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RANDOM CAP PROCESS AND GENERALIZED WICKSELL PROBLEM
ON THE SURFACE OF A SPHERE

YU. I. PETUNIN, N. G. SEMEIKO

The properties of the random process of the closed hemispherical caps on the surface of a two-
dimensional Euclidean sphere arc investigatied with using the theory of marked point processes. A first
order moment measure of the marked point process of the parameters corresponding to the cap process
is found. This measure permits to calculate the first order moment measure of the cap process for
the spherical sets of the special forms. The properties of the random chord process on the big circle
of the sphere induced by the cap process are investigated. The first order moment measure of the chord

process is obtained. The well-known Wicksell problem is generalized for the surface of a two-dimensional
Euclidean sphere.

1. Introduction. In this paper we study the properties of a random process &/
of the closed hemispherical caps on the surface of a two-dimensional Euclidean sphere
of the unit radius. We use the methods of the theory of random marked point pro-
cesses (MPP).

In Section 2 the random cap process &/ on the surface S? of a sphere is identi-
fied with the simple unordered MPP (6';1, %d, de) in the phase space S2XH

where S? is the space of the position points (centres) and K=[0, A] is the space
of the marks (diameters) of the spherical caps. A simple unordered MPP of the para-

meters 9:(&@, X gp Pg) corresponds to the cap processd:(éd, .'2“&1, Pd)' The pro-

perties of the processes o/ and 2 are postulated. The first order moment measure

of the parameter random MPP 2=(&7 , .Q“g, P"g) is found.

In Section 3 the first order moment measure for the random cap process o is
calculated for the spherical sets of special forms.

In Section 4 a generalized Wicksell problem for the cap process & on the sur-
face S? of a sphere is solved.

The paper has be presented at the International Symposium “Stochastic and Integral
Geometry” (Yerevan, 1985).

2. Random cap process on the surface of a sphere. Let S?={x=(x;, x5 X3
:{x3, x4 x3=1} be unjt sphere with a centre at the origin of coordinates O in the three
dimensional Euclidean space R® (fig. 1). We assume that the distance between non-
antipodal points x, y of the sphere S? is the length of the (shorter great circle) arc
joining them. Then the surface of a sphere will be a metric space. The position of any
point x¢S8? is determined by two spherical coordinates ¢, 6 (¢ is a longitude and 0 is

a latitude), i. e. x=x(g, 0). The two-dimensional Euclidean sphere may be represented
by a function ® on the rectangle

Aeo={(9, 0): 0=p<2r —-<B8<-3JU{O, 3, (O, =N

of the Euclidean plane R? as follows: ®[x(p, 0)] = (¢, 6). In this connection
it is considered that the North pole 7,= x(0, 0, 1) and the South pole
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Ty=x(0, 0, —1) correspond to the spherical coordinate (0, ; ) and (0O, —%), res-

pectively.
Consider the random process u’:(g“d, ﬁr“d P;{) of closed hemispherical caps

on the surface S? of a sphere whose realization Ed is an unordered set consisting of

N closed mutually disjoint hemispherical caps [7] (see fig. 1), i. e.

Fig. 1. The intersection of the trajectory E.d{o(\)' -+ - Quy)l of the random cap process o/ with the re-
gion R(l) bounded by the contour ¢ =CyDyD,CiC, and the circumference G of the big circle

E,={Qu(Wn)y aw) -, QU awh -, Qun(Uann aw)}:
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Moreover, these caps are randomly located on S? and, in addition, the diameters
{agy, -+ @@y - -+ ,awy of the caps belong to the interval K=[0, A] where A<m.
Then N is a nonnegative integer-valued random variable determining the number
of caps in the process # on the surface S* of a sphere, i. e. N=card [E;{]. We re-

mind that any spherical closed cap Q(U(¢, 9), @) with an angular (spherical) diameter a@
and the centre at the point U(@, 8)¢ S? surrounded by the circumference d Q(U(o, 6), a)
has area [2, 12]

(2.1) WQ(U(9, 0), a))=p(a)=4rsin®(a/4)
and perimeter
(2.2) p(0 Q(U(w, 0), a))= p(a)=2msin(a/2).

The centres Uu(@uy, 0;) of the caps Qg of the process o from the realization

EJ:{U(‘)(¢(1), 01y - U0, 8@y, « -« Um0y, 0}

of the point process o = (&J. %g, P&;) on the surface S? of a sphere (fig. 1). The position

of any cap Qu(Uw(®w» 0w), aw) on S is identically determined by the set of para-
meters [, 8); am] where (0w, 8()) € Ag,o. Thus a random simple unordered MPP of
parameters 2:(6’*9, .”l“g, P'g) in the bounded space (Z=Aq0XK, ‘i'(z:‘JIM(,@QIK,
szwm 0@ B) can be associated with the cap process & on S2, We interpret Z=Aq0

><K={z'_—.(<p, 0, a): (0, 0)€Agp, a¢K)} as a phase space, Ago as a position space and K
as a mark space [4, 5, 16]. The realization E‘gee‘g has the form

Esé={2(|), cee sy Ry ee ey z(N)}:{[(P(I): 0(1); a(l)]. ceey [(p(,'), e(,‘); a(,‘)], oomy [(P(N)’ 9(‘\'1\', a(N)l}

Obviously, every realization IE-I‘9 of the parameter MPP 2 in the phase space Z cor-
responds to the realization E;{ of the cap process o/ on the surface S? of a sphere.

The space K is considered as a general population of marks G, with a distribution-

function F(a) possessing a probability density fla)eCMo, A].
Assume that the processes o/, &, 2 possess the following properties:
a) The random variable N has a finite expectation, i. e. E(/V)<Ceo.
b) The process & is isotropic in mean with respect to the group of rotations

of the sphere S? around the origin 0.
¢) The MPP of parameters 92=(6‘9. Z ‘9 P:@) is a random unordered simple point

process (PP) with independent marking in the bounded space (Z, %Az #z) [5, 6, 14].
Corollary 2.1. The process & has a constant intensity M.
Corollary 2.2. For the mean value E(N) of the random wvariable N we have

(2.3) E(N) = 4.

Denote by N'(£, Z)= card (£, N Z), Z€ Nz the counting measure of marked point
process 2. Then the following statement is true [7, 15]).
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_ Theorem 21. For any set Zez the first order moment measure VOV
(2)=E [N'(E‘g, Z)| of the simple unordered random parameter PP with indepen-

dent marking 9:(8‘9. El'.'@, P*g) is calculated by the formula:
(2.4 v(z2)= [ viXdz)= [[] *cos0f(a)dodd da,
2¢Z (0.8,a) € Z

where v\)(dz)=Lg(2)dz=Xcos0 f(a)dodbda and rg(2)=hgy(9, 6, a)=Acosbf(a) is
the intensity function of the MPP 9:(5‘9, .2"9 P‘g).

3. Calculation of the first order moment measure of the random cap process*
Let us assume that R({)¢9s: (s is the c=algebra of Borel sets of the sphere S2)
is a region on sphere §? which is bounded by the contour K=C,D,D,C\C, (fig. 1)
formed by the arcs L1=C\‘1_51. Ly=CyDy of the parallels G, 5, and by thearcs Ly=C,C,,
L,=D.D, of the meridians G;, G,. The rectangle (fig. 1)

C={(e, 8): ¢,=0=0, 0,<0=<0,}

in the space A, corresponds to the spherical region R(l). Let p(L,), p(Ly), P(Ls), p(L,)
be the lengths of the arcs Ly, Ly, L L,, respectively. Moreover, p(L3)=p(Ly)=0,—0,=1,
and hence the area p[R(!)] of the region R(/) is of the form [9]

3.1) HRM) = [] €050 dodd =29~ y) sin 5 cos 2t
Define the set Z|R(l)]=Z for the quadrangle R(l) as follows [10, 13]:
(32) ZIRW) ={z: z=(9, 0, a)€ Z, QU(o, 0), a)N RL)+D},

where Q(U(9, 0), a) is a cap corresponding to the point z=(9, 0, a) from the para-
metric space Z. The set Z[R(l)] consists of admissible points z=(9, 0, a) of the para-
metric space Z for which the intersection of the caps Q(U(¢, 0), @) corresponding
to those ones with region R(/), is not empty.

Consider the random variable K(E;, R(/))={the number of the caps of the reali-

zation E:d: {Quy ..., Quv} of the process ./ intersecting the region R(/)} - card [E“d NR(@)]
(fig. 1). According to definition (3.2) of the set Z[R({)], any cap Qu(Uw(oup 0w), ag)

of the realization E;{ of the process 7 intersects the region R(!): Qu(Uw (9w, 0x)) a(i))

N R()==, iff the point z4;=[9w), 0(;y; aw) corresponding to this cap belongs to the set
ZIRW). “Therefore o (E:,, (RO)= N'(E,, ZIROD and LOROI=EX(E, RV)

=EINYEG, ZIRDODI=VA(ZIRWD)-

For the spherical region R(/) the expectation {M[R(l)] of the random variable
Ve (E;{. R(1)) is called a first order moment measure of the random cap process « [19],

It follows from Theorem 2.1 that

(3:3) CORDOI=vIZIRON= [ vI(dz).
2 € Z[R))
Theorem 3.1. Let o/ =(&", 3[:,, P;,) be a random cap process on the sur-

face S* of a unit sphere for which the corresponding MPP 9:(5‘9, .‘:l‘_:a. Pg)
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of the the parameters is a simple unordered random PP with independent marking
in the bounded space (Z, Wz, #B7). Then the first order moment measure {M[R(!)]
of the process is calculated as follows:

(3.4) COR() = MUR()] + = PIR(D] PO Q)+ 2(Q))-
Here p[R(1)] is area of the region R(l), p[R(!)] is a perimeter of the region R(/),
(3.5) p(0Q)=2r f sin (a/2) f(a) da

is a mean perimeter of the caps of the process 7,
— A
(3.6) u(Q)=4n 6[ sin?(a/4) f(a) da

is a mean area of the caps of the process &/, the quantity Q, has the fol-
lowing value

! m
Q=1+l (= D" e+ (=1)" o),

Iwhere m=1, n=2 if ,>0, 0,>0; m=1, n=1 if 0,<0, 6,50; m=2, n=1 if 6,<0.
0,<0 and the functions o, and o, are of the form:
1
o= {I[RO]+ [p(Ly)—p(La)P—4 sin® (/2)p(Ly)}
1
0y = {I[R(W)] +[p(L,)—p(Ly)P— 4 sin? (1/2)p*(Ly)}’
Proof. From relations (2.4) and (3.3)

3.7) LORWD]=A  [ff  cosO f(a)dododa.

(9,8,a) € Z[R())]

In order to calculate the integral (3.7), we respresent the set Z[R(l)] as follows:

(38) ZIRO)= U [C@x{a}l,
where
(3.9) Cla)={(9, 0): (9, 6, @) Z[R()), Q(U(9, 0), a) N R()F D}

for any fixed a¢K. The set C(a) has the following property: CC(a). Therefore
C(a)=CU A C(a) where the set

AC@@)={(9, 8): (&, 0)€C, QU(o, 0), &) N ROF ).
By using the representations (3.8) and (3.9), we find

CO[R(M)) =Mu[R()]+ Rf fla)l Al[(j;) cos 0 do dO]da}

= MuRO)+ 55 PIRM)] PO Q)+ 2n(Q)},



86 Yu. I. Petunin, N. G. Semeiko

where

B10) Q=T (=1 {(0— =L} +(—1) (02— 0"~ p(Lo)} 7]

Since

@3.11) P(L)—p(Ls)=2(0a— ) sin - sin 2 E%

then from the system of equations (3.1) and (3.11) we get
AR(D)+[p(Ly)—p(Ls))?

(3.12) (9a— gy = RO pLa)E

By substituting the value of (p;—0,)? from the formula (3.12), in the relation (3.10)
we obtain the formula (3.4).

The following statements are consequences of Theorem 3.1.

Corollary 3.1. The measure {MR|(l)] is invariant with respect to the rotation
group of the unit sphere S*.

Corollary 32. Let .%’(E;(, L)) be a random wariable which is equal to

the number of the caps of the process realization E;{ intersecting the arc L,
of the circumference G, of the small circle (X(E;/. L,) = card [E.;lﬂ L], fig. 1). If

L0, the following limit relations will be satisfied : the region R(l)—L, in the Haus-
dorff metric [1] (i. e. d(R()L,)~0 when -0 where d(R(l), L,) is the Hausdorff dis-
tance between the sets R(l) and L,), p[R()—0, p(Ly)—p(L,), Q,—1 and for almost all reali-
zations E;[ of the process o we have A (E;’. R())—H (E;{, L)). On the basis of

Lebesgue’s theoren on passage to the limit in the integral we have
EIX(E, RO~ E[H(E, L] 1-0.
In addition
I 1 : —
(3.13) E[H(E, Lil=M— (L) P (9 Q)+1Q)}-
Corollary 33. Denote #(E* , L)={the number of the caps of the process

realization E:Q( intersecting the arc L of the circumference G of the big circle}
=card [E;{ﬂ L] (fig. 1). For almost all realizations E&/ of the process < the random
variable f(E;/’ R(l))—».:(f(E:y L) as [—-0. In addition E[X(E_;(. RW))~E[H(E*,, L))
as -0 and

(3.14) EWH(E" , L]=M - p(L)p (0 Q)+ H(Q)}.

The expectation E[X(E* o L)] is invariant with respect to the rotation group

of the unit sphere S*.
Corollary. 3.4. Let R(l) be a spherical belt B(l) bounded by the circumferences

G, and Gy of the small circles for which ¢y—@,=2n (fig. 1). Consider the random
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variable(A E.‘d, B(l))={the number oy the caps of the process realization E;, inter-
secting the spherical belt B(l)}=card [E; NB(l)]. Then the following equality
holds :

@B15)  EH(E,. BU)]=MrIBOI+ 5y PG +p(G] 5 (0 Q)+ 2 ),

where w[B(l)] is the area_of the spherical belt B(l), p(G,) and p(G,) are the lengths
of the parallels G, and Gy,

1 1
1 ~ T ~ 0T
= o (=14 — %Gy} +(—1){4n?—pAGa)}” |
where m=1, n=2 if 8,>0, 0,>0; m=1, n=1 if 6,<0, 0,>0; m=2, n=1 if 6,<0,
0,<0. A magnitude E[A(E* , (B())] is invariant with respect to the rotation group

of the sphere S -
Corollary 35. Let A (E® o G,) be the random variable which is equal to a num-

berof caps of the process realization E‘d intersecting the circumference G, of the small
circle of the sphere S*: A (E“y, G,)=card [E“dﬂGl] (fig- 1). Foralmost all realiza-
tions E;, of the process A we have X(E° , B(l))—* (E:;/‘ G,) as [—0. In addition
E[X(E’,, BO)~EX(E,, Gy)] as 1—0 and

(3.16) A (E’, G)l=— p(G)00 Q)

The expectation E[A (E;(, G,)) is invariant with respect to the rotation group of

the sphere S*.
Corollary 36. Let X(E 7 G) be the random variable which is equal to

the number of the caps of the process realization E“d intersecting the circum
ference of the big circle of the sphere S*: X (E“d, G)=card [E® dnG] (fig. 1). Then
for almost all realizations E;l of the process of we have X (E:d’ B(l)—X (E:d, (6))
as 1—0. [n addition E[X (E:d, B(l)|—E[X (E;I, G)] as 1—0 and

(3.17) E[#(E", Q)= 29 (0 Q).

4. Generalized Wicksell problem on the surface of a sphere. Now consider the
non-overlapping balls randomly positioned in the opaque medium in R®. Suppose that
the centers of the balls are from a Poisson process of constant intensity A. Ball dia-
meters 7¢[0, R] are random variables independently drawn from an unknown distri-
bution function F(r). Always the distribution function F(r) has a density function f(r).
The following quantities can be determined by the planar section of the opaque
medium :

¢(x) is the density function of diameters x¢[0, R] of section circles;
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A, is the intensity of the center PP of non-overlapping circles.
What is the relation between f(r), L and ¢(x), A,? This problem was posed and solved
analytically by Wicksell [11, 21]. In this connection C. D. Wicksell has found
an integral equation

R
(4.1) o)== [ I ar

x (r2— .r’)”? ’

where 7, is the mean diameter of spheres. The solution of this equation enables us
to find the probability density f(r) and the intensity A:

-

9 R L
(4.2) f(r)= _-inl{ (x2—r?) 2 ‘;;{ w(;) Ydx,
2 R
(43) lz_,rxoof ‘P(:‘) dx,
where
R
(49) T R

At present equations (4.1)—(4.4) are the main equations of stereology. They have been
dealt with by a number of well-known scientists namely Kendall and Moran [3],
Santalo [8, Weibel [20], Serra [18], Ripley [17].

Next we proceed with explaining the generalized Wicksell problem for the two-dimen-
sional Euclidean sphere.

As a result of the intersection of the process realization E;{:{Q(l,, ey Qv
with oriented circumference G=8? of the big circle we have a realization
Ef=@ V(@) Y -+ » T(Vi(04), 747)) of some randem ordered process I'=(gf, &y, Py)

of closed mutually disjoint spherical chords r/=M7ﬁ/, J=1, H, H=card[E]] (fig. 1).
The centers V;(o,), j=1, H of the chords I'; of the process I' form a realization
Ex=WVy(@1) ..., Vigloy) of some point process I'= (eF, Zr, Pr) on the circumfe-
rence G of the big circle. The lengths y;, j=1, H of the chords T';, j=1, H take values
in the interval K—[0, A]. The chord length v, generated by spherical cap Q(U(o, 0), a)
may be calculated through Pythagorean formula for Euler rectangular spherical
triangles [1, 2]:
cos (a/2) }

cos® J°
Any chord TV (9,), v;) of the realization E[ is identically determined by a pair
of numbers [@;; v;. This is the reason to let simple ordered MPP of parameters
yv=(&} &, Py) in bounded space (Lo=A XK, Ay=Aa, X Wk, By=RBa,() By) cor-
respond to a process of chords I'. We interpret & as a phase space, Ap={¢: 0<¢<2r}
as a position space and K as a mark space.Every trajectory E €&, has a form

v;=7(9, 0)=2arc cos{

E;:([(pl; Yib o oo (@15 Ya))-

Moreover, the marks (lengths of chords) of the process y take values in the general population
Gr=K with distribution function ®(y) and probability density ¢(y). The processes I,

I', v possess the following properties:
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(a) A realization E. of process I is finite with probability one;

(B) A point process [ is isotropic on the average with respect to a group
of rotations of the circumference G of the big circle around of its center;

(v) A process y is a simple ordered random point process with independent
marking [5, 6, 14].

Corollary 4.1. A process T possesses constant intensity M\,

Let HY(E|, ¥)-=cardiE;N ¥ (.S/’ea[y) be a counting measure of marked point pro-

cess y. The properties (a)—(y) of the processesT, T, v enables us to calculate the first order
moment measure n)(Y)=E[H"(E,, &)] of the point process y=(&;, Z, P;) [15].
Theorem 4.1. For any set .?egly the first order moment measure W(¥)

of the simple ordered random PP with independent marking of parameters y = (65,2, P,)
is calculated by the following formula :

N(L)= [[ Ao(y)do dy-
(0.7) €52

_ Generalize Wicksell problem to two-dimensional sphere S? with unit radius let us
define a probability density f(a) of diameters and intensity A of random cap pro-
cess o/ on the sphere S? if the probability density ¢(y) of lengths and intensity A, of
the random chord process I' induced by process & on a circumference G of the
big circle of the sphere S2, are known.

Theorem 4.2. Let f(a) be the probability density of the cap diameters of the pro-
cess o/ satisfying the following conditions: 1. f(a) is a differentiable function on
the segment [0, A]; 2. The derivative f'(a) is a bounded function on [0, Al;
3. Th;h diameters of the caps have the finite harmonic mean.

en

t
K A t =y d cos’ -
fla)=—"3-tg5 [ {eost —cos® 3} % G fo(f) —-}dt,

sin 5

A=ty 10 o) ctg L de)
e M YO F (p g 2 ’
where K'=M\/\, v,=FE(Y) is the mean length of chords of the process T.
Proof. Consider the measurable rectangle
S =[a, BIX[t, Al€Agp (% BEA, B—a=1)
for any ¢£¢(0, A). From Theorem 4.1 we have

(4.5) ML) = [1—D(2)].
Let
(0, a)={ (0, a) ff [0|<a/2
0 if |0|>a/2.
Then
46) H'(E:, $)= 2 J-([o; 0, a))= C T (o, Y0, @))N(EL, do dO da)
(46) H(E,, ¥) e Fo; 16, a)]) (.’éf"{)J‘ , e, 76, a)]) (Egy» do dd da
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From formula (4.6) it follows that H* is a measurable function defined on the realiza-
tions E of the MPP 2. Therefore by using Theorem 2.1 we get

(7) nS)= [ HE, SIPYEEL = [[[ J50; 70, )) v (do 0 da)
Ey€éy

A 9 2 L
=2 [ fla1— s i’:/m)} 2 da.

From formula (4.5) and (4.7) we have
A 2 (a2 L
(48) A1 -] =22 | j(a){l—ii(;;((‘:,—Q;}z da.

Differentiating (4.8) in / we obtain that the probability density ¢(f) and f(a) are con-
nected by the relation:

(49) WO =iy | i f@

K* =X/

Obviously, (4.9) is a linear integral Volterra equation of the first kind with a singular
kernel

cos? (a/2) a
[cos? (¢/2)—cos? (a/2)'/?

cos? (a/2)
|cos? (¢/2)—cos (a/2)]'/

with respect to the unknown function f(a). The solution (4.9) is obtained by its inver-
ting to the following Abel type integral equation

Kla, t)=

1

n e
(4.10) oi(w)= [fl(h)(u“h) * dh,
where
p=cos?(#/2), h=cos?(a/2), hy=-cos?(4/2),
= L .0
@) =K*pn(1—p) 2 o(2arccosp?),
ho\_u )1
fi(h)=ctg (a/Q)f(a)
According to [9] the solution f,(#) of (4.10) is given by the following expression:

L oht0) o)
(4.11) fl(h)_ {(h h)"? ST—_ dy}.

From (4.11) we easily find that

% A _1 cos?
412 flay=—Stgo  {cos? (af2) —cosi(¢/2)) 2 o {(p(t)»;;%g%}dt.
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If we integrate relation (4.12) with respect to a for a€¢[0, A] we get

(4.13) A= ;,; {Yo+2 Of o(t) ctg (¢/2) dt}.

We can consider equations (4.9), (4.12), (4.13) as generalizations of Wicksell equa-
tions (4.1)-(4.4) for a two-dimensional Euclidean sphere with a unit radius.

Formulas (4.12), (4.13) enable us to find the main characteristics of the cap pro-
cess &/ on the sphere S? using the main characteristics of the induced process of
the spherical chords on a circumference G<S? of the big circle. For example, from
formulas (2.3) and (4.13) we have

EN)=2h{n+2 | olt)ctg (t2) )
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