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NON-CRITICAL BELLMAN-HARRIS BRANCHING PROCESSES WITH
STATE-DEPENDENT IMMIGRATION

MARUSYA NIKIFOROVA SLAVTCHOVA, NICKOLAY MIHAILOV YANEV

Non-critical Bellman-Harris branching processes with state-dependent immigration were investigated.
The asymptotic behaviour of the first two factorial moments is obtained and limit theorems are also
proved.

1. Introduction. Branching processes with immigration were first introduced and
studied by Sevastyanov [14] in a continuous-time Markov case. Yanev [15] ob-
tained similar results in a class of age-dependent branching processes with immigration.

A model with state-dependent immigration components was first investigated by
Foster [4] and Pakes [10, 11]. They considered a modification of the Galton-Watson
process allowing immigration whenever the number of particles is zero. The continuous-
time analogue of this process was studied by Yamazato [12].

On the other hand, Mitov and Yanev [6] developed the Foster-Pakes processes
with decreasing state-dependent immigration and Vatutin, Mitov and Yanev [7]
generalized these results for the continuous-time Markov case with non-homogeneous
state-dependent immigration.

Bellman-Harris branching processes with state-dependent immigration were intro-
duced by Mitov and Yanev [8]. Their asymptotic results generalized those obtained
by Foster [4] and Yamazato [12] in the critical Markov case. Mitov and Yanev
[9] consider critical Bellman-Harris branching processes with a special type of state-
dependent immigration.

It should be noticed that the Bellman-Harris branching processes with state-depen-
dent immigration might be interpreted as mathematical models which describe cell
proliferation (e. g. E. coli) in broth media where the moments of broth medium addi-
tion could be actually considered as moments of state-dependent immigration.

2. Model and equations. Now we shall briefly recall the definition of Bellman-
Harris branching processes with state-dependent immigration which was given by
Mitev and Yanev (8]

Let us have on the probability space (Q, 1, P) three independent sets of random
variables where:

1) X={X;}i>1 is a set of independent identically distributed (i.i.d.) random vari-
ables with distribution function (d.f) K(f)=P{X,=¢}, K(0)=0;

2) Y={Y;}iz1 is a set of positive, integer-valued i.i.d. random variables with a

pgl. f(s)=Es"i=% f,s% |s|<1:
A=l

and
3) Z={Zy(t), t=0, i, j=1, Z;(0)=1} is a set of iid. Bellman-Harris branching
processes defined by a particle-life distribution function G(¢), G(0)=0, and an off-

spring pg . h(s)= I pist, |55 1.
Then
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¥,
$2:L) Z: ()= X Z; (), t=0, i=1,
J=1
are i.i.d. Bellman-Harris processes starting with a random number Y;>0 of ancestors.
Let 7, be the life-period of Z, (%), ie.
(2.2) T‘:inf{t: Z,(t)=0}. l'—"l, 2, cee o
Observe that U;,=X;+ T;, i=1 are iid. random variables which form the renewal

process S,=0, S,=ZX U, n=1, and
i=1

(2.3) N(t)=max{n=0: S,<t}, £=0.

Then Bellman-Harris branching processes with state-dependent immigration can be
defined as follows:

ZN(!)—H(t—SN(t)—XN(IHI)' if SNtt)+Xn(1)+1§tv
0 y if Sy+ Xy 01>t
Comment. The Foster-Pakes model follows from (2.4) with
0, t<l, 0, t<0,
G(t)={l, g S0s K(t)={1, £>0.
Also we obtain the Yamazato process if we suppose in (2.4)
0, =0, 0, £<0,
G(t)={l—e—“, St and K(f) = {1’ £>0.

Further, we shall use the following notations:
F(t, s)=Es%,  F(0, s)=s,
Tt 9=E",  FO, 9)=/(s),
D (¢, s)=Es??, D (0, s)=1,
R(t, $)=1—0(¢ 3), Q(t, 5)=1-F (¢ s).

From (2.1) and (2.2) it follows that V'(£)=P (T, <t}=P{Z,()=0}=F (& 0)
=f(F(t,0)), and V(0)=0. .

t
Denote L(f)=P{X,+T,<t}= bf V(t—u)dK (1) and suppose that L (f) is non-lattice

with L (0)=0. :
It is known (see Mitov and Yanev (8]) that the p.g.f.®(4 s), [s|=1 satisfies the
renewal equation

(25) o 5)= lfas(t—u, s)dL (@)+1—L(t)—K () + f%(t—a. s)dK (),

(2.4) Z(0)=0, Z(t)={

where § (4, s)=f (F(t, s)) and F(# s), |s|<1, is the unique solution (in the class of
p-g.f.) of the equation

(26) F(t s)= ofh(F(t—u. $)dG (@) +s(1—G(#), F(0, s)=s.

Observe that (2.5) can be given in the following equivalent form:
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@7 R s)= OfR(t—u, s)dL @)+ D(t, s),

where

(2.8) D(t, s)= f Q(t—u, s)dK (u).
Hence

©29) R(, 5)= UfD(z—u, s)dH (),

where

(2.10) H(t)= :Z;o L*n(H)=EN(6)+ 1.

Theotrem 2.1. The p.gf. ®(t t; 8y, $)=E{s? OsZ¢+0| Z(0)=0}, |s,|=1, k=1,
2, satisfies the equation

@11) o t; 5, s2)=1—K(t+r)+'b?‘[%(t+r—u, $)— (t+1—u, 0)]dK (1)
+t£“¢(t+r—u, s,)dL(u)+j%(t—u, T; Sy, Sp)dK (u)
+[F—u o) [ @@+i—a—x, s)aV () K@

¥ jw_u, t; sy, ) dL (),

with initial conditions ® (0, t; 8y, 5;)=EsZ® =D (7, sy),
where
@, t; 51, s)=E{s] W51 9] Z,(0)=V},
FO, t; 5y, 59)=F (%, 5) and F(0, 0; s, $)=F ().

Proof. From Definition (2.3) we obtain
(i) If 0st<t+1< X, then Z(t)=Z(t+7)=0 and E{s70s7¢+9 |0<t<t+1< Xy}=1;

(i) If O<t< X =t+1t<X;+T, then Z(£)=0,
- £
Z(t+1)=Z,(t+1~X)) = Z:Z,,(t+t—-Xl)>0, and
. J=

E{s?0sZt+v|0<t <X St+1< X, + T} =F(t+1—X,, 8)—F(t+1—X,, 0); ’
(iii) If O<t<X,<X,+T,=t+t then Z(£)=0, Z(¢+1) has the same distribution
as Z(t+t—X,—T,), and
E{s7sZ¢+0 | 0<t< X < X+ Th=t+ ) =0 (t+1—X,—T,; 8);
’2 If Xyst<t+t<X,+Ty then Z(t)=Z (E—X,), Z(t+7)=2Z(t+7—X,) and
E{sZ0sZ 40| X\ st<t+1< X+ T} =F (=X, t+1—X; 8y S5
(v) f Xyst<X,+T =t+r, then Z(f)=2Z, (¢ X,), and Z(t+1)=2(t+1—X,—T))

where the process Z(f) is stochastically equlvalent to Z(f) and independent of Z,(f).
Hence
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E{sZ0sZ4+0| X, <t <X, + Ty st+1}=E{sf (X0 Z tr—Xi=To

(i) If X,+ Ty<t<t+t then E{s?®sZ¢+9| X, + T, <t<t+1}=

O(t—X,—Tt+1—X,—Ty; Spy Sa).
Therefore

O, t; 5y S)= 1—K(t+r)+':f'[<5(t+r_u, s0)— (4 1—u, 0)] dK (1)
F o s @+ [ Ft—u T 51 $)dK@)
4§ s) [0 -+ 1—t—x, )dV () dK (@)
+j®(t—u, T; 8y, Sp)dl (u)

which proves (2.11).
From now on it will be assumed :
1°, 0<A=h (1)< 00, m=EY;=f" (1)< oo,
20, G(¢) and K (t) are non-lattice,
3. 0<B=h"(1)<oo, n=f"(1)< 00,

40, r=;{°xd0(x)<oo, a=EX,= [ tdK (£)< co.
0

Denote the moments

MO=2-0(t )bar=EZ(t), Mft) = 35 @t )ls1=EZOIZ(O—1}
A()="2F(t, 5)s-1=EZy(®) B(®)= % F(t, 5) s =EZy (8] Zy ()—1]-

Under the conditions 1°-3°, from (2.4) and (2.5) by differentiating and setting s=1
it follows that

(2.12) M(t)=0fM(t—u) dL (u)+mjA(t—u) dK (), ;
@13)  My(H)- 'fM, (t—u)dL (@) +m be(t — u)dK (@)+n jA' (t—u) dK ().
2.14) A (t)=AjA (t—1) dG (@) +1—G (8),

(2.15) B(t)=AjB(¢-—u)dG(u) + BjA’(t—u)dG(u).

3. Moments. In this section we investigate the asymptotic behavior of the first
two factorial moments in the subcritical (A<<1) and supercritical (A>1) cases and of
the moment E{Z(¢)Z(t+1)} in the supercritical case. In the critical case detailed
asymptotic results are obtained by Mitov and Yanev [8].

For the extinction probability in the supercritical case we have (see Athre;'a and
Ney [2]) g=Jim P{Z,(£)=0}< 1. Therefore V(t)—=f(q) t—co, V(0)=P{Z(0)=0}=£(0)
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and Lo=L(=2)=f(q)-
From (2.8) with s=0 it follows that lim D (¢,0) =1—£(¢)- Then from equation (2.7)
t—o0
with s=0 we obtain (see Feller [3], Section XI. 6) lim R (¢, 0)=lim D (¢, 0)/(1—Ly)=1.
- f—00

On the other hand, in the subcritical case th: processes Z;;(¢) degenerate, i.e.
F(t, 0)11, t—oo (see Athreya and Ney [2]). Hence V (0)=L (0) =0 and V(o)
=[(0)=1.

Define the Malthusian parameter « as the root of equation

(3.1) A :fe—“"dG W)=1.

Due to the monotonicity of the left side of (3.1), such a root always exists (in
this case a=0). If A<1, then a may not exist (if it does, a< 0). Further we assume
that equation (3.1) has a unique solution a.

Theorem 3.1. Under assumptions 1° 2° and 4° if A<1, then

(3.2) }im M(t)=mr/(1—A) v,

where vy= [ tdL (£)< .
0

Proof. Denote ¢ (X)=2’°e—”M (t)dt and y(})= Ze—“A (¢) dt. Equation (2.12) yields

(33) 0 ()=my ()] eMaK (6/(1— edL ().
Similarly from equation (2.14) we obtain
v(A)= ';f e (1—G(#) dt/(1 —A? e—dG (£)).

Hence
(3.4) l'.'.“o y(W)=r/(1=A).

Since ¢ (x)—_-z’e—“dM (£)=no (V), then
% my (1) Ze““dK )
(35) AN =— -
: (l/k)ll—bfe‘“dl-(t)l

On the other hand, (l/l)[l—:fe"“dL (t)]=;} e=M[1—L (£)] dt — Vg 1 —0.
Now, from (3.5) it follows that i

AN g : S mr 4
imeM)=Im M) =Ta-n
which implies (3.2).
It is well known (see Harris [5], Chapter VI, Theorem 17.1) that for supercritical
Bellman-Harris branching processes
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(3.6) lim A (£) e=% = A,,

f—=00

where a is the Malthusian parameter of (3.1) and
{ e %1 -G (u)] du

37) Ag=t
Aof ue ""dG (u)

Denote L (¢)=L(t)/L (), so that L(+ co)=1.
Theorem 3.2. Under assumptions 1° and 2° and A>1 it follows

(3.8) limM(t)e—*=A4,
)

{00

where o is the Malthusian parameter and

m °oe—‘"‘ (1—G (w) du me_“"dK (a)
@9) o d

A;fue"““dG (@)1 — Loze—“"d’[(u)l

p— Lo ~ — ’ -~ — . .
Proof. Let a= J‘e—“"dL (©) and L (f)= { e—*“d[ (u)/a. Applying the substitutions
M (t)=ae*M(t) and A(t)=e*A(t) to (2.12), we obtain

(3.10) M(t)=c, tfﬁ(t—u) dL (u)+(m/a) {’ e—A (t—u) dK (u),

where co=La< 1.
t il
On the other hand, from (3.6) and (3.7) we have Je-"A(t—-u)dK(u)

t
<Afe—*dK (u)< oo, then applying Lemma 4 (see Harris [5], Chapter VI) we obtain

B Aomg'oc"‘"‘dk (u)
) iy

which proves the theorem.
Denote

Ho =je-2«" afw)<1,
BA, Ic“"“‘dG (a)
(3.11) Bt o L
1-4 g‘ &2 dG (u)

L= (1) e dL @)
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where o is the Malthusian parameter.
Theorem 3.3. Let 1°-3° hold and A>1. Then

(3.12) lim M, (£)e=2 = N,
f—o00

where

_ (mBy+n4y) o{e—""‘dl((u)
(3.13) N= 5 )
— Loko

A, is defined by (3.7), po and B, are introduced by (3.11). i
Proof. Applying the substitutions M, (t)=p,e* My (2), B(f)=e>‘B(t) and A(¢)
=e“A (¢) to equation (2.13), we obtain

(3.14) My(t)=¢, of'ﬁ, (t—u)dL, @)+ S(?),

where ¢, = Loy < 1, L,(¢) is defined in (3.11) and
S(t)=(m/wo) je‘*'““ﬁ (t—u)dK (1) + (n/1o) {' e—2uA3 (t—u)dK (u).

It is known (see Harris (5], Chapter VI) that for supercritical Bellman-Harris bran-
ching processes
(3.15) lim B(¢) e = B,,

{00

where B, is defined by (3.11).
The relations (3.6), (3.7) and (3.15) show that as {—co

of =2 (¢ —u) dK (i)—By ;fe—wdk(u).
and
j e 10 (¢—u) dK (&) A3] =<K (@)

Therefore

(mB,+nAd) Ze""’"dl( ()
= Kl A R

U5 (B o

_Applying Lemma 4 (see Harris [5], Chapter VI) to equation (3.14), we obtain that
lim My (£) = Ky/(1—Lok). Hence M, (£)—Ne—>, t—co, where N is defined by (3.13).
t—o0

It is known that for the supercritical Bellman-Harris processes (see Harris [5],
Chapter VI) we have '
(3.16) B(t, ©)=E{Zy(t) 2;;(t+1)}=e*@+9B,[1+0(1)].

uniformly for 1=0 where B, is defined by (3.11).
Denote N(t, ©)=E{Z(f) Z(t+1)}, 1>0.
Theorem 3.4. Under the conditions of Theorem 3.3

(3.17) N(t, 1)=e*@+IN[140(1)],
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uniformly for =0, where N is defined by (3.13).
Proof. From (2.11) by differentiating and setting s,=s,=1 we obtain

3.18) Nt =L, UfN(t—u, vy dl{u)+m b{' B(t—u, 7)dK (1)
+n‘ij (t—u)A(t+t—u)dK(u)

. jA(:-ux':_}_"M(t+r—u-x) 4V (x) dK ().

Now applying the substitutions g
N(t, ©)=pN(t, 1)e®+9, B(t, 1)y=B(t, 7)e* @+,
A(t)=e*A(t) and M(t)=e*M(¢)
to equation (3.18), we have

(3.19) N(t, 1)=C, df N(t—u, v)dL,(@)+S(¢, 1),
where :
(3.20) S(t, I)=(m/n,) 6f_B(t—u, 1) e~ 224d K (u)

+(ﬂ/}lo)6;. 1-4 (t—u)z (t+tt.—u) e—?uudK(u)

+(mpg) Uf' A (t—1u) e (”"f" M(t+7—u—x)e=:dV (x)) dK (1)

and C;=pylL,.
Let

1 O 6? A(t—u) e—%«(':_}_" M (E+1—u—x) e—=dV (x)) dK ().
Using the relations (3.5)-(3.9), we obtain
(16, 9IsCle( [ e () aK @

<Cf e[V (t+—a)~V (¢~ 0] dK @)
SO [ em V(@ e—0) dK @) e v (-0l dK @),

‘ .
where C=A,A>0. Since Jim {e"“dK(u)<oo and fim V(¢)=f(g), then ,'}.‘P—. I(t, t1)=0,
uniformly for t=0.

Using relations (3.20), (3.6) and (3.7) and from Theorems 3.1, 3.2, and 3.3, we
obtain

(mBy+ nA}) Ic"’"’dK (u)

It 9=——,

K,
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From (3.19) and Lemma 4 (see Harris [5], Chapter VI) we obtain (3.17).
4. Limit theorems.
Theorem 4.1. Let conditions 1°, 2° and 4° hold. If the process Z(t) is sub-

critical, then

limP{Z(f)=k)=®, Ed,=1,
f—00 k=0

where

(4.1) ®(s)=1— Ov(:’. Vo= [ [1—L (£)] dt <o,

and <

(42) EQ(®)=[Q(t 9t |s|=1.
Pfoof. From equation (2.5) we have

4.3) o 5)— ofd’ (t—u, s)dL @)+ (t, s)

where -

J(t, s)= l-L(t)—K(t)+£tQ(t—u, s) dK (u).
On the other hand,
J(t, s):l—L(t)—jQ(t—u, $)dK (u)=1—L()—D(t, s).

It is well known (see Athreya and Ney [2], Theorem I, p. 162) that there exists
a C;>0 such that

(4.4) [ 1=, s)|=mA(t)|1—s|=Ce%,

where a< 0 is the Malthusian parameter.
Using (4.4), we obtain

D 9at|<| [IfQU—u. sy aK @) dt|

=|IdK(u)zQ(t—a, s)dt|=|;f°Q(x, s)dxlsC,Ie"dx< co.

Applying the basic renewal theorem (see Feller [3, Section XI. 1]) to the equation
(4.3), we conclude that

z.l(t, s)dt  vy— zo (¢, s)dt

Vo Vo

=1-Q(8)/vo=2(s)-

(4.5) lim (¢, 5)=

From (3.4), (4.4) and (4.5) it follows that
QW) [<IT/(t 9)t|s| Q) dt|<| 1 —s|m[A (O dt="TELT

Obviously ®(s)—1 as s—1, which completes the theorem.
Corollary 4.1. Under the conditions of Theorem 4.1
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G (1) AmE- s
Vo  Vo(l—A)

Proof. From (4.1) and (4.2) by differentiating and using (3.4), we have
r(y=—[f g e
Q ()= g’f (HA(x)dx= mJA(x)dx ~¢

EZ(c0)=®(1)=—

Finally we obtain (D’(1)=—W—(T:—A). which is equivalent to (3.2).
Theorem 42. Assume conditions 1°-3° and A>1. If a>0 is the Malthusian

parameter, then the process W (t)—Z(t)e ' converges in mean square to a random
variable W whose Laplace transform ¢ (M)=Ee—*V satisfies the equation :

(46) 0 ()= ] o (=) dL () + [ (v (\e=) dK ()—1 (@)
where vy (\) is the unique solution of the equation

47 v(®)=[h (v (o)) dG(w)

in the class C= {w:\v(u):,z’e"’dF(t). F(0+)<l1, ZMF(‘)=1}-
Proof. It is not difficult to show that

(48) E{W (t+1)— W(O)) = e 24 M, (£) + € M (£)+ e+ OM, (t+7)
+ e~ WM (F41)—2ee AHIN(E, 1).

~ Now, using Theorems 3.2, 3.3, 3.4 for the right side of (4.8), we obtain that
}L’?.E{W(t-l-‘t)— W (#)}2=0, uniformly for ©>0, which is equivalent to the mean square

convergence to a random variable W.
From here it follows that

(4.9) lim® (¢, exp(—re—*)) =0 (}),

{00
where ¢ (A)=Ee—*¥, 1>0.
It is known (see Athreya and Ney [2]) that under the conditions of the theorem
we have

(4.10) limF (¢, exp(—he %)=y (r)

00
where y (L) satisfies (4.7).
Setting s=exp {—Ae—*} in equation (2.4), we obtain

(4.11) ®(t, exp(—hre—))= {' ® (t—u, exp(—he—e —me—a)) gL (u)+1—K(E)—L#)

- j f(F(t—u, exp(—he e~ ))dK(u).

As t—co from (4.11), using (4.9) and (4.10), we obtain (4.6). ]

Equations (46) and (4.7) when A—0 yield ¢(h)—]l, ie. the limit ~ distribution
S(x)=P{W=x} is non-degenerated. % A

Corollary 4.2. Under the conditions of Theorem 4.2 EW=A, Var W=N-A42,

where A and N are constants defined by (3.9) and (3.13), respectively.
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Proof. Differentiating (4.6) and setting A=0, we observe that —EW=¢’(0)
=l{(p’(0)e*“"a'L(u) +6{f’ (v (0) e~=) y' (0) dK (1).

Since y (A)=Eexp(—A) lim{Z;(¢) e~**}) and y(0)=1, then we have
mA, ze_"“ dK (u)
(4.12) EW=— :
I—J e ““dL (u)

By differentiating once more (4.6) and setting =0, we obtain EW?=¢" (0)
=i e dL (@) +n[[v O)Pe ) dK () +m[ v (0) e *“dK ().

Using that

v"’ (0)=E{lim [Z; (f) e~]}2= B, (see Harris (1963)), we obtain
t—00

EW?—EW? [ e—2dL () + nAgZe—zﬂ"dK(a) +mB, Z 2K ().
0

Finally we have

(mBo+nA§)7‘e—2“"aK (u)
(4.13) EW2= 2 X
(o of e 24 (u)

where the constants A, and B, are given by (3.7) and (3.11). From (4.12) and (4.13) we obtain
Var W=EW?2—(EW)?=N—A?, which completes the proof.
Since y(o0)=¢<1 (see Harris [5], Chapter VI, §20) from equation (4.6) as A—co,
we obtain ¢ (co)=0 (o)L, which implies that ¢(c0)=0 because of L,>0.
Corollary 4.3. (Uniqueness) Equation (4.8) has a unique solution in the class

(4.14) D={¢:<p(a)_—.b7°e—vfdi-‘(t) 0(0)=1}.

Proof. Suppose @, and ¢, are solutions of (4.6) in the class D. Let 0(1)= .| g, (%)
—@g(2) | for 2=0. Using (4.6), we have

(4.15) e(x)§;f°e(xe-«") dL ().

We can rewrite (4.15) as 0(A)<EB(re—°U), where U is a random variable with
d. f. L(¢). lteration yields 6(A)<E0 (he~r), where S"=121U' and {U};} are ii.d. random
variables with d.f. L (#). Since ¢, and ¢, are in D, 0 is bounded and lim 6 (x)=0.

0
By the strong law of large numbers S,—co as. Then the ?:otmded conver-

gence theorem yields 0 (A)<limE [0 (e %)) =0, thus the uniqueness is proved.
Corollary 4.4. The distribution of W is absolutely continuous on [0, co).
Proof. Denote ¢(it)=EeY. Equation (4.6) yields

(4.16) o' (it)=Ly [ o' (ite=)dL (@)
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+:f £ (v (ite—s)) ' (ite—=%) e—**dK (1),

where L (t)=L(t)/L,
On the other hand, from equation (4.6) we have

o0 ()= LyEo (D) + [f (v ite=9) dK (@~ @)

where £=e—9 and P{ng}:Z(x).
Now, from (4.16) we have ¢’ (if)=L.E[¢’ (it€) E]+R(t), where

R(t)= Aj’ (v (ite=o)) ' (ite—) e~ dK (u).
: :
Let J(T)= [|¢ (it)|dt. Using Theorem 2 (see Athreya and Ney [2], Chapter 1V,
-T
I
§ 11), it is not difficult to show that fT|R(t)|dtsc, where C is a positive constant.

Then J(T)=LyJ ELl' ()% 14t +_[IR() dt

<L q’; | ¢/ (iy) | dy) + C = LEJ(TE) +C.

An iteration yields
!(T)gL.’;EJ(T[‘HlE_,)+C(L3“'+ ns Elat)
Since ﬁ&,:exp{—a}?.U,}. then by the strong law of the large numbers we have
i=1 i=1

n
Mg—0 as. as n—oo.
i=1

Hence J(T)=C/(1—L,). As T—co we obtain ?|q>’ (if)|dt <o and by Lemma 3
+on

(see Athreya [1]) it follows that W has an absolutely continuous distribution on [0, co).
Denote W(f)=Z,(t)e— and lim W ()= W a.s.
t

Theorem 4.3. Assume conditions 1°-3° and A>1. If the Harris condition

(4.17) ZE (W () — WPdt< o

holds, then ‘lim Z(t)e =W as.

Proof. In the case p,=0 it follows that Z(f) is a classical Bellman-Harris pro-
cess and it is known (see Harris [5], Chapter VI) that (4.17) is sufficient condition for
a.s. convergence.

For the Bellman-Harris process Z,(f) let (") (f) be the number of particles which

are born up to time #, and let {((f) be the number of particles dead up to time £.
N (1)

Denote S,(f)= ‘2l G (#), k=1, 2, where N(f) is defined in (2.3) and the process N (f)

is independent of {C® (D)}, k=1, 2. :
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When p,>0, we have the representation Z(£)=S,(£)—S, (¢).
Under the conditions of the theorem N(f)—v as. as f—co and Ev=1/(1—L;) <o

(see Feller [3], Section XI. 6). On the other hand, we have ny’)=,1im [(Pe], k=1, 2,

a.s. (see Harris [5], Chapter VI).
Therefore as f—co

S, ()

eu!

N () v
=L (W()e— Zn® as.
=1 i=1

Hence lim W(¢£)= W a.s., which completes the proof.

{—00
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