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A PROBABILISTIC INTERPRETATION OF MULTIVARIATE B-SPLINES
AND SOME APPLICATIONS

Z. G. IGNATOV, V. K. KAISHEV*

The multivariate B-spline is shown to be the density (with respect to the Lebesgue measure) of a
linear transformation of order statistics from the uniform disfributian on (0, 1). This interpretation makes
it possible to establish exact and asymptotic results both for B-splines and linear transformations of
uniform order statistics as well.

1. Introduction. B-splines first introduced as univariate functions by H. B. Curry
and I. J. Schoenberg [10] plaved an important role both as a theoretical and prac-
tical tool in dealing with polynomial splines. The geometric interpretation of the
B-spline due to Curry and Schoenberg led to a multivariate version of this function,
proposed by C. de Boor [6]. Since then, an intensive study of the basic properties
of multivariate B-splines and certain linear combinations of such functions was carried
out, mostly by C. Micchelli[24], W.Dahmen [I1],Dahmen and Micchelli[13],
K. Hollig [20], H. Hakopian [16, 17, C.de Boor and K. Hollig [7]. For a
more complete list of contributions to the subject we refer to the survey by W.Dah-
men and C. Micchelli [13]

The purpose of this paper is to investigate the relation between B-splines and
certain probability distributions. Thus, it is shown in Section 2, Lemmas 2.1 and 2.2,
that the multivariate B-spline coincides with the density of a random vector, which is
a linear transformation of order statistics from the uniform distribution on (0, 1). This
establishes an important connection between the theory of spline functions and some
aspects of probability theory. On its basis, useful representations of both B-splines
and densities of linear transformations of uniform order statistics (LTUOS) are derived.
For instance, applying Lemma 2.1 to the recurrence relation for multivariate B-splines
due to Micchelli [24] and to that of C. de Boor and M. Cox [5, 9], in the uni-
variate case, yields Lemmas 2.3 and 2.4 respectively. The latter can serve as numeri-
cally efficient means of dealing with densities of LTUOS. The importance of the re-
sults, given in Section 2 is better understood if we recall, that distributions of LTUOS
arise in such branches of statistics as serial correlation, analysis of contingency tab-
les, robust estimation of scale and location parameters. Application of the achievements
of B-spline theory in the above mentioned statistical context proves to be promising,
both from a theoretical and computational point of view. Probabilistic and statistical
facts and techniques, related to order statistics, are shown to be of interest for the
study of B-splines as well.

Section 3 represents a short review of what can be added to the asymptotic pro-
perties of B-splines and LTUOS, after we have Lemma 2.1.

*This work was initiated at the Institute of Mathematics, Bulgarian Academy of Sciences and com-
p}eled while the second author was a participant in the scientific exchange program between the Na-
tional Academy of Sciences of the United States of America and the Bulgarian Academy of Sciences.
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2. Multivariate B-splines and their probabilistic interpretation. The object of
this section is to motivate stochastically the notion of the multivariate B-spline. To
this end, we recall certain definitions and introduce some notation to be used through-
out the sequel. Elements of the Euclidean space R*, s>1, are denoted by X, ¥, 2,...,
i.e. x=(x,,..., x,). Superscripts will be used to enumerate vectors x/, j=0,..., n
For a given set A=R", x4(x), [A], volg(A), dim(A) denotes the indicator function, the
closed convex hull, the s-dimensional Lebesgue measure, and the dimension, respec-
tively.

We'll now give two equivalent definitions of a multivariate B-spline.

Definition 2.1. Let the convex hull [{x° x,..., x"}] of the set {x°, ..., x"}=R®
have dimension s. The linear functional

I[{_,‘, ''''' ) (®)=n !!’{ OUpx®+ ... +u,x")du, ... du,

where S"={(uy, ..., u,):u; =0, £7_ u;<1}, ug=1—X7  u; has a density

M(t; x0 xt, .., X") i e

(2.1) nl [ ®Uex®+ ... +ux")duy .. .du, = [ OEME; x° ..., x")dt
st RS

for all integrable ® (®¢ L(R*)). The density M(#; x°,..., x") we call the multiva-
riate B-spline of degree n—s with knots x° x',...x"

Definition 22. Let o= [, ..., v"] be any n-simplex in R", such that
vl s=xt, i=0, 1,..., n i e. the first s coordinates of vi agree with the wector
X{€R®. The multivariate B-spline M(t; x° ..., x") is defined as

M(t; x° ..., x")=vol,  ({u€o:uls=t})/vol,(c), tER".

Before discussing Definitions 2.1 and 2.2 we remark, that the univariate B-spline (i. e.
when s=1) was first introduced by H. Curry and L. Schoenberg [10] using the
notion of a divided difference. Since we encounter divided differences recall
Definition 2.3. Given anv real numbers t, ..., t, and any sufficiently
smooth function f(y), we define its r-th order divided difference over the points
tyoooy tyy bY
(b eoos b f=(ty e oo )=t ooy £ N)Err— 1),

provided t,=t ;-

I t,=ty=...=t,4,, then [t, ..., L) f=D"f(t,)r!, where D'f(t,) denotes the
r-th derivative of f(y) at y=t, r=0, (D°f(¢,)=f(t)))

Following Curry and Schoenberg [10] the univariate B-spline M(¢; x°, ..., x") of
degree n=1 with knots x° ..., x"¢R' is the n-th order divided difference of the

function f(y)=n(y—£)1~", i. e.

(2.2) M(t; x0..., x")=[x%.... X" f(y),

where (x)4 = max {0, xl and dim[{x? ..., X"}]=1.
It is known (see L. Schumaker [27], page 46) that when the knots x° ..., x
are pairwise distinct

(2.3) (X% ..., X" f(¥)=n Z (&/—8)" T (x/—x)
j=0 i=0
i+
When some of the knots x° ..., x" coincide, i. e.
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X =10, e, T, T, T oL <Y

Yo vi M

Vo+ ... +v;=n+1 we can apply the representation of a divided difference with mul-
tiple knots given in I Berezin, N. Jidkov ([4], page 127) to the function

f(y)=n(y—t)"* to obtain

{
(2.4) M(t; .oy e, T, T) = T DY g(e)/(vi— 1)
— — e =

VO V’

1 v
where g (v)=n(y—ty~'/ T (y—7/)"
j=0
]+t

Let us now return to Definitions 2.1 and 2.2 and note that H. Curry, I. Schoen-
berg [10] used the Hermite—Genocchi formula for divided differences (see N. Nor-
lund [25], page 16) to establish relation (2.1) for univariate B-splines. The latter was
extended to the multivariate case by W. Dahmen [11] and C. Micchelli [24]
Definition 2.2, proposed by C. de Boor [6], reveals an intrinsic geometrical feature
of multivariate B-splines. It extends the geometrical interpretation of univariate B-spli-
nes due to H. Curry and I. Schoenberg [10], Definitions 2.1 and 2.2 are
equivalent and this is proved and discussed by C. Micchelli [24], Lemma 1.

A great deal of properties is known about the B-splines. Thus, M(¢; x% ..., X"
is a non-negative piecewise polynomial of degree n—1 with n—2 continuous deriva-
tives when s=1 and x°, ..., x" are distinct real numbers. In general, (s=1), it has
been shown that M(¢; x° ..., x") is a piecewise polvnomial of total degree not exceed-
ing n—s with n—s—1 continuous derivatives when the convex hull of every subset
of s+ 1 points of {x° ..., x"} forms an s-dimensional simplex. For a proof of this
result, see, C. Micchelli [24] and also C. de Boor [8].

We'll now recall the definition of Dirichlet distributed random variables which
will be needed to prove Lemma 2.1.

Definition 24. The random wvariables 6, 0, ..., 0, have the joint Dirichlet
distribution D(vo, v, . . . ,v,) with parameters v,>>0, ... ,v,>0,(0y,...,0,)¢D(Ve, ..., V,)
if 0,=1—-0,—...—0, and the joint probability density of 0,,..., 9, with respect
to the Lebesgue measure on the simplex S", introduced in Definition 2.1 is

. L(vo+ . .. +V,)) —1 V! v,—1
(2.5) S (i —ly— e —l) Tt )
n

(T(.) is the well-known Gamma function).
Let Z,, Zg»..., 2, be n independent uniformly distributed on (0, 1) random va-
riables and let Zy, ,=Zs,n = ... = Zn n be their order statistics. Consider,

(2'6) 9(): 1 *'Zl.fl‘ 0]'—djzl.’l'*z'.’. ny ooy en_x:Zn_l.n_Zn_n. en:Zn,n

known as the spacings. It is well known, that the random variables 0,,..., 6, have a
Dirichlet distribution with parameters (1, 1,..., 1) (c.f. S. Karlin and M. Taylor

N ——
n+1

[23], page 105).

A probabilistic interpretation of the multivariate B-spline is established by the
following.

Lemma 2.1.Let x° x\,...,x" be fixed vectors in R* and let dim([{x°, ..., x"}])=s.
Then the density f,(t) of the random vector
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L=0,x"+0x'+ ... +0,_,x""14+6,x"

with respect to the s-dimensional Lebesgue measure is M(t; x° x',..., x").
Proof. We observe that the left-hand side of (2.1) can also be represented as

(2.7) [l f o ®igx®+ ... +u,x")du, ... du,.
R'l

Since n! y, is the joint probability density of 0,,..., 0,, given by (2.5) with vo=v,
=...=v,=1,(27) can be viewed as the mean value of the random variable
®(0px° + .... +0,x"). Hence, (2.1) can be written in the form

E{@®(0,x0+ . .. + 0,4} = [ M(t; x° ..., x")®(£)dt.
RS

On the other hand, E{®(0,x°+ ... 0,x")}=E{®(L)}= [ps ®(t)f (£)dt, where f,(f) is the
density of the random vector L with respect to the s-dimensional Lebesgue measure.
So, for every function ®¢L}(R°) we obtain

[ M(t; 50 ..., x"(Bdt= [ ®(t)f,(t)at
& R

and therefore, using the properties of the Lebesgue integral we conclude that

vol,({£: M(¢: x° ..., x££ (D} =0,

ie. M(#; x°,..., x") and f,(f) coincide almost everywhere with respect to the s-di-
mensional Lebesgue measure. This completes the proof of Lemma 2.1.
Let us now allow the knots coalesce, i. e. assume

i { LY. i i, Iy 4y — i
(0, x = {xfo=xi = . = x0T, o=yt =L = Lo,x Yot v
iy v sy, L H1 ;
=x" Vi = =M= e, T Vo oL+ =+ Then

Yo Vi

L= 0,60 + 0,51 + ... +0,0" = 0,2048,ti+ ...+, where we have set 8, = 0,

Foeee 0, 0 =0, + ... +9w0+vrw--- ,0,=6, . + ... +9,-n.

0 0 ot Vi

By the properties of Dirichlet distribution (c.f. S. Wilks, S. [30], p. 177) we
have (0, ..., 0,06 D(vy,...v,). So, we obtain the following more precise formulation
of Lemma 2.1.

Lemma 2.1% /f x0 x!,..., x'¢R* l'zs, are pairwise distinct and dim ([{x%
ooy X'\))=s5, then the B-spline with knots x° ..., x! having multiplicities, corres-
pondingly Vo, ..., Vo Vot ... +Vvi=n+l, 0 e

M(t; X0 ..., Xopoues Xhorny Xf)

v
Yo !

is the density of the random vector L=0,x"+ ... +0,x  with respect to the s-dimen-
sional Lebesgue measure, where (0, ..., 0)€D(vo, ..., V).

Throughont the sequel all the densities will be with respect to the Lebesgue
measure.
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If now in the expression of the random vector L of Lemma 2.1 we set x°=y°,
X'—x0=yl, x2—xl=y? ..., X"—x"'=y" and use (2.6), we have

Lemma 22. The density of L=y'+2Zy,ay* + ..« +Znny" when dim([{y° y°
+yL . VY Y D=s s

(28) Fi()=M(t; y% y°+yh.o o, YO+ + .00 +Y7)-

The probabilistic interpretation of B-splines, given by Lemmas 2.1 and 2.2, can
serve as a bridge between two different theories, that of spline-functions and order
statistics. Along the next paragraphs we will illustrate, how new results for B-splines
or linear transformations of order statistics can be established, by correspondingly
comparing facts, known independently in each of the two areas.

Let us first mention some formulae, obtained for order statistics, which are seen
to have corresponding analogues in the literature on B-splines. For instance, A. Demp-
ster and R. Kleyle [15] have given the univariate (s—1), distribution function
P(L<t) for L as in Lemma 22 and y'==0, i=0,..., n.

The distribution of the circular serial correlation coefficient with lag A

N . N —
(29) aRy= ;Xx U=U)Ujsa=U)) T (U;=UP,
= =

where Uy, =U, U=2Y,UyN, U, — independent normally N(0, 1) distributed and
A< sample size N, was found by R. Anderson [3]. His expression for the margi-
nal density of ,Ry, N-odd, is seen to represent the B-spline

(2.10) M(t; 4Cyr ACar -+ 4Csr):

where ,C,,. ., 4C,+, are the distinct latent roots of the matrix of the quadratic form
in the numerator of (2.9), n+1=(N—1)/2

As Dempster and Kleyle have pointed out their formula for P(L<f) gives also
the distribution of ,Rj,.

More general expressions for the distribution of L, covering the case of zero
yi—s were derived by M. Ali [1] and also by H. Weisberg [29]. The representa-
tion of Ali is a ratio of two determinants while that of Weisberg coincides, after
differentiating it, with the right-hand side of (2.4).

In the general case, (s>=1), the density of the random vector L from Lemma 2.1
was found by M. Ali and M. Mead [2] under the assumption that the knots x?, ..., x"
are in general position, i. e. every subset of s+1 points from {x° ..., x"} forms a
simplex of dimension s. Note that Lemma 2.1 imposes only dim([{x?, ..., x"}])=s.

In two earlier papers, Quenouille [26] and Watson [28] approached a distributional
problem, closely related to that of Ali and Mead [2]. They considered the joint distri-
bution of lag 1 to lag s serial correlation coefficients Ry, ..., ;Ry given by (2.9).
As Ali and Mead [2] point out, their formula is a special case of Watson’s expression
for the joint density of Ry, ..., Ry and coincides with it, in the corresponding
situation. In virtue of Lemma 2.1 we can directly apply the formulae of G. Watson
and Ali & Mead to express the multivariate B-spline when the knots are in general
position. Such formulae seems not to be known in the B-spline literature. However, on
basis of the results of W. Dahmen [I1] and Hakopian [17] on multivariate divided
differences, an expression for the B-spline of a similar form could be derived. We
shall note, that both formulae of Watson and Ali and Mead can hardly serve for direct
computations, since they represent sums of ratios of determinants with rather cumber-
some summation rule involved.

A numerically more convenient expression for the density of a linear transforma-
tion of uniform order statistics can be established by applying Lemma 2.1 to the
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recurrence relation for multivariate B-splines due to C. Micchelli [24]. The latter
holds for arbitrary sets of knots not necessarily in general position and is therefore
more general than the formulae of Watson and Ali and Mead. Specifically we have

Lemma 2.3. For n>s+1, dim([{x° ..., x"}])=s, and x=Xr  jdux/ X7  A;=1,

n

@11) Fil)= s Bl )

n—s

where f,(x) and [ ;(x) are correspondingly the densities of the random wvectors
L=x"+(x!— X2, nt+ (P—x) 20 nt oo + (X=X 0
Li=x+(x'— X021, n+ (22— X 2o, na+ -« +(XH =X 25
+ (= XINZ g na+ (X=X
j=0,1,..., n, (for j=0, x'=0, Zo,1=1and for j=n—1,n, Z w1 =Zns1,n—1=0)
The univariate version of (2.11) is a probabilistic analogue of the well-known de
Boor-Cox [5, 9], efficient and stable recurrence relation. Namely, if 72, s=1, then

P X
,,'--\’ofL"(x) ,

X, =X x

@12) filx) =0 { TN £ )+
where
L=x,4+(x;—X)2Z1, nt oo +(Xp—=X 1) 0 ns
L' =xo+(x,—%0)Z1, nr+ - - +(Xp1—Xn—2)Zp—1. n—1s
L'=x;+(xg—x) 2y prt - +(Xp—X2—-1)Zn—1, n—1-

Furthermore, let f={t,, t,, ..., t,;,} be a real set obtained from {x, ..., x,} by
addition of the point ¢, satisfying x; ,=#~x;, 0< j<n, n>>0. Then we have

Lemma 24

t—t

(2.13) Fi) =2

tn—l_

t —t
— fr()+ = fir (),
0 n+1 0
where

L=ty+ (t,—t)Zyn+ o+ (Gr — 1) s n + (tjia — b)) Zjsron + oo F (e — t) s
L’=t0+(tl'_t0)zl-n+ <ot (tn—tn—l)zm n* L” =t1 + (tﬁ—tl)zl.n+ oot (tn+l—tn)zm n*

Proof. Follows by Lemma 2.1 and the observation that a (univariate) B-spline.
on the grid {x,,..., x,} is a non-negative linear combination of B-splines on the refin-
ed grid £ (see C. de Boor [6]).

A formula, more general than (2.11), assuming more than one additional points in
the refined grid and related to discrete B-splines is given in 7. lgnatov and
V. Kaishev [21].

Relations (2.11), (2.12), (2.13) and some other recurrences of a similar kind can be
helpful in computations involving linear combinations of uniform order statistics. For
instance, the B-spline distribution function [* _M(¢; x° ..., x")dt can be expressed
recurrently as a sum of B-splines of order n+1 (see de Boor [6], page 10). This
relation proves useful in deriving efficient numerical algorithms for computing tables
of significant points of 4Ry, A=1,2..., whose density is the B-spline given by
(2.10), (see Z. lgnatov and V. Kaishev [22]).
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Finnally, we give another probabilistic interpretation of the B-spline. For the pur-
pose, recall that the distribution L(Zy, 5 Zo.p -+ -+ Zn ) Of the order statistics Z;, ,=
..+ =Z, , obtained from a set of symmetrically dependent random variables Zy,..., Z,
coincides with the conditional distribution L(Zy, Zo ..., ZylZi=2Z9=...=2Z,)
given the probability

(2.14) P{Z,=2;}=0, l=si+j=n.
The random variables Z,, ..., Z, from Lemma 2.1 are independent and identically

distributed over the interval (0, 1), hence, they are symmetrically dependent with
equations (2.5) fulfilled, and we can write

(2.15) L Zimeens Za)=LZis s Za| Zy= o 22Z,).

Further, (2.15) implies L(y°+Zy, oY1+ - .. +Zp 2y = L(¥° + ZV+ ...+ Z, 3 2,
> ... >Z,),and therefore (2.8), Lemma 2.2, can be rewritten as

(2.16) fut)=f (| By=M(t; % Y+ .., YOy +37),
where f,/(t| B) denotes the conditional density of the random vector L'=y°+Z, y'+
e .+ Z,y" given B={Z,=7,= ... =Z,}

In the univariate case (s=1), y°, y%,..., y" are real numbers. Assume all of them
are non zero, then relation (2.16) yields the following

Lemma 25. Let My, My - .., N, be independent random wvariables and let v, be
uniformly distributed over the interval (min(y’, 0), max(y, 0), i=1,2,..., n. Then
we have

) n .
@IT) fyopn . n, EI == 28 = M(E3 3% O+YN s YOHY I I

By relation (2.16) and the theorem of total probability we obtain

(2.18) fu(t)=(, 2,) 0 P(By, -« ig)) frr(E Bliy, - -+ s i)
UERER iy n
_1 = M(E; ¥°, Yo+y5, yo+yitye ., oY+ L+ Y,
Al (e i) €Q,
where B(ij, ..., i)={Z,= ... =Z;} and the summation is over the set Q, of all the
permutations of the indexes (1, 2,..., 7). In the univariate case, (s=1), another ver-

sion of (2.18), based on the notion of discrete B-splines as introduced by de Boor [6]
is available, (see Z. Ignatov and V. Kaishev [21]).

3. Summary of asymptotic results for B-splines and linear transformations of
order statistics. In this section we shall briefly summarize some interesting applica-
tions of Lemma 2.1 to asymptotic results derived independently for B-splines and
LTUOS and thus establish new facts for either one of the subjects.

Limits of univariate B-splines were investigated by Curry and Schoenberg [10]
and in the multivariate case, (s=1), by Dahmen and Micchelli [12]. Combining Lem-
ma 2.1 with the corresponding limit theorems for B-splines (Theorem 3, Corollary 4
and Theorem 4, Corollary 5 of Dahmen & Micchelli [12]), one can restate them in
terms of linear transformations. For example, by Theorem 3 of Dahmen and Micchelli
[12] and Lemma 2.1 we obtain.

Theorem 3.1. The sequence of random wvectors

La=Y""+Zy "+ oo +Zp oy " n=1 with
dim ([{y*", Yo"+ y % .o, YO+ L =y )=,
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V"€ RS, tends weakly to the random wvector L if and only if its distribution is a
Polya distribution ( for a definition of a Polya distribution see Dahmen and Mic-
chelli [12]).

Furth]er, we’ll only indicate results while leaving technical details of their exact
reformulation to the interested reader.

Applying Lemma 2.1 to Corollary 4 of Dahmen & Micchelli [12] yieldsa necessary
and sufficient condition for the sequence L, to converge to a normally distributed
random vector L. It can be directly verified that the latter is equivalent to a sufficient
condition of Ali and Mead [2] about the asymptotic normality of linear transformations
of uniform order statistics and, in the univariate case, to a necessary and sufficient
condition for convergence of linear combinations of ordered spacings to the standard
normal distribution A0, 1). Under the condition of asymptotic normality of the se-
quence of random vectors L, animportant expansion for the univariate B-spline distri-
bution function :

3.1 FOM@E; 0 xt L, xm T

where x/"=%/  y-" j=0, 1,..., n easily follows applying Lemma 2.1 to a theorem

of van Zwet [31] which establishes the Edgeworth expansion for the distribution func-
tion of L, (for s=1). A precise formulation of the expansion for (3.1) is given in
Ignatov and Kaishev [21].
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