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ON THE RANK OF A CURVATURE TENSOR OF A FINSLER MANIFOLD
MASAKI FUKUI, CONSTANTIN UDRISTE

1. The rank of a curvature tensor. Let M be a Riemannian manifold of dimen-
sion n and gy be its metric tensor. The tangent space V' of any fixed point has g;;
as an inner product. Then the exterior product A2V is a vector space of dimension
n(n—1)/2 with an inner product

(L.1) Gijer = (8ix&n1— Bugin)|2-
The Riemannian curvature tensor R;;, of M satisfies
(1.2) Rijm=—Rjim= — Rijue»

and so Rl can be regarded as a linear endomorphism of A?V. The rank of this endo-
morphism is called the rank of the curvature tensor, and it coincides with the rank of
the matrix (R}).

On the other hand, any Riemannian space of constant curvature is obviously a
locally symmetric space which is characterized by

(13) Rhije=0

where we denote by “,” the covariant differentiation. Relating to this topic one of the
authors proved:

Theorem(Udrigte). If a Riemannian manifold M of dimension 7 is locally
symmetric and the curvature tensor has the maximal rank n(n—1)/2, then Misa space
of constant curvature.

Later similar theorems for Kaehlerian and Sasakian manifolds have been obtained
by K. Sato [2] and T. Takahashi [3]. In the present paper, we consider the case
of a Finsler manifold. Notations and terminologies are referred to Matsumoto’s
monograph [1].

2. Finslerian analogy. Let M be a Finsler manifold and L(x, y) the fundamental
function, where x is a point of M and y is an element of support, that is, a non-zero
tangent vector at x. The h-curvature and (v)-k torsion of the Cartan connection are

denoted by RJi and R; respectively. Then one of Ricci formulas for X; is written as

(2.1) x{,v =Xk j=X'Rri/'k_'XilyR;k'

where we denote by “I” and “I” # = and v-covariant differentiations, respectively.
These tensors satisfy the Bianchi identity

(2:2) (Cnjry {R;: #—CuRj}=0.

Since the h-curvature satisfies the skew-symmetric properties (1.2) just like as the
Riemannian case, we can define the rank of Cartan’s k-curvature tensor R,;, of a
Finsler manifold.
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In general, a Finsler manifold is called an isotropic manifold when it holds that

(2.3) Ruijn= R(&ns &in— &nx &)
We shall show:

Theorem. Let M be a Finsler manifold of dimension n. If Cartan’s h-curva-
ture tensor has the maximal rank n (n—1)/2 at any (x, y) and Ry;jz,=0, Ryjuy=0
hold identically, then M is an isotropic Finsler manifold.

Proof. In consideration of Ricci’s formula for R, we get

(24) Rn'thl,rlm + thj/gRl'Im + RmmR;"lm + Rh 'j,-R;Im =0.
im

Since the linear endomorphism R is regular, there exists Q,,,, such that R, Qs
= &,s8n— &Sy Transvecting (2.3) with QY7 and further with 2", we have

(2.5) (n—DRyijs=Rir &j—Rij &ex T (Ryijn+ Ryins+ Riisi)s
where R,,=R%. From the identity (2.2), we get

(2.6) Rijut Rijus+ Riss =0,

because of Ry =R,;y". Then, contraction of (2.5) with y* leads us to
(2.7) (n—1Ryjp=Roj g»— Rox &ej»

where the index O means contraction with y. By further contraction with y, (2.7)
implies Ro;=L"2Rooy,; and therefore

(28) R:ik :R,(gsky/—gs/'yk)'

with a certain scalar R’. On account of (2.8) the Bianchi identity (2.2) is reduced to
Rsyjx+ Rjigs+ Reis;=0. From the equation (2.5) we have

(29) (”—I)Rs:'/'h=Rik gs/'_Rngsk'
and consequently
(2.10) Riijn=R(&s Sin—&sx &:,)/n(n—1),

where R-=g/Ry;.
Remark. Since Cartan’s o-curvature tensor S, also satisfies skew-symmetric
properties (1.2), the rank of S, can be defined. The present authors treated it in the

previous paper [5].
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