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CONFORMAL-HOLOMORPHIC INVARIANTS
EVSTATY PAVLOV

Some conformal-holomorphic invariants of an almost-complex manifold with a B-metric are dis-
cussed.

1. Preliminaries. An almost-complex metric manifold M is said to have B-metric
with respect to the almost complex structure / if for every point of M the following
condition holds true

gax, Iy)=glx, y); x, yeMp.

In every tangent space M, acts a subgroup of the group 0(n, n) which has rep-

resentation

( 2 Ii) A, B — matrixes of type nxn.

Let g(x, ¥)=g(lx, ¥) and F(x, v, 2)=g((", 1) _y):(j"xg)(y, 2). The tensor field F
has the following properties

(l) F(X, y' Z):F(x! 2, J’)» F(Xv 1)', IZ)=F(X, ,V; Z),

which came out of the special agreement between gand /. When 7 /=0, M is called
B-manifold.

A classification of the manifolds with an almost-complex structure of this type is
given in [1]. First the authors discuss a vector space W of all tensors of the type
(0, 3) having the properties (1). The space W is splitted into three mutually ortho-
gonal subspaces W, (i=1, 2, 3), where W=W,(X) W,@® W;. The definitions of W, are
as follows:

1 ~ ~
W, ={re W[v(x, ¥, 2)=5, (&x, y)o@)+&(x 2)o(¥)+2&(x, y)oll2) +g(x, 2)e(ly))},
where ¢(2)=g"*v (L 2) and {a}, k=1, 2,...,2n is a basis in M,.
W,={re W|v(x, y, 2)+¥(3 2, Ix)+(z x, Iy)=9=0},

Wy={y e W|r(x ¥, 2)+ (¥ 2 x)+1(z x y)=0}

From here on eight classes of almost-complex manifolds with B-metric are defined.
We call them generalized B-manifolds and they are denoted by the same letters W

This classification is invariant with respect to the acting group.
Let (M, g) be a B-manifold and a be another metric on M and

2) a=hg+ng.

Here % and p are arbitrary functions on M which depend on the point only. Now we
say that the manifold (M, a) is CH-equivalent to the B-manifold (M, g). The change

SERDICA, Bulgaricae mathematicae publicationes, Vol. 15, 1989, p. 259—265.



260 E. Pavlov

of the metric g—a as above is called CH-change. In [2] we have proved the following
Theorem. The manifold (M, a) is CH-equivalent to a B-manifold if and only if

a(('xl) y, 2)=[0(12)— ()] a(x, y)+[oU)—d)a(x, 2)

+(0(2)—0(/2)] alx, y)+[(y)—0(Iy)] alx, 2),
where o and O are closed 1-forms on M and <7' is the proper connection of a.
As a consequence of this theorem we managed to separate some subclasses of
W, which are still more special generalized B-manifolds. All these new classes CK,,
CH,, CK and CH of generalized B-manifolds contain the class B of B-manifolds. It is
illustrated by the following scheme:

=CH,=
B=CK, CH.
—CKc

Let further x=/x and if ¢ is a l-form, then ¢=g,/. The deiinitions of the vector
subspaces of W;, corresponding to the manifolds of classes CK,, CH,, CK and CH
are: if the l-forms 6 and o are closed, then

B ={ the zero of W,},
CK,={veW, a=0 + 6, a=w—0 are closed},
CHy={yeW, « - 0+0 is closed}s
CK ={ve¢W,|a=0—0 is closed},
CH ={y¢W,|a=0+0}.

2. CH-change of the metric. We suppose that on M a metric as in (2) is given
and A =102 cos(21), p=[*sin(21), ©=dr, O=do. The smooth functions o and t are
arbitrary. To see which classes of manifolds pointed out in [l] and [2] are CH-equiva-
lent, additional preliminary study of some tensors is necessary. We define the tensors
¢, ¢'. p and r as follows: the tensor ¢ from [1] with the help of which the space W,
had been defined

g(x, 30 2)= o [80x ¥) 0(2) + & (x, 2) 0( V) + & (% Y)N(2) + 8 (x. 2) 9 ¥))
where ¢(2)=g"* F(l,, I}, 2);
q'(x, y, 2)=g(x, y)u(z)+g(x, 2) o y)+§(x, y)a(z)+§(x. z)cT(y).
where ¢ —~w+0;

plx. ¥ D)=y [2F(x, y, 2)+Fly, 2 )+ Fz x D+F32 0+ F@ x )

e v 2= 2FG y )+ Ay, x, D)—F@E x YAz x ) =AY x 2)l

Besides this, to every tensor S of type (0, 3), having the properties of F we associ-

ate S: b"(x. A z)--.-S(}. vy, 2). Evidently the tensors q tl.'. p and 7 exist.
Note. Similar associated tensors can be determined not only for F but for every
other tensor v from W. If y¢ W, then the corresponding associated tensors are: ¢,

4 Pr Iy €L



Conformal-holomorphic invariants 261

Lemmal.Let y=v,+va+7v36W. If 7,6 W, then );,( W..

Proof. i=1. Now y,=¢ and g(x, ¥, 2)=v,(x, ¥, 2)=(21)"'[ — ¢(2)g(x, ¥)—0 (¥)
. g(x, z)+q>(z)§(x, y)+q>(y)§(x, 2)]. Here q is defined using the form (}(z)zg“*q'(l,-,
ly 2) = — ¢(2). Thus q.é W,.

i=2. From v,¢ W, follows v,(x, ¥, 2)+7v9(¥, 2, Xx)+73(2, x, ¥)=0. In this equ-
ation after the change X —X y—»}. z— 2z we have ';,(x, v, z~)+'},(y. 2, X)+ Y.a(z.
x, v)=0, i. e. }Z(WQ.

i=3. It is evident since Ys=7Y — (¥, +7a).

Lemma 2. If ¢’ ¢CH then ¢ ¢CH.
Proof. From the above mentioned lemma it follows that the 1-form correspon-

ding to ¢’ is @ = ©—0. Thus ¢’ ¢ CH.
Theorem l.[fF=F1+F’+F3, Fi(lV,-,then Fl=q' Fg=p—q, F3=F—p.
d The proof follows from theorem 2 of [I] and the definitions of the tensors p
and gq.
Theorem 2. The tensor F;=0 if and only if r=0.
Proof. From F;=0 it follows that F=p. In the expression for r we substitute
F with p. So we have

—1 ~ ~ . ~ ~
r(x 3 2= [2p(x%, ¥, )+p(¥, x, 2)= p (2, x, ¥)+pE X ¥)=py X 2))
For the inverse, let r=0, i. e.

0=2F(x, ¥, 2)+F(y, x H—FE x y)+Fz x H—FJ, x. 2)

In this equation, after the change x —x we find

4F(x, y, 2)=2F(x, ¥, D)+ FY, 2, )+ Az x, 9) + Ay, 2, )+ F @, x, ¥)=4p(x.y, 2).
From theorem 1 it follows that Fy=0.
Corollary. The following integrability conditions for the complex structure are
equivalent: ~ _ N
a) F(x, v, 2)+F(y, 2. x)+Fz x, y)=0;b) r=0; ¢) F=p.
Proof. Condition a) is proved in [l1]. From condition a) we have
F€ W]@ W.3<:>F3=0<>r=0<>F=p,

Theorem3. r¢ Wi

Proof. Let us find the associated tensors ¢, ¢, and p, for the tensor r¢ W (see
the note in this paragraph). From them we have ¢,=0, ¢,=0, p,=0. Then for the
projections r,¢ W, we have ry=ry=0, r=ry which follows from Theorem 1.

Let 7’ be the proper connection of the metric a and F(x, y, 2)=a((V' xI)y, z)
In [2] we proved that

3) F= A (F+q")+nF+q +7).

Lemma 3.Let ¢, ¢, r be the associated tensors of F. Then
¢p=2na+¢, a=0+ 6,
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g=Mg+q) +n@+q) p=Mp +p)+r(P+q)

The proof of the lemma follows from the definition of these tensors and formula (3).

3. CH-invariants. We define the following tensor fields of type (2.1) on M:

v from the equation g(x, v(y, 2))=F(x, y, 2),

% from the equation g(x, x(y, 2))=g(x, ¥, 2),

¥’ from the equation g(x, »'(y, 2))=¢'(x, ¥, 2),

3 from the equation g(x, 8(y, 2))=p(x, ¥, 2),

p from the equation g(x, p(v, 2))=r(x ¥, 2).

Lemma 4. If v, , 6 are analogous to the above defined tensors, but corres-
ponding to the metric a=hg+ ng, then

r 8 'y ’ Au u?
x=x+u, §=8+%', V=v+X'+y555 P~ jagga P

Proof. We shall use Lemma 3.

d(x, %y, 2) = q(x ¥, D=2 [q(x, 3 2)+q" (x, 3. DI+HGx ¥, D+g'(x, 3, 2)]
—hlgx % (y 2)+glx # (3 D+ % (3 DN+Ex 7 (¥, 2.

Consequently %=%+x". The proof for & is similar. The proof for v can be given as
follows

(e, Wy 2)=F(x, v, 2)=1[g'(x, 3 2)+Fx, v, 2]+0[(x 9, )+ FAx, 3, 2)+7(x, 9,2)

=Ag'(x, ¥, 2)+ug (x, ¥, 2)+ LF(x, ¥, z)+uf:'(x, » 2 +ur(x, y, 2)
=a(x, %(y, 2))+alx, V(y, 2)+ngx p(y, 2))
On the other hand, from (2) we have g=la(l’—p’)"‘—ptﬂ”%—u’)—‘. Then

a(x, (v, 2)=a(x, ¥'(y, 2))+ a(x, (v, 2))+ A2+ p2) " [Aualx, p(y, 2)—na(x,p (3, 2)),

which proves the last equation of the lemma.

Theorem 4. The tensor field 5—x does not depend on any CH-change of the
metric.

The proof follows from Lemma 4.

Theorem 5. The tensor fields 5—x, v—3& and v—x% donot depend on any con-
rormal change of the metric.

The proof follows from Lemma 4 when p=0.

Theorem 6. The tensor field 5—x vanishes on M if and only if M belongs to
the class W, ® W,

The proof is evident from the scheme

d=n<>p=q<>Fy=0.

Theorem 7. The tensor fields v—38 vanishes on M if and only if M belongs
to the class W, W,.

The proof follows from the scheme v -=8<>F e pesFy=0.

As a consequence of the theorems 6 and 7 we have

Theorem 8. The manifold M belongs to the class W, if and only if v=38=x,
i. e. simultaneous vanishing of the CH-invariant and conformal invariant tensors.
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Changing of the classes of manifolds after CH-change and cohformal change of
the metric is given in Tables 1 and 2. The proof for the associated tensors is given
in Lemmas 2 and 3 and Theorem 2. In these tables the columns for F and F show
sufficient conditions for belonging to the same class. To see how each classis map-
ped let us discuss for example the class W, D Wi

After a CH-change of the metric F=MNF+q)+n (F+t.]’+r).
Since F¢ W, W, and ¢’ ¢ CH, then it follows that q.’ ¢ CH (Lemma 2) and

FeW,® W, (Lemma 1). The tensor r¢ W5 (Lemma 3). Now it is clear that F ¢ CH
@ W, Ws. The proof for the other classes is similar.

Special case. Let the pair of functions (o, 1) be conjugate pluricharmonical functions.
Then a—® + 0=0, i. e. it means that each class of manifolds is invariant under a
CH-change of the metric.
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