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DIFFEOMORPHISMS OF PSEUDO-RIEMANNIAN MANIFOLDS
AND THE VALUES OF THE CURVATURE TENSOR ON DEGENERATE PLANES

OGNIAN T. KASSABOV

1. Introduction. Examining the inverse problem of the so-called “theorema egre-
gium” of Gauss, R. S. Kulkarni [7] has proved that if f is a sectional-curvature-
preserving diffeomorphism of a Riemannian manifold of nowhere constant sectional
curvature and of dimension >4 onto another Riemannian manifold, then f is an iso-
metry. For other results in this direction, see (8, 9, 14].

In contrast to the definite case, when the metric is indefinite a sectional-curva-
ture-preserving diffeomorphism is not necessarily an isometry. This occurs when the mani-
folds are conformal flat and of recurrent curvature in the sense of A. Walker [12].

We note, that for pseudo-Riemannian manifolds the degenerate planes have an
important role. Although the sectional curvature is defined only for nondegenerate
planes, the values of the curvature tensor on degenerate planes give a good informa-
tion about the manifold, as it is shown e. g. in [3, 4].

In this paper it is introduced a condition, which is more general that the condi-
tion f being a sectional-curvature-preserving diffeomorphism and which is in connec-
tion with the values of the curvature tensor on degenerate planes. It is proved, that
if this condition is fulfilled for weakly degenerate planes, then f is sectional-curvature-
preserving or the manifolds are of quasi-constant curvature. The corresponding con-
dition for strongly degenerate planes implies that the diffeomorphism is necessarily an
isometry.

2. Notations and preliminary results. Let M be a (pseudo-) Riemannian mani-
fold with metric tensor g. By a plane we mean a 2-dimensional subspace of a tangent
space. A plane a is said to be nondegenerate, weakly degenerate or strongly degene-
rate, if the restriction of g on « is of rank 2, 1 or 0, respectively. Of course, if M is
Riemannian, i. e. if the metric is definite, all planes are nondegenerate. The sectional
curvature K(«) of a nondegenerate plane « is defined by

_R(x, y, y. x)
K(u)"m(x, voyx)’

where {x, y} is a basis of a, R denotes the curvature tensor and r, is defined by
m(z, 4, v, w)=g(z, w)gu, v)—Lz, v)gu, w).

A vector £ in a tangent space is called isotropic if g(5, £)=0 and &§+0. It is
easy to see, that if a plane a is weakly (resp. strongly) degenerate, then there exists just
one isotropic direction in a and it is orthogonal to a (resp. each vector in a is iso-
tropic and orthogonal to ). On the other hand if a plane « admits two orthogonal
noncolinear vectors, one of which is nonisotropic (resp. isotropic) and the other—isotro-
pic, then a is weakly (resp. strongly) degenerate,

As usual by a curvature-like tensor on a vector space V' we mean a tensor T of
type (0,4) on V' with the properties:
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Diffeomorphisms of pseudo-Riemannian manifolds 79

1) T(x, y, 2, u)=—T(y, x, 2, u);
2) T(x, y, 2, )+ T(y, 2, x, )+ T(2, x, y, u)=0;
3) T(x, y, z, u)=—T(x, ¥, u, 2).

The following lemma will be useful:

Lemma A (3, 4). Let T be a curvature-like tensor in a point p of a pseudo-
Riemannian manifold M of dimension =3. If T vanishes identically on each weakly
degenerate plane in p, then it has the form T =cn, with a constant c.[n partlcular,
if T is the curvature tensor of M, then M is of constant sectional curvature in p.

According to the F.Schur’s theorem, if the conditions of Lemma A are fulfilled in
a connected open set U with 7 — the curvature tensor, then U is of constant sec-
tional curvature.

Let us recall that the Weil conformal curvature tensor C for M if defined by

1 T
C=R= 5= ¢+ Gy ™

where n=dim M, S is the Ricci tensor, t is the scalar curvature and ¢ is defined by

Q(Q)(x, ¥, 2, u)=g(x, 1) Qy, 2)—&x, 2Ry, w)+&(y, 2)QUx, u)—gly, WQA(x, 2)
for any symmetric tensor Q of type (0,2). It is well known [5] that if n=4 then M
is conformally flat if and only if C vanishes identically. The following two lemmas
give criteria for vanishing of the Weil conformal curvature tensor.

Lemma B (3, 11]. Let M be a (pseudo- ) Riemannian manifold of dimension =4.
Assume that for every orthogonal quadruple {x, y, z, u} of vectors in a point p ¢ M

R(x, y, 2, u)=0

holds good. Then the Weil conformal curvature tensor of M vanishes in p. In parti-
cular, if this holds in every point of an open set U, then U is conformally flat.

Lemma C. [3]. Let M be an n-dimensional pseudo-Riemannian manifold of
Signature (s, n—s), where s>=2, n—s=2. If the curvature tensor of M wvanishes
identically on each strongly degenerate plane in a point p, then the Weil confor-
mal curvature tensor of M wvanishes in p. In particular, if this holds in every point
of an open set U, then U is conformally flat.

If M is another (pseudo-) Riemannian manifold, we denote the corresponding ob-

jects for M by a bar overhead. A diffeomorphism f of M onto M is said to be sec-
tional-curvature-preserving (7], if

K(f *a)=K(a)

for each nondegenerate plane « in M, whose image is also nondegenerate. The corre-
sponding condition for degenerate planes is
(2.1) lim —kf(‘u;—)'::—l

a-—a,

where the degenerate plane a, is approximated by nondegenerate planes whose images
are also nondegenerate. Note, that if f is conformal, then (2.1) holds when and only
when f preserves the null sectional curvature, defined in [6].

It is easy to prove the following:

Lemma 1. Let a, be a degenerate plane in M, such that (2.1) holds. If R
doesn’t vanish identically on o, then =, vanishes identically on f » a,.
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In what follows let M and M be pseudo-Rimannian manifolds of dimension » and
let f be a ditfeomorphism of M onto M. Then f=x will be denote by ..

Lemma 2. Let n=3 and M be of nonconstant sectional curvature in a point p.
If (2.1) is satisfied for each weakly degenerate plane «a, in the tangent space T,M,
then there exists an isotropic wvector & in p, such that each isctropic vector, which
is sufficiently close to & is mapped by f, in an isotropic vector in f(p).

Proof. According to Lemma A there exists a pair {x, &} of vectorsin 7,M such
that x is an unit vector, £ is isotropic and orthogonal to x and R(x, & &, x)=0. Let us
assume that there exists a sequence of isotropic vectors &; converging to &, such that &;
are all nonisotropic. Then we can find easily a pair {x;, &} of orthogonal vectors in
T,M, such that x; is a unit vector, §, is isotropic, &, is nonisotropic and R(x;, &, &, x,)+0.
So, without loss of generality we assume that & is nonisotropic. We may suppose

also that x is orthogonal to &. Hence, according to Lemma 1 span{x, &} is degenerate,
i. e. x is isotropic. Let £=y+a, where the vectors x, y, a are orthogonal and g(x, x)
=g(y, y)=—g(a, a)=1 or —1. Let # be any unit vector, orthogonal to x, y, a if
n=>3 and let u be the zero vector, if n=3.We put e=g(y, y)gu, u) and y,=(y+ su)/
J1+es?, where s is a real number, |s|<1. Since R(x, & & x)=+0, then by Lemma I
there exists a real nunber 8, 0<8<1, such that for any real s, £ with |s|, |{{<8 we
have

- =~ y—tx — y—tx — — V-0
(Xt 1ty yTItT-HI' Nir +a, x + ty;)=0,
which implies
(22) (L+2)T,(X, Voo Yoo )+ 22T+ 1 (x, Yoo @, x) +7(x, @, @, )

+t21?1(;:' (7, E' ;:)=0
For £=0 this reduces to

(2.3) (6 Ve Vo X)+ 270( X, ¥, @, x) + my(x, a, a, x)=0.
From (2.2) and (2.3) we find
£ (7%, Voo Voo )+ (V00 @0 @, Y+ 2VTFB—1) 7, (6, Vo @, X)=0

for any real ¢, s with f, [s<&. Hence m,(x, y, a, x)=0. Compairing this with (2. 3)
we get

and since x is isotropic, it is easy to conclude

2.4) gl x, a)=0,
(2.5) g(x, y)=0.
From (2.5) it follows immediately

(2:6) g(x, ¥)= g(x, u)=0.

Since x is isotropic, (2.4) and (2.6) imply g(x,2)=0 for each vector z in f(p) and
hence x=0, which is a contradiction. This proves the lemma.
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The following assertion is an analogue of Lemma 2 for strongly degenerate planes.

Lemma 3. Let the Weil conformal curvature tensor of M do not vanish iden-
tically in p and let M have the signature (s, n—s), where s=2, n—s=2. If f satis-
fies (2. 1) for each strongly degenerate plane a, in T,M, then there exists an iso-
tropic vector & in p, such that each isotropic vector, which is sufficiently close to
&, is mapped by f, in an isotropic vector in f(p).

Proof. According to Lemma C there exists an orthogonal pair {&, n} of isotro-
pic vectors in T,M, such that R(§, n, n, £)3=0. Let us assume that there exists a se-

quence m; of isotropic vectors converging to m, such that n; are nonisotropic. Then
we can find an orthogonal pair {§, n;} of isotropic vectors in 7,M, such that n; is
nonisotropic and R(&. M, M, §)F0. So we may assume that n is nonisotropic. Also
without loss of generality we suppose that & and n are orthogonal. Then Lemma 1 im-
plies that & is isotropic. Let £=x+a, n=y+b, where x, y, a, b are orthogonal and
8(x, x)=g(y, y)=—ga, a)=—g(b, b)=1. For any vector z in 7,M orthogonal to &,
we put

E,=E+Hx+2); n,=n+ty; a,=span{g, n,
Then we find
R(a,) 1

L= lim ey =RE nw © im REs np e &)

% H2+416){2+tg (x+2, x+2))—t{glz, n)_-ttg(z, yl}2
(28(& x+2)+tg(x+2z, x+2))g(ne n)—t{(E ¥) + & x+2, n)+tg( x+2, y))?

Hence we obtain g(&, x+2)g(n, 1)=0 or

2.7 &(& x+2)=0.

In particular, if z=0 this implies g(&, x)=0 and hence g(&, a)=0. Using again (2.7)
we conclude g(&, 2)= 0. Consequently & is orthogonal to every vector in f(p),
which is a contradiction. This proves the lemma.

Lemma 4. Let n=3 and in a point p¢ M there exists an isotropic vector &,
such that each isotropic vector, which is sufficiently close to & is mapped by f,
into an isotropic vector. Then f is a homothety in p.

Proof. Let E=x+a, where {x, a} is an orthonormal pair of vectors. Let y

by an arbitrary unit vector, orthogonal to x, a. Then e. g. g(x, x)=g(y, y)=—g(a, a)
and for each real ¢ the vector

E=(x+ty)(1+8)""+a
is isotropic. By the condition &, is also isotropic for each sufficiently small £ This
implies
g% X)+0g (v, M) +2t (% N+NT+8 (g (x, a)+Eg (3, a)}+(1+m)g (@, a)=0.
Hence we derive

g(x. Y=gy, a)=g(x, =0, g(x, =gy y)=—2(a a).
from which the assertion follows easily.
An n-dimensional nonflat (pseudo-) Riemannian manifold M is said to be a K -mani-
fold [12], if it has one of the following properties:
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1) M is recurrent, i. e. VR=a(X)R, where a=0;
2) M is symmetric (\7R=0) and there exists a differential form a=0, such that
S wX)R(Y, Z U, V)=0.

cycl X, ¥V, 2
A.Walker showed in[12] that a is defined by a(X)=g("7, X), where v is a function
(called recurrence-function) and 7w is the gradient of w.
An n-dimensional (pseudo-) Riemannian manifold M is said to be of quasi-constant

curvature [1, 2] if it is conformally flat and there exist functions /, NV and a unit
vector field V, such that the curvature tensor has the form

R=(N—H)e(B)+ Hr,

where B(X, Y)=g(X, V)g(¥, V). Note that for any point p of M we have K(a)= H(p)
for any nondegenerate plane a in 7,M, perpendicular to V, and K(a)=N(p) for any
nondegenerate plane a in 7,M, contammg V, Such a mamfold we shall denote by
M(H, N, V). Of course, if dim M= 4 and the curvature tensor has the above mention-
ed form, the manifold is necessarily conformally flat.

Two standart examples of manifolds of quasi-constant curvature are the following
(see also [2]).

Example 1. Let M(c) be an (n—1)- dxmensmnal(pseudo-) Riemannian manifold of
constant curvature and M= M,(c)<R. Then M is of quasi-constant curvature.

Example 2. Let R**! be the pseudo-Euclidean space with an indefinite metric
of the signature (s, n+1--s). Let M be the n-dimensional indefinite hypersurface
given by the equations

xf=2y'y"IA i=1,..., n—1
x"=y"(A—2)/A
X" =f(y")
for A>0, y">0, where A=—2X% (y))?+4 Xr- ;+l(yf)?+l and f is a smooth function.

Then M is a manifold of quasi-constant curvature and
H=f2(y"P(1 4+ N=f/f[y"(L+f2)
In the following section we shall use the well-known fact [5], that if the metrics
g and g on M are related by g=e?g (thus (M, g) and (M, g) are conformal), then

(2.8) R=e®{R+o(Q)}
where
(2.9) Q(X, Y)=XoYo—g(7 o, V)— ; g(7o, 70)gX, Y).

3. Main results. We begin this section with a theorem, which follows immediately
from Lemmas 2 and 4.

Theorem 1. Let M and M be pseudo-Riemannian mamfoldc of dimension n>3
and let M be nowhere of constant sectional curvature. If f is a diffeomorphism of
M onto M satisfying (2.1) for each weakly degenerate plane uy, on M, then fis con-
formal.

If the diffeomorphism f is conformal, we have f*g=e¢%g or f*g = —e’g for a
smooth function o. Then without loss of generality we may indetify M with M via f

and assume g=e%g We state:
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Theorem 2. Under the conditions of Theorem 1 the following propositions
hold :

a) if Vo vanishes identically or n=4 and M is nowhere conformally flat, then
f is an isometry ;

b) if 7o is isotropic and either n=4 or M is conformally flat of dimension
n=3, then M is a conformal flat K-space and o is a function of the recurren-
ce-function;

¢) if || vo[2=g(7o, o) doesn’t vanish and either n=4 or M is conformally
flat of dimension n=3, then M is a manifold M(H, N, V) of quasi-constant curva-
ture, where ANH, <N and V are proportional to 7.

Proof. Since g=e¥g, (2.1) reduces to

p(x, &,‘ &y x):t""R(x, g! E_. x)
for arbitrary p in M and x, & in T,M with g(x, x)=0, g, £)=g(x,£)=0. Hence,
using Lemma A we obtain B
R=e*{R+cm,}

for a function ¢, from which it follows

(3.1) R=ev{R+(t—1)n /n(n—1)}.

Let yo=0, i. e. o is a constant. Then (2.8), (2.9) and (3.1) imply (e-*—1)R
= (t —7)n,/n(n—1).
Since M cannot be of constant sectional curvature in an open set, this yields o=0,
L. e, f is an isometry.

On the other hand, if x, v, z, u are arbitrary orthogonal vectors at a point p of
M, from (2.8) and (3.1) we find

(3.2) (e —1)R(x, y, 2z, u)=0.

If =4 and M is nowhere conformally flat, Lemma B and (3.2) imply o=0, i. e. fis
an isometry, proving a).

~ Let us assume that 7o is isotropic or |"7a|[? doesn’t vanish. In both cases if p
is an arbitrary point, o cannot vanish in a neighborhood of p, i. e. there exists a se-
Quence p; converging to p, such that o(p,)+0 for each i Then (32) and Lemma B
imply that the Weil conformal curvature tensor of M vanishes is p, By con-
tinuity it vanishes in p and hence M is conformally flat, if n=4. Consequently in ca-
ses b) and ¢) M is conformally flat. Using (2.8) and (3.1) it is not difficult to get

(3.3) P=e>p,

(3.4) Q = (e —1)P/(n—2) + (e —1)g/2n(n—1),

where P=S—1t/ng. Since (M, g) and (M, g) are conformally flat, we have [13]
(35) (VS = s (V2 2)= (Vx (S— 5=y (X 2)=0.

T

(VxS N (s D—(TAS— =178 (X, 2)=0.
Hence, using (3.4) and ¢,V = 7Y+ Xo¥+YoX—g(X, ¥)7Uo we obtain
XoP(Y, Z)—YoP(X, Z) + -2:(;'_"” (XG0 gy, Z)—Ya—1)8(X, 2)
+8(X, 2)P(Y, vo)—gY, 2)P(X, vo)=0,
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which implies immediately

(36) P(Y, vo)= Z V=),

(3.7) XoP(Y, Z)—YoP(X, Z) + QH—Z(;%,T{XG-r)g(Y. 2)— Y(r—1)g(X, 2)}=0.

To prove b) we assume that o is isotropic and we put in (3.7) X=Z=vyo,
Y= (t—1). Using (3.6) we find (7o) (t—1)=0. Hence, substituting in (3.7) X by vo
we obtain easily Y(t—1)Zo=0 for arbitrary vector fields Y, Z on M. Since 7o can

not vanish this shows that t—t is a constant. Since /o is isotropic, (2.9) implies
Q(X, 70)=0. This, using (3.4) and (3.6) we derive

(38) €% _1=0,

On the other hand, since t—t is a constant, (3.7) implies XoP(Y, Z)—YoP(X, Z)=0
and hence P(Y, Z)=hYoZo for a smooth function /4. Then (2.9), (3.4) and (3.8) yield
g(7 o, Y)=(1 +(1—e*)k/(n—2))XoYo. Hence we obtain easily

(7xP) (Y, Z)={Xh+2h(1 +(1—€*)h/n—2)Xo}YoZo.
We compare this with (3.5) to find

-2
{(XhYo—YhX0)Zo + 50—y (Xw&(Y, 2)—Yg(X, Z)}=0.

Here we assume, that X is any vector field on M, such that Z is orthogonal to vo
X and that Y is not orthogonal to Z. It follows that Xt=0 i. e. t is a constant

Thus, differentiating (3.8) and using t—t=const we obtain tXo=0 for any vector

field X on M. Since 7o can not vanish this implies t=0. According to (3.8) t
vanishes too. Then (3.1) shows that f is sectional-curvature-preserving and b) follows
from [10].

Finally, we assume that | 7o|[? doesn’t vanish. Let in (3.7) X=Z=y0o and Y be
orthogonal to t7o. Using (3.6) we obtain Y (1—1)=0. Hence pvVo = V(t—1), where
W is a smooth function. Substituting X by Vo in (3.7) and making use of (3.6) we
find

3.9) P(Y, Z)=u)YoZo — 57’,'(;—2_')- &Y, 2))
where A=(n—2)/2n(n—1)||7o|* From (2.9), (3.4) and (3.9) we derive
(3.10) Hvx70 )=+ M=% oY tvgX, V),
where

veb gy = Ve P St

In particular, this implies X||76|?=0 for any X' orthogonal to wo. From (3.9) and
(3.10) one gets
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20
(VxP) (Y, z)=)_i*i P(Y, Z)+pXAYoZo +20(1 +hn' =) XoYoZo

+apv{g(X, Y)Zo+g(X, Z)Ya}
Together with (3.5) and (3.9) this yields
-2 1
lXchZo+__,—n'zn—_l—)— (Xt — — Xw)g(Y, 2)
(3.11)

n—2
T 2n%(n—1)

n—2
—{ 2n(n—1)

Yt Yu—hpvYolg(X, Z2)=0,

when X is orthogonal to yo. Let in (3.11) g(Y, Y)=0; Y be orthogonal to X, yo;
Z=<y0+Y. Then we obtain Xt=1/nXu. Now we assume in (3.11) Y=Z=<70. The
result is Xp=0. Consequently 7o, syt and s7p are proportional. Since M is confor-
mally flat (3.9) shows that it is a manifold of quasi-constant curvature M(H, N, V)
with V proportional to Vo. Moreover, we compute

1 1 1 n—2
He=—ay =51 N=Tpoy it o v

Consequenty sy7H, sy N and syo are proportional. This proves the theorem.
Remark. Putting in (3.11) Z=X we obtain

1
(3.12) wvyo =|| 7ol (v T——- VH)
If 7//—N doesn’t vanish (3.10) and (3.12) imply
11
&vxY, v )= g—n | VH|8X, Y)

for all vector fields X, Y, orthogonal to 7o. This holds for each manifold of quasi-
constant curvature, see [1] (indeeed in [1] this is proved in the definite case, but there
is no principle difference). Note also that in the case Fr=const it follows from (3.10)
and (3.12) that M is locally a product M;XM, in a neighborhood of any point in
which M is not of constant sectional curvature, where M, is an (n—1)-dimensional
manifold of constant sectional curvature /.

The following result shows that there exists no nontrivial diffeomorphisms, satisfy-
ing (2.1) for strongly degenerate planes.

Theorem 3. Let M and M be pseudo-Riemannian manifolds, such that M is
nowhere conformally flat and of signature (s, n—s) where s=2, n—s=2. Let f be

a diffeormorphism of M onto M, satisfying (2.1) for each strongly degenerate plane
ao on M. Then f is an isometry.
Proof. According to Lemmas 3 and 4 f is conformal. So without loss of gene-

rality we may identify M with M via f and assume g=ge%p where e=+1. Let
e=1 and let {§& n} be an arbitrary orthogonal pair of isotropic vectors on M. Then
(2.1) yields

(3.13) RE, m, n, &)=e"R(E 0, n, §).
On the other hand (2.8) implies
(3.14) R(E, n, n, &)=e"R(E n, n, &).
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From (3.13) and (3.14) we obtain

(3.15) (e*—1)R(E, n, n, §)=0.
Since M is nowhere conformally flat, then from (3.15) and by applying Lemma C it
follows that o=0. Similar arguments show that the case e=—1 is not possible. This

completes the proof.
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