — (Y, (o )A) 1s perfect ([8] th 3.7.7), hence by 4.3 we
have that f, : (XY. 1,)-» (Y, o)) is p(A) s=1, , k.
If every f: (st T )_'(Y o) is [I(A) then fx A(f:) ( (TS)A—*(Y:, (Gx)A) is

perfect for each s, hence ll fs F, (ll 1s): ll (Xs, (t9)a) —-II (Y,, (05)y) is perfect

([8], th. 3.7.7), therefore lI f:: II (X, 1) — II(Ys, o,) is p(A).
s=1 s=1 s=1

Theorem 4.9. Let A be such that F, is finitely multiplicative and let (X, 1),
(Z, o)€ A. For an A-continuous mapping f:(X, 1)— (Z, o) the following conditions
are equivalent :

(1) the mapping f is p(A);

(2) for every (Y, v')€A the cartesian product fXidy is p(A)

(3) for every (Y, U) €A the cartesian product fXidy is A-closed

Proof. (1) = (2) follows by th. 4.8 (2) = (3) is obvious. (3) = (1). Let fxid, :(X, 1)
X (Y, V)= (Z, o) < (¥, ) be A-closed then f X idy = F,(fxidy): (X, 1,)X(Y, 1,),
—(Z, 0)X(Y, 1) is closed, hence F,(f):(X, t,) ~(Z, c,) is perfect ([8], th. 3.7.13)
then by 4.3 is follows that f:(X, 1)— (Y, o) is p(A).

Proposition 4.10. Let A such that for every (X, )¢ A we have (X, 1,)¢ TOP,.

A p(A) mapping g: (X, 1) —(Y, o) cannot be A-continuously extended over any
space (Z, t')€ A that contains X as a A-dense proper subspace.

Proof. If G:(Z, t")— (Y, o) is an A-continuous extension of g over a space
(Z, U) € A that contains X as a A-dense proper subspace then G=F,(G):(Z, t,)
— (Y, o,) is a continuous extension of the perfect mapping g= Fo(®: (X, 1))~ (Y,0,),
with (Z, t,)¢ TOP, and X dense proper subspace of (Z, t,),a contradiction (by Lemma
3.7.14, 8

Pr[olznosnlon 4.11. Let A be such that for every (X, 1)¢ A we have (X, 1,)
€ TOP,, and let f: (X, 1) (F, o) be a p(A) mapping.

If (Y, o) € K, then (X, 1) € K,.

Proof. If (¥, o) is A-Compact then (¥, o,) € TOP, Comp, since f=F,(f):(X, 1)
— (Y, o,) is perfect (by 4.3), we have that (X, tr,) is a compact Hausdorff ([8],
th. 3.7.24), hence (X, 1) is A-Compact.

Theorem 4.12. Let A be such that:
(1) For every (X, 1) ¢ A we have (X, t,) € TOP,
(2) For every (X, t) € TOP, there exists (Z, p) ¢ A such that (Z, p,)=(X, 1).
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If (X, ), (Y, 0)¢€K, then the following conditions are equivalent :
(a) the A-continuous mapping g: (X, ©)— (Y, o) is p(A)
(b) g cannot be A-continuously extended over any space (Z, p) € A that contains X
as a A-dense proper subspace.

Proof. (a)= (b) follows by 4.10. If g:(X, 1)— (Y, 6) is not p(A) then
g=F,(g): (X, 1,)— (Y, c,) is not perfect, hence there exists a continuous extension
G:(Z, p)— (Y, 0,) of g=F,(g) over a Hausdorff space (Z, p) that contains X as a
dense proper subspace ([8], th. 37.16). But there exists (X', t') € A such that (X', 1))

= (Z, p) then the mapping g(X’, T')—(Y, o) with §=FA(§)=G, is A-continuous exten-
sion of g:(X, t)— (Y, o) over a space (X', t’) € A that contains X as a A-dense proper
subspace.
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