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LOCAL PROPERTIES OF ORTHOGONALLY REDUCIBLE LINEAR OPERATORS
D. SCHOTT, S. KOSTADINOV, G. PETROV, M. KAPITANOVA

Local properties of linear operators 7' possessing the orthogonal complement of their fixed point
set as an invariant subspace are investigated. A classification of elements with respect to such operators,
local parameters and global types of such operators are introduced. The concepts of underrelaxation and
overrelaxation are developed for the special case of operalor relaxation playing an important role in the
convergence theory of linear iterative methods.

1. Introduction. [n the papers [2], [3] linear iterative methods of the form:
x,,+1:(1—D;A)x,,+Dr;b

are investigated assuming that the operators 7, =/—D A, or S,=I[—AD), represent
orthoprojectors. Later additionally relaxation parameters A, are introduced to
influence the speed of convergence and the accuracy of results. In this case the ope-
rators D are replaced by D,=1,D,. This leads to the modified operators

(1.1) T,=I—D,A=(1-A)+A,T.,
(12) S, < 1~—AD = (1=A .S,

It can be shown that certain convergence assertions hold for the modified methods
xn+1:(I_DuA)xn+Dnb

if A, fulfils |1—A,|<1 (cf. [2), [3] with [6]). For real &, this means 0<A<2.Itis
convenient to speak of underrelaxation for 0<2,<1 andof overrelaxation
for 1<), <2. This idea of relaxation is generalized in [4]. There the operators D, are
chosen in such a way that the corresponding operators 7, or S, represent the so-
called (abstract) relaxations of the orthoprojectors 7', or S . The operators T, and S,

respectively in (1.1), (1.2) turn out to be special cases of such relaxations provided
|1—A,|<1 holds.

In (7], [8] the relaxations are defined equivalently as in [4], but without any refe-
rence to an orthoprojector. Furthermore the concept of relaxations is developed.
Important global properties are stated.

In the present paper we study local properties of relaxations and their relation to
global properties. An essential aim is to make sense to the concepts of underrelaxation
_and overrelaxation in the general case too. Thereby it proves useful to define some
basic concepts for a larger class of operators called orthogonally reducible. ,

2. Orthogonally reducible operators. Let /- be a Hilbert space with the (real or
complex) scalar field K. We consider operators 7 from L(H) denoting the space of
all linear continuous operators on /1 into itself. N(7") and R(T’) denote the null spaces
and ranges of 7, respectively. The closure of a set MCH is written as ¢l M.

At first we describe the kind of operators we are interested in.
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Definition 2.1. T is said to be orthogonally reducibleiff N/—T)- is
an invariant subspace of T. The number

v=uT)=|| TINI=T)" |

s said to be the reduced norm of T.

Obviously an orthogonally reducible operator 7 is completely reduced by the pair
(N(/—T), N(I—T)1) of orthogonal subspaces (for the notion see [9, p. 268]). It can be
connected with the orthoprojector 7" determined by R(7’)=N(/—T). It is easy to se
that 7 and 7’ satisfy the relation .

(2.1) T =TT=T T
But then also

e ‘ T'=T*T'=T'T*
This implies

2.3) N(/—T)=R(T")&N({—T%),

(24) N(/—=T)L=N(T")DN(/—T*)L.
Thereby the orthogonality equations

(2.5) N(/—T)L=cIR(/—T*), N(/—T*)L =clR(/—T)

hold (see [9, p. 250)).

Under certain conditions the property of orthogonal reducibility is transferred from
T to T* At first we need two notions known from the literature.

Definition 22. T is said to be decomposition regular iff the direct
sum representation

H=N(T)®c!R(T)

_holds (see [5, p. 151]).

Definition 2.3. Tis said to be asymptotically bounded iff the sequence
(| 7*|) is bounded (see [1, p. 566]).

Now we can present the following results: .

Theorem 24. Let [—T be decomposition regular. Then T is orthogonally
reducible iff T* is orthogonally reducible. Besides the carriers of T and T* coincide

if one of these equivalent conditions is fulfilled.
Proof. The assumption leads to

H=N({/—T)®cIR(/—-T).
Let T be orthogonally reducible. Then (2.4) and (2.5) imply
N(I—T)! =N({I—T*)', N(/—T)=N({—T*).
Furthermore 7* has the invariant subspace
) CAIR(I—T*)=N(—T)+ =N —T*)!
in view of (2.5). Thus 7* is orthogonally reducible and has the same carriers as 7.
Now /—T is decomposition regular iff /—7* is decomposition regular (see

[5, p. 157]). Therefore it suifices to show one direction since the symmetry relation
(T*)*=T is satisfied.
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Corollary 2.5. Let T be asymptotically bounded. Then the assertions of
Theorem 2.4 hold.

Proof. According to [10, p. 214] the operator /—T7 is decomposition regular if
T is asymptotically bounded.

There are many examples for orthogonally reducible' operators. Trivially all ope-
rators with the fixed point set N(/—7)={0} are orthogonally reducible.

Normal operators 7 (i. e. TT*=T*T) have the invariant subspaces clR(/—T7%¥). In
view of (2.5) they are orthogonally reducible too.

Nonexpansive operators T (i. e. || 7||<1) are asymptotically bounded and ortho-
gonally reducible (see [7]). In connection with iterative methods we are interested in
the following classes of operators. :

Definition 26. T is said to be a scalar operator iff there exist a pro-
Jjector P and a scalar L¢ K|{0} such that

T=(1—A)[+AP-

P and )\ are said to be the base and the parameter of T respectively.
Definition 2.7. a) T is said to be a relaxation iff | Tx||<| x|| kolds for

all x¢N(/—T) (see [7], [8)]).

b) T is called a strong relaxation iff the relations

TN(/—TH=N(U—-T), [[TINU—T) | <]

are satisfied (see [8)).
¢) T is said to be a scalar relaxation iff T is both a scalar operator and a
relaxation.

The next statement can easily be seen. The proof is omitted here.

Lemma 2.8. For a scalar operator T the following statements are equivalent:
a) T is orthogonally reducible.

b) T is normal.
¢) The base P is normal
d) The base P is selfadjoint (an orthoprojector).

Orthogonally reducible scalar operators T=T,,, have the reduced norm W(7)
=|1—A| provided P+/. A relaxation T is orthogonally reducible since it is nonex-
pansive. Its reduced norm v(7') lies between 0 and 1. It is a measure for the strength
of the relaxation 7 (with respect to. the connected orthoprojector 7”). An orthopro-
jector T \is a relaxation with v(7')=0. Therefore v(T) is said to be the relaxation
degree in [8].

A strong relaxation 7T is a relaxation with v(7)<1 (see [8]) or also an orthogo-
nally reducible operator with W(7)<1 (see Definition 2.1 and Definition 2.7). A scalar
operator T=/ is a (scalar) relaxation iff P=P* and |1—A|<1 (see [7]). Under these
conditions 7 is even a strong relaxation (see [8]).

A scalar relaxation 7= Ty==/ is studied here to prepare the concepts of the
following sections. Let 7’ =P denote the connected orthoprojector. Then the elements
x, T'x and Thx are linearly dependent. They belong to an one-dimensional affine
subspace N, which is orthogonal to R(7”).

For real Hilbert space / there is a natural order relation between the elements
of N. Depending on whether A<l or A>1 the order sequence is x, Thx, T'x or x,
T'x, T)x. In the first case we speak of (scalar) underrelaxation or relaxation of u-type,
in the second case of (scalar) overrelaxation or relaxation of o-type (see also
section 1). The reduced norm v(73) of 7 grows with the distance between 75.x and 7"x.

3. A classification of elements with respect to orthogonally reducible operators.
Let TeL(H)\{/} be an orthogonally reducible operator. By 7" we denote the corres-
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ponding orthoprojector determined by R(7’)=N(/—T7). Then (2.1) is satisfied. Further-
more 7=/ means A\ R(7")+Q.
Now we consider a fixed element x in A\ R(7”) and the sets

@3.1) ; H(x)—~H(T, x)={v€H: Re (v, x—T"x)=0},
(3.2) Hi(x)=H4 (T, x)={w¢ H: Re(v, x—T'x)=0},

where x— T"x=:0 in view of the assumption about x. The classification of the elements
x with respect to T is as follows.

Definition 3.1. We call x¢ H\R(T') an u-element, o-element, n-element of T
iff TxeH,(x), Tx¢ H_(x), Tx¢H(x), respectively.

If H is a real Hilbert space, there is a simple geometric interpretation. Thereby
the real parts of scalars z can be replaced by z itself. Namely, then H(x) is the
hyperplane through O with the position element x—7"x, or in other words, the maximal
subspace of A orthogonal to span {x—7"x} (for the notions see [9, p. 137]). Fur-
thermore H.(x) is the halfspace consisting of all elements v which form an acute/ob-
tuse angle with x— 7"x. Depending on whether x is an u-element, o-element or n-ele-
ment of 7 the element 7x lies before, behind or on the hyperplane H(7, x). If T is
a relaxation, 7x means a local underrelaxation/overrelaxation in x (compared with
T’x) for u-elements/o-elements x.

The definitions have some simple consequences.

Theorem 3.2. The following statements are equivalent:

a) x is an u-element of T,

b) Re(Tx, x—T'x)>0,

c) Re(Tx—T'x, x)>0,

d) Re(T(/—T"x, (I—T")x)>0,

e) Re(Tax, ax—T'0x)>0 for any a¢K\{0}.

Proof. From Definition 3.1 and (3.2) the equivalence of a) and b) is evident. In
view of

(U=T"P=({I-T)*=I-T'
and (2.1) we get

(Tx, x—T'x)=(Tx, (I—=T)x)=((I—T"Tx, x)=(Tx—T'x, x),
(Tx, x—=T'x)=(Tx, (I—T"2x)=(I—T")Tx, I—T")x)=(TU—-T")x, (I—T")x)
and therefore the equivalence of b), ¢) and d). The relations
(Tax, ox—T"ax)=(aTx, a(x—T'x))=|a *(Tx, x—T'x)

show the equivalence of b) and e).
Corollary 3.3. The following statements are equivalent:
a) x is an u-element of T,
b) ax is an u-element of T for any a0,
¢) (I-T"x is an u-element of T, i
d) y is an u-element cg T for all y¢ span {x}+R(T").
Proof. Theorem 3.2 implies the equivalence of a), b) and c) if we take

(T(U=T")x, (I—T"x)=(T(U—T"x, (I—T)x—=T'(I—T")x)

into account. Statement d) arises by combination of a), b) and c). The inversion is
clear.

Corresponding statements can be formulated for o-elemenis and n-elements.

In the sequel we give the notlonsl based on all three classes of elements but
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restrict us essentially to the results based on the class of u-elements. Other cases
can be treated analogously.

Definition 34. T issaid to be of u-type (o-type, n-type) iff all x¢R(T")
are u-elements (o-elements, n-elements) of T. A (strong) relaxation T of u-type
(o-type) is also called (strong) underrelaxation (overrelaxation).

Besides we consider the sets

3.3) U(T)={x€¢ ANR(T’): x is an u-element of T},
(3.4) K(T)={x€N(T"): || x|/ =1}.
In view of Corollary 3.3 we have
U(T)=U(T |N(T")+R(T") for U(T)+Q,
UMN#+Q ift UT)NK(T)FD.
An operator T of u-type is characterized by one of the equivalent relations

U(T)=HENR(T"), UCT |N(T"))=N(T")\{0}.
U(T)~K(T)=K(T).

Thus T is of u-type iff T|N(7") is.

An operator 7 with the eigenspace N(7’), or in other words, a scalar operator
T with the base 7" is of n-type iff U(T)+=@. A selfadjoint operator T is of u-type
iff T|N(T”) is positive (i. e. (7x, x)>0 for all x¢N(7")\{0}). An orthoprojector is an
operator of n-type. ;

4. Local parameters of orthogonally reducible operators. Let 7 ¢ L(H)\{/} be
an orthogonally reducible operator with the connected orthoprojector 7’. Let x be a
fixed element in A\ R(7").

Definition 4.1. The scalar

A=l T)=(x—=Tx, x—T"%)/|| x— T'x|*

is said to be the local parameter of T with respect to x.
An alternative definition would be

M=x—T'x, x—Tx)l|| x—T"x |

The decision for one of these definitions is arbitrary. We will see that the real part
of A, has a special meaning. Therefore it is not essential which of the two possibili-
ties we prefer.

If T and T* are both orthogonally reducible and possess the same carrier, then A,

is a local parameter of 7T iff A, is a local parameter of 7* Section 2 contains con-

ditions ensuring these assumptions.
Theorem 4.2. The local parameters A, of T have the following properties :

a) ALy=(x—Tx, x)/(x—T'x, x)=1—(Tx, x—T'x)/|| x—T"'x|]%,
b) (Tx, x)::(Txxx. x), where Tr=(1—=MN[+AT’,

€) A= Agerye=hae for all a¢ K\ {0},

d) Ac=A, for all y¢span{x}+R(7").

Proof. 1. Observing
U-TYY={I-T")=1-T'

and (2.1) we obtain
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(x—Tx, x—=T'x)=((I=T)x, ([—T"x)=((—T")I—T)x, x)= (I—T)x, x)=(x—Tx, x)
|x—T'x|P=(x—T"x, x—T'x)=(I—T"x ([—T")x)=(([—T"x, x)=(UI—T")x, x),
[x—T'x|P=(x—Tx%, x)=( x—T'x),

(x—Tx, x—T'x)=(x, x—T'x)—(Tx, x—T'x)=|| x—T'x |*—(Tx, x—T'x).

Thus the statements a) are valid.
2. By virtue of a) we have

(T;xx, X)=((1=A)x+A:T'x, X)=(x, X)—A(x—T"x, X)=(%, X)—(x—Tx, x)=(Tx, x).
3. From (2.1) and a) we find :
(x—Tx, x—T'x)=(I—T")x—TU—T")x, (I—T")x),
|x=T'x|P=(x—T'%, x=T'%)=(({—T)x—T'(I—T")x, (I—T")x)
and therefore A=A _r). For =0 the equations
(ax—Aoux, 0x)=(a(x—Ax), ax)=|a’(x—Ax, x)

are fulfilled for A=T or A=T7". From a) we conclude now that A,=Aq,.
4. Assertion d) is an immediate consequence of c).
T acts locally in the stated way as the normal scalar operator Ti. .

There is a close connection between the local parameters and the classification of
elements given in section 3.

Corollary 4.3. Iff Rer.<<l, then x¢ U(T).

Proof. By Corollary 3.3 and Theorem 4.2 we can restrict us to elements x in
K(T) (see (3.4)). Then Theorem 4.2a) implies A.=1—(Tx, x). According to Theorem 3.2
the relation x¢U(T) is equivalent to Re(Tx, x)>0. But the last inequality means
Rel.=1—Re(Tx, x)<1.

Thus T is an operator of u-type iff ReX,<1 for all x¢ K(T). It is useful to intro-
duce one more local parameter of 7.

Definition 4.4. The real number

Vi=vT)=||Tx—T"x||/|| x—=T"x||

is said to be the reduced local parameter of 7 with respect to x.
We will see that v, can be related to both the local parameter A, and the redu-
ced norm v (see Definition 2.3). The next statement contains some properties of v,.
Theorem 4.5. /t holds
8) Vi=Vy_1x=Vax for all a¢ K\ {0},
b) vi=v, for all y¢span {x}+R(7"),
c) I 1—A I".;pr l—v,sRer:g1+v,,
d) | 1=Ae|=ve iff x—T'x is an eigenelement of T,
e) v=sup {v,: x(H\R(T'):sup {ve: x€K(T)}
Proof. From 7’ =T and (2.1) the assertion a) is obvious. Assertion b) is an

immediate consequence of a). In view of Theorem 4.2 a) it suffices to show asser-
tion c) for x¢K(T). Paying attention to Theorem 4.2a) and using Schwarz’s inequality

we get
[1=2e|=|(Tx, x)|<| Tx|/= Vs



Local properties of orthogonally reducible linear operators 45

Thus it is also 1—v,<ReA,=<1+v. As it is well known |(Tx, x)|=| Tx|| is satisfied
iff 7x and x are linearly dependent. But in this case x is an eigenelement of 7. Now
d) follows also for x¢N(7”) if x is replaced by (/—7")x. Taking a) and the norm de-
finition into account assertion e) is evident.

Corollary 46. Let T+l be a relaxation. Then

a) 0=sw.<l,
b) |1—2Ac|<1, O<Rel.<2.

T is an underrelaxation iff 0<ReA.<1 for all x¢ K(T).

Proof. Without loss of generality, we can assume x¢K(7T). Then v.=|Txl||
<||x||=1 for a relaxation 7. Assertion b) results from Theorem 4.5¢). The last asser-
tion is true by virtue of b)and Corollary 4.3.

To characterize 7 we need the parameter spectrum

(4.1) A(T)=cl{re: x€ H\R(T")},
its real projection
42) Ap(T)=cl{ReXr: LeA(T)}
and its radius .

- (43) ra=ra(T)=sup{|1—2|: A€ A(T)}.
Besides the restricted operator
(4.4) T=T|N(T")=T|N(I—T)%,

its spectrum o7T), its spectral radius 7. =r,(7T) and the set
V(T) =cl{(Tx, x): || x||[=1}=cl{(Tx, x): xeK(T)}

are used.
Theorem 4.7. A(T) and Ag(T) are convex sets satisfying the relations

a) A(T)=cl{he: xeK(T)} = 1 — V(D).
b) 1—o(NSATS{r: |1—A|<ra)s
¢) AR(NE{n: 1—raspsl+ral
Furthermore

d) rosrasvs | T| is valid.

If 7 is normal, then A(T) is the closed convex hull cl co(1—o(7))of 1—o(7).
If additionally // is a complex Hilbert space or if 7 is selfadjoint, the equations

Fg=IrA=V
are fulfilled.
Proof. 1. It is

{he: x€ HNR(T")}={As: x€ K(T)}
by Theorem 4.2. The same theorem shows
{Ae: x€K(T)}={1—(Tx, x): x¢ K(T)}.
Therefore a) is valid. ’
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It is known that V(T) is a convex set (see [9, p. 330]). Hence A(T)=1— V(T)
and Ag(T) are convex. % ,

2. It can be shown that o(T)= V(T) (see [9, p. 330]). Thus A(T)=1— v(T)
D1—o (7). The second inclusion in b) is clear if (4.3) is observed. Statement c) is a
simple consequence of b).

3. By virtue of Theorem 4.5

ro(T) = sup{ |1 |: Leo(T))=sup{ r|: A e V(T)}
=sup{|1—A|: rel1—=V(T)}
=sup{|1—A|: AeA(T)y=ra(T)
and
ra(T)=sup {| 1 =2, |: x€ K(T)}=sup{v.: x¢K(T)}=WT)=||T|=| T
hold.

{4 If T is normal, then 7 is normal. Hence V/(T) is _the closed convex hull of
o(T) (see [9, p. 330]). Besides in this case we have ro(7) = | T||=wWT) provided H
is complex or 7 is selfadjoint (see [9, p. 331]). G/

It is easy to see that o(T) and o(7) fulfil the equation o(7)=o(T) U {1) if
N(/—T)=+{0}.
Using A7), Corollary 4.3 gives immediately
Theorem 48. If Ap(T)=(—<o, 1), then T is an operator of u-type. If T is an
operator of u-type, then
A(D)E(— 0, 1]. ,
In the case Ag(T)=(—co, 1] the operator 7" can be of u-type but can possess
also n-elements.
Theorem 4.9. Let H be a complex Hilbert space and T be a normal opera-
tor. With the notations
Ao={r€C: |A|<]1, ReA>0},
A,={r¢C: |A|<1, ReA=0}
the following statements hold :
If o(TY=A,, then T is a strong relaxation of u-type, that is a strong underrela-

xation. Conversely, if 7 is a strong underrelaxation, then o(T)S A,
Proof. According to Theorem 4.7, the general assumptions ensure the equations

A(T)=clco(1—o(T)), UT)=ruT)

Then o(7)=A, implies A(T)&A, and therefore Ag(7)<(0, 1). Thus 7 is an ope-
rator of u-type by Theorem 4.8. On the other hand, o(7)& A, means alsov(T) =r«T)<1,
since o(7) is closed. Hence 7 is a strong relaxation (see section 2).
Let 7 be a strong underrelaxation. Then it follows Ap(T)=(—eo, 1] by Theorem 4.8
and r,(7‘)=v( T)<1. Therefore o(f')(_:A, is fulfilled.
Theorem 4.10, Let T be a selfadjoint operator. If o(T)<=(0, 1), then T is a
stronlg underrelaxation. Conversely, if T is a strong underrelaxation, then o( N 0,1)
roof. The assertions can be shown quite similar to those of Theorem 4.9. In

this case o(7) and A(T) are sets of real numbers.
We see that there is a gap of equivalence in the Theorems 4.8, 4.9 and 4.10
This gap cannot be eliminated (see section 5).
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5. Examples. The theoretical considerations of sections 3 and 4 are illustrated by
the following examples. The results can easily be shown. That’s why they are mentio-
ned here without proof.

a) Let T be a scalar operator with the selfadjoint base 7’4/ and the parameter
A==0 (see Definition 2.6). Then T has the form

Pl =M+ AP =T (AN =T,

T is orthogonally reducible by Lemma 2.8. We are interested in the following derived
operators:

T =TINT") =(1=NT, T=1|N(T"),
T*=(1— N + AT =T"+(1— A(I—T"),
TT*=T*T=(1—a)/+aT'=T"+(1—a)(/—=T"),
a=1—|1—1%
T is a normal and for real A also a selfadjoint operator. We get the local parameters
Ae=XK, vi=|1=A|, x€K(T) '
and the global sets %
o(T)={1, 1=}, o(T)={1—2},
o(TT*)=0o(T*T)={1, | 1—4A |3},
A(T)={r}, Ag(T)={Re}r},
Furthermore the quantitative characteristics are
ro(T)=ra(T)=¥(T)=|1—2|,
rT)=| T||=max{l, |1 -2 |}.

Evidently an arbitrary x¢ K(7) is an u-element of 7 iff ReA<1. Moreover, T is an
lopemtor of u-type iff ReA<1. Finally 7 is a strong underrelaxation iff ReA<1 and
1-x|<l. :
b) Let H be a separable Hilbert space with the complete orthonormal set {e;: i€/},
where / is a finite or a countably infinite index set. Then every element x has the
representation
x.’—_- Z x,'e[, x,=(x, e,~),
icl
Let 7 be the diagonal operator defined by
Tx="% l,x,e,-
iel
with the bounded sequence (A;: i¢/) and the nomempty index set /'={i¢/: X1}
Hence 7's=/. Obviously 7 is orthogonally reducible. We are interested in the following
derived operators:
T’x= z x‘ep
TN

Tx= A x; e, &= s
X Iz:,, (X6, X "(El,x,e,EN(T).

T*Tx=TT*x= [%l | A |2x, e
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T is a normal and for real A; (i¢/) a selfadjoint operator. We obtain the local pa-
rameters
M=1— 3 N|x % x€eK(T),
it

=X [MPlul xeK(T)
v I o
and the global sets
o(T)=cl{);: iel}, o(T)=cl{r;: iel’),
o(TT*=o(T*T)=cl{| N 2: i¢l},
A(T):l—clco{k,:ie[}=cl{l—(2’2 Al x| );. X% [2=1)
icr ier

Furthermore the quantitative characteristics are
rT)=ra(T)=W(T)=sup {A;: i¢l'},
: r(T)=| T ||=sup {| X |: i€/}
Evidently x is an u-element of T iff
i‘ZI’ (Re X)) | x; |2$0.
Thus T is an operator of u-type 1ff Re X, >0 for all i¢/’. Especially 7 is an underre-

laxation iff ReX,>0 and |A,|<1 for all zel’ Finally 7 is a strong underrelaxatlon iff
Re 1,>0 for all i¢/” and

sup{|A;|: iel'}<].

In the case of finite / the closure operation can be omitted and the supremum can be
replaced by the maximum. If we choose the scalars A; such that

inf{|A|: i€} =0,

then it is 0€o(7) and 1€ Ag(T). Therefore the assertions in the Theorem 4.8, 4.9 and
4.10 cannot be improved.

c) Let H be an n-dimensional Hilbert space with the orthonormal basis {e;, ..., e,}.
Let 7 be the operator defined by y

n—1
TX = 121 ;\-‘ X; e,-.H. X1=(x. el)l

where .at least one %, does not vanish, that is 7+0. In this case we have N(/—T)={0}.
Thus T is orthogonally reducible. Besides we get

T'=0, T=T,

n—1

T*x= 12 N Xisr€p
=1
n—1 n—1
T*Tx= 121 [N [Px e, TT*x= 121 [ A [Pty €11

Hence 7 is not normal. The local parameters are of the form
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n—1

Ay=1— X A'1":’x_i+1v X€K(T),

i=1
=T InElul xeK(T)
T and T* are nilpotent operators. Here we find
o(T)=o(T)=o(T*)={0}.
o( F*P)=o(FF)={ X, =1, % n—1I}
A== WxFan I [xP=1)
and b
ro(T)=rAT)=0,
ra(T)=max {| E:: Axi bl i)il | % 2=1)%

WT)=| T||=|| T*|=max {| X |z i=1,..., n—1}

T is a (strong) relaxation iff 7 is contractive (|| 7 ||<<1). Furhermore x is an u-elemen
of T iff the relation

n—1 8
Re I Ax;x4,>0
i=1

is satisfied.

A(T) contains 1 and further numbers. Besides A(7) is symmetric to 1, that is,
1—a¢ A(T) implies 1+ acA(T).
If

kg |
X= 2 X' e,
=1
is an z-element, then
Y n
}’=i§l (—1)x;e;

is an o-element. Therefore 7 is always of mixed type, i. e. 7 is neither of u-type nor
of o-type or n-type.
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