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CANONICAL CONNECTION AND THE CANONICAL CONFORMAL
GROUP ON A RIEMANNIAN ALMOST-PRODUCT MANIFOLD

VESSELKA MIHOVA

On an almost Hermitian manifold (M, 4, g) there exists a unique linear connection
D with torsion tensor T such that Dy/=D,g=0 and T(x, JY)=T(/X, Y) for all vector
fields X, Y on M. This is the Hermitian connection on the manifold [1, 2]. Another
proof of this result has been given in [3]. The group of the conformal transformations
of the metric g generates the conformal group of transformations of D.

On an almost complex manifold with B-metric (M, J, g) there exists a unique
canonical connection D such that D,/=Dg=0, or equivalently Dyg=0, Dyg =0 for
any vector field X on M [4]. Here g is the associated metric to the metric g. Con=
sidering the genecral group of the conformal transformations of the B-metric g, in [4]
there is also obtained the canonical conformal group of transformations of the cano-
nical connection D and its remarkable subgroups.

In this paper we treat analogous problems on Riemannian almost-product ma-
nifolds.

1. Preliminaries. Let (M, g) be a differentiable manifold with metric g.

Definition 1. An almost-product structure on M is a (1,1)-tensor field v of
constant rank for which v*=w.

If we denote h=/—v and Z=v—h, then h2=h, so that A is also an almost-pro-
duct structure on M and #?=/. It is easy to be proved that

, 1
(1) vh=hv=0, v:-;(lv{-?). h=— (I-2).

Definition 2. A Riemannian almost-product structure on M is an almost-pro;
duct structure on M such that
(2) g(X, YV)=g(vX, vY)+g*hX, hY),

where X, Y are arbitrary vector fields on M.
From (1) and (2) it follows immediately that

(3) gvX, V)=gXvY), ghX, Y)=gX, kY), g@X, h}¥)=0,
and
(4 g2X, 2Y)=gX, Y)

for all differentiable vector fields X, Y on M.

In this case we shall say that # and g are compatible, and that 2 is the tensor
field defining a Riemannian almost-product structure on a Riemannian manifold M with
metric tensor field g

Because of (4) and (3) we can also define a symmetric 2-covariant tensor field

2 on M by
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(5) X, ¥)=g2X, Y).

In what follows (M, 2, g) will be a 2n-dimensional Riemannian almost-product
manifold, i. e. 2 will be the tensor field defining the Riemannian almost-product struc-
ture on M, and g will be the metric tensor field on M such that 2=/, g(24X, Y)
=g(X, 2Y) for all vector fields X, ¥ on M. The associated metric tensor field g on

the manifold is given by (5). The metric g is necessarily of signature (n, n).
Further X, Y, Z will stand for arbitrary differentiable vector fields on M.

The Levi—Civita connections of g and g will be denoted by </ and </, respec-
tively.

The difference /¥ —<7xY is a tensor field of type (1,2) on M and it will be
denoted by
(6) O(X, Y)=TVxY—vyY.

This is the fundamental tensor field of the manifold. The corresponding tensor
field of type (0,3) will be denoted by the same letter: ®(X, Y, Z)=g®(X, Y), 2).
The fundamental tensor field has the following symmetries:

X, ¥)=0(Y, X)
7) DX, Y, 2)+ ®(X, 2Y, 2Z2)+ ®(Z, X, YV)+®(2Z, X, 2Y)=0,
DX, Y, 2)+V2X, 2Y, L)+ V(2X, Y, PZ)+D(X, Y, PZ)=0.

2, Partial decomposition of the space of torsion tensors. The canonical linear
connection in our considerations will have a torsion. Thus, we have to study the pro-
perties of the torsion tensors.

Let (V, 2, g)=T,M, p¢ M and 7 be the vector space of all tensors T of type
(0, 3) over V with the property 7(x, y, 2)= — T(y, x, 2), x, ¥, 2¢ V. The metric g
induces on 7 an inner product (.,.) in the following way:

(T, T)=g"8"g" T'(lp by LT Ugy 1y L), T, T"€ T,
where {/;} (i=1,..., 2n) is a basis of V. ,

The natural representation of the group G;{a(O(‘zn)/a:(g 1:) A, B are nxn-ma-
trices} in V induces a representation A of G in 7 : ‘

(M) (x. vy 2)=T(a x a7y, a722) acQ, TeT, %'y Z¢EV,
so that ((Aa)T’, Aa)T")=(T", T"), a€G, T', T"¢7.

Let L be the linear operator L: 7 -7 defined by

L(TXx, ¥, 2)=T(Px, Py, 2), TEF, x, ¥, z¢V.

The following proposition follows by simple computations.
Lemma 1. The operator L is an involutive isometry of I and commutes with
the action of G, i. e. L?=id,

(L(T"), LT =(T", T%), L((Aa)T)=(ra)XL(T)),

where T, T', T"¢7, a¢G.
This lemma implies that L has two eigenvalues (1) and the corresponding
eigenspaces
T=={TeT|LT)=—T), T+={Te¢T/L(T)=T)}

are invariant orthogonal subspaces of 7.



Canonical connection and the canonical conformal group on... 353

In order to decompose J— we consider the linear operator L,;: §——J—
defined by ;

L(T)(x ¥, 2)=%{T( ¥ 2 )+T(2 x, ¥)—T(2y, 2, Z2X)—T(z, Px, Zy)},

where 7¢J —, x, y, z¢V. We have

Lemma 2. The operator L, is an involutive isometry and computes with the
action of Q.-

This lemma implies that the eigenspaces
T 1={Te¢T—|L(T)=—T}, T,={TeI —|L(T)=T}
are invariant and orthogonal subspaces of 7.
To decompose 7+ we define the linear operator L,: -7+ in the following way

Ly(T)x, ¥, 2)=T(?x, y, 22), T¢I+, x, 9 z¢V.
We have

Lemma 3. The operator Ly is an involutive isometry and commutes with the
action of G.

This lemma implies that the eigenspaces
Ty={TeTH|L(T)=—T} T={TeT+|L(T)=T}
are invariant and orthogonal subspaces of 7 +.

From the definitions of the spaces 7, (k=1, 2, 3, 4) we obtain
Lemma 4. Let T¢ZJ. Then -

1) TeT, iff TI(Px, 2y, 2)=—T(x, 3, 2), T(x, ¥, 2)+ T(y, 2, x)+T (2, x, y)=0;
2) TeTyiff T(Px, Py, 2)=—T1(x, ¥, 2), T(Px,y, 2)+T(?y, 2, \)+ (P2 x,¥)=0,
3) TeT, iff T(2x, Py, 2)=T1(x, y, 2)=—T(?x, y, Pz), or equivalently T(Zx, y, é)
=T(x, 2y, 2)=—T(x, y, P2);

4) TeT, iff T(Px, Py, 2) =T (x, ¥, 2)=T(Px.,y, P2). or equivalently T(Z?x, y, z)
= Nx, Py, 2)=T(x, y, P2)

Using Lemmas 1, 2 and 3 we obtain the following decomposition of 7 :

Theorem 1. =9 ,DIT DI DT, where T, (i=1, 2, 3, 4) are invariant
orthogonal subspaces of 7.

The projection operators of 7 in 7, (i=1, 2, 3, 4) are given in the following
theorem.

Theorem 2. Let T¢J and denote by p, (i=1, 2, 3, 4) the projection opera-
tors of T in T, Then

P 3 2) = 4 2T(x 3, =Ty, 2 )T (2 x 3) + T(Py, 2, Px) + T(z, Px, Py)

— 2T (Px, 2y, 2)+ T (?y, Pz, x)+ T (Pz, Px, y)— T(y, Pz, Px)— T (Pz, x, Py)}

Da(X ¥y 2) = :; 2T » 2)+T(y, 2, x) + T(2, x, y) — T(Py, 2, Px) — T(2, Px, Py)

—2T(Px, Py, 2) — T (Py, Pz, x) — T (22, Px, y) + T(y, Pz, Px) + T(Pz, x, )},
Pa(x 3. 2)= - (T(x ¥, 2)+ T(Px, Py, 2)—T(Px, 3, P2)—T(x, Py, P2)},

Pa(X, ¥, 2) =—: {T(x, y, 2)+ T(2x, 2y, 2)+ T(?x, y, P2)+T(x, Pv, Pz)}.
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Proof. We will compute for example v,. The other projections can be obtained in
a similar way.

From Lemma 1 it follows that the tensor %(T—L(T)) is the projection of 7°
into =7 ,d7,. Using Lemma 2 we find

pr= 4 AT—=L(T)—L(T)+ L))},

which gives the required expression of p,.

We need the following characteristic of the class 7,7 ;.

Lemma 5. Let T¢7. Then T¢7T (DT 3 iff
(8) T(x, y, 2)+T(y, 2z, x)+ T(?x, v, 22)+T(y, Pz, ?x)=0.

Proof. Let 7¢7,(D7;, i. e. T=p,+ps It can be directly seen that p;, and pg
satisfg (8).

onversely, let 7 satisfy (8). Since 7=7"+T7", where 7’ and 7" are the compo-

nents of 7 in 7,7, and T 4PT, respectively, the substitutions of 77 and T” into
(8) imply 7"=p, and T"=p,, i. e. T=p,+p;

3. Natural connection on a Riemannian almost-product manifold.

Definition 3. A linear connection D on the Riemannian almost-product mani-
fold (M, 2, g) is said to be natural if D?=0 and Dg=0.

Since for an arbitrary linear connection

(Dxg\Y, Z)=(Dyg\2?Y, Z)+ g(Dx?)Y, Z),

it follows immediately that the linear connection D is natural iff Dg=Dg=0.

In this section we shall study the set of the natural connections on a Riemannian
almost-product manifold (M, 2, g).

Let 7 be the torsion tensor of a natural connection . We denote by the same
letter the corresponding tensor of type (0, 3); 7(X, Y, Z)—=g(T(X, }¥), Z). The corres-
ponding tensors p, (=1, 2, 3, 4) associated with 7" are defined in Section 2.

Theorem 3. The linear connection D with torsion tensor T is natural iff

) 0, ¥, Z)=+ {—®(X. ¥, Z)+ (Y, Z, X)-0(X, 2Y, 2Z)
(Y, PZ, PX)+20(Z, PX, PY)),
(10) pAX. ¥, Z)=— S (®(Z, X, Y)+D(Z, #X, #Y)).
Proof. We denote
(ll) ny '/’XY "S‘(/\’. )’)

Since [y g=0, the condition Dg-0 is equivalent to
AS(X, Y), Z)+&(S(X, Z), Y)=0.
Hence
(12) HS(X, Y), Z)= ; {T(X, Y, 2)-T(Y, Z, X\)+T(Z X, V)

which is the Theorem of Hayden [5].
Further we denote

(13) DyY -7 Y =3(A, Y)



Canonical connection and canonical conformal group on. .. 355

Analogously, because of </ €0, the condition Dg=0 is equivalent to
S, Y), 22) + gS(x, 2), 2Y)=0.
Then
(14) g3(X, ), 2)= S {T(X, Y, Z)=T(Y. 2Z, PA)+T(PZ, X, PY)}.
Using (11), (13) and (6), we get
X, ¥, Z)=g(S(X, Y, Z)—gB(X, Y), Z).
From the last equality and (12), (14) it follows
(15 X, 7Y, Z):—%—{—T(Y, Z, X)+T(Z X, )+ T(Y, 2Z, 2X)— T(?Z, X, ?Y)}-
From Theorem 1 and (15), using Lemma 4, we get
(X, Y, Z)=—;-{—pl(}’, Z, X)+p(Z, X, N+p(Y. PZ, PA)—p(PZ, X, PY)

—204Y, Z, X)+2pi(Z, X, V)}.

From the last formula we easily find (9) and (10).
For the inverse, let the projections p, and p; of T be (9) and (10). Substituting
this projections into 7=p,+py+ps+p, we get (15), which implies D is natural.
Theorem 4. Let Q(X, Y, Z) and Q“(X, Y. Z) be tensor fields on (M, 2, g)
having the properties :

(i) QX Y, 2)=—Q'(Y, X, 2)=—Q'(2X, Y, 2),
Q(2X, Y, 2)+Q(2Y, Z X)+Q(?Z, X, Y)=0,
(i) QX Y, Z)=—Q(Y., X, Z), Q@X, Y, 2)=Q'(X, ?Y, 2)=Q"(X, ¥, 22).

Then there exists a unique natural connection D such that the components p, and p,
of its torsion tensor T are the given tensors Q' and Q" respectively.
Proof. Existence. Taking into account Theorem 3, we construct the connection D

&y ¥, Z)=— Yi Z) + WX, ¥, Z) = 20(Z, X, V) — X, 2Y, 2Z)}
+ 4 1{Q X, ¥, 2)-QV, Z M+ Q(Z X, V))

+—;4Q'(X. Y, 2)-Q"(Y, Z. X)+Q'(Z X, Y))

It is easy to be checked that O is a natural connection with torsion tensor
T(X, Y. Z)= ({0, Z, X)=®(Z, X, V)-NY, 2Z, 2X)+NPZ, X, ?V)}

+Q(X, Y, 2)+QX. Y, 2).

From Theorem 2 it follows that p,=Q’ and p,=Q".
Uniqueness. 1et D’ be another natural connection with torsion tensor 7 satis-
fying the conditions of the theorem. If p; (i=1, 2, 3, 4) are the components of 77,

23 Cn. Cepanxa, kn. 4
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Theorem 3 implies p;=p,, p;=ps. Since p,=Q' =py p;=Q"=p,, then T’=T. Hence

D’'=D.
Theorem 4 gives a one-to-one mapping of the set of the natural connections onto

the set of pairs (Q’, Q") having the properties (i) and (ii).
Definition 4. A natural connection D with torsion tensor T is said to be

canonical if
(16) T(X, Y, 2)+ T, Z, X)+T(2?X. Y, 2O+ T(Y, 2Z, 2X)=0.

Taking into account Lemma 5, we find that (16) is equivalent to T¢7,7 3 i. e.

Pa=p,=0. Applying Theorem 4, we check
Theorem 5. There exists a unique canonical connection on a Riemannian

almost-product manifold.
From Theorem 4 and (7), (11), (12), (13), (14) it follows that the cannonical con-
nection D on a Riemannian almost-product manifold is given by one of the following

equalities:
gDy Y. 2)=g(VxY, Z)+-{0X, ¥, 2)—20(Z, X, ¥)—0(X, 2V, 22)},

(1) gDy, 2)=g(Tx V. Z2)—{30(X, ¥, Z)+20(Z, X, Y)+O(X, 2Y, 2Z)),

&DxY, 2) = 5 T XY+, D)= (W2, X, V)=APZ, X, PY)),
The torsion tensor 7 of D is given by
(18) T7(X, Y, Z):-}{(D(Y, Z, X)—®(Z, X, Y)—o(Y, PZ, 2X)+W(2PZ, X, ?Y)}.

4. Canonical conformal group. In this section we consider the group of trans-
formations of the canonical connections generated by the general conformal transfor

mations of the metric.
Let (M, 2, g) be a Riemannian almost-product manifold. The general conformal

transformations of the metric g are defined by
(19) g=u(chv.g+ shv.g), g=u(shv.g+ chv.g)

where u, v are differentiable functions on M. By v=0 (19) is the usual conformal
change of the metric g. The manifold (M, 2, £) is also a Riemannian almost-product

manifold.
We take in consideration only local conformal transformations.

Let (M, 2, g) and (M, 2, g) be conformally related as in (19). The Levi—Civita
connections of g and g are denoted by '/ and /' respectively. Applying the formula

28( VY, Z)=Xg(Y, Z)+Ya(X, Z)—Zg X, V)+&X Y], 2)—g(Y. Z). X)+&(Z. X]. ¥)
to */ and €7 we find
(20) 28(7x Y, Z) =2uchv.g(vxY. Z) + 2ushv.g (vyY, 2)
+ X(uchvg(Y, Z) + Y(uchv) g (X, Z)—Z(uchv) g (X, Y)
+X(ushv) (Y, 2)+ Y(usho)g(X, Z)—Z (ushv)g(X, V),
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and
@1) 2g2(9 Y, Z)=2ushv.g(vyY, Z)+2ucho. 2(TxY. Z)
+ X(usho)g(Y, Z)+Y(ushv)g(X, Z)—Z(ushv) g(X, Y)
+X@uchov)g(Y, Z) + Y(uchv) g (X, Z) — Z(uchv) g(X, Y).
From (6) and (20) we have
(22) Tx¥=UxV—sh10.0(X, ¥) + 1-sh20. PO(X, ¥)+-3-{ XDy, Py

\
+dU(X)PY +dv(V) PX} +5 g(X. V){— ch2 oty shzv—’ﬂ’l

— 1 sh2v.grad v+sh?v. 2 grad v} + -3 &(X, ¥){— sh20EELE

P gradu
u

+sh?v —ch?v.grad v+—;— sh2v.2 grad v}.

Analogously, from (6) and (21) we check

(23) Tx¥=TxV+sh10. 0(X, ¥)—1 sh20. 20X, V)+4 (20 y, 2l x

+d‘0(X)?Y+dv(Y)9X}+‘_'g(X, Y){sh’vg"d"_-;_sh‘z 9gr:du

—sh2z' gradv — ch?v.2grad v} + —g(X Y){——sh 2vg"d"

—ch?v ? grad u

-+sh?o. grad zr————sh 2v. 2 grad v}.
Subtracting (22) from (23) and taking into account the defining condition (6) of
®, we obtain

(23)  ®X, V)=ch20.0(X, ¥)—sh20.20(X, ¥)++-g(X, ¥)ch20¥20L

Pgrad u
u

—sh2v +sh2v.grad v—ch2v. 2 grad v} + TE(X- Y){sth—g—'#

?grad u

—ch2v +ch2v.grad v—sh2v.2 grad o).

Adding (22) and (23), we get
o : ~ X Y
(26) S (VxV+ VxV)= 5 (TxV+Ux) +5- {0 ¥+ U X 4 do(X)PY + de(Y)PX)

{ grad u

— = g(X Y){gmd" + 2 grad v}———g(X Y) +grad v}.

The third equality of (17) and (25) imply
Theorem 6. The group of the general conformal transformations (19) generates

the group of conformal transformations of the canonical connection
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du(Y)
u

du(PY)

(26) DyxY=DyY+ o { Dyt a(x)@2r}+ {2 +do @YX +

+ dv(Y)2X — —l—g(X, yy&ada s 5 grad v}——}E (X, Y) {Z‘%‘i‘i +grad o).

u

As a consequence of (26) the torsion tensors T and T of D and D, respectively,
are related as follows:

@) TX Y)=TX V) — A2 _ao(@r)x + - (B —auza)y
F (SO gryex — L (BHED g0y,

The group of the usual conformal transformations of the metric g is characterized
by the conditions u=¢?, v=0 in (19) In this case the formulas (24), (26) and (27)
are reduced to

DX, V)=D(X, V)+g(X, Y)grad f—g(X, Y)?grad f,
DxY =DyY +df(X)Y +-y df(¥) X — —5-g(X, Y)grad f

+ - dfPV)PX — 3 gPX. V)P gradf,

T(X, ¥)=T(X, V)~ A{df(V)X—df(X)Y —df(@})PX+df PX)PY).
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