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QUASISIMILARITY OF N-TUPLES OF COMMUTING
OPERATORS

ZHIVKO J. ZHELEV

ABSTRACT. Let H be an infinite dimensional Hilbert space and £(H) be the algebra of all
bounded linear operators acting on H. In this article we consider the n-tuples of commuting operators
in £(H) which possess the property double quasisimilarity and we consider some of the corresponding
Koszul complexes. Further, we give a definition of a semi-Fredholm spectrum of a n-tuple (Definition

2). If A and B are double quasisimilar n-tuples a theorem of intersection of the semi-Fredholm spectra
of A and B is proved.

Introduction. Let H be an infinite dimensional complex Hilbert space and £(H) be
the algebra of all bounded linear operators acting on H.

There are a lot of articles studying spectral properties of quasisimilar operators. Recall
that the operators A and B in L(H) are quasisimilar if there exists operators X and Y in
L(H), both of which are injective and have dense ranges, such that AX = XB and YA =
BY [6]. Similar operators are quasisimilar and have equal spectra. It is shown in [6] that
quasisimilar operators may have different spectra. But in [3] it is proved that the essential
spectra of quasisimilar operator intersect. In [5] this result is sharpened as the following is
proved: [5, Theorem 2.1]). If A and B are quasisimilar operators, then o;.(A)No,.(B) # O and
ore(A)Na(B) # 0.

In this article quasisimilar (double quasisimilar) n-tuples of commuting operators in
L(H) are considered (Definition 1.). If A = (A;,...,A,) and B = (By,..., B,) are double
quasisimilar n-tuples we have shown some properties of the corresponding Koszul complexes.
We introduce the notion of semi-Fredholm spectrum of a n-tuple of commuting operators (Def-
inition 2.). Indeed, this is a family of spectra which are parts of the essential spectrum o,(A)
of the n-tuple A. In the terms of this kind of spectrum we have proved a theorem (Theorem
1) which is a generalization of the theorem given above. Moreover the proof of ours is simpler
then this one given in [5].

Through all this article we use the following notations: 8K will denote the boundary
of the set K; by K we denote the closure of K; ker A will be the kernel of the operator A; ImA
will be the range of the operator A.

Quasisimilarity of n-tuples. Let H denote an infinite dimensional Hilbert space and
L(H) denote the algebra of all bounded linear operators acting on H.

Definition 1. Let A= (A,,..., A,) and B = (B,,..., B,) be n-tuples of commuting
operators in L(H). We say that the n-tuples A and B are quasisimilar if there erist operators
X and Y in L(H) such that
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1. ker X = kerY = {0},

2. ImX =TmY = H;

3. A;X = XB;, YA; = B;Y, for everyi =1,2,...,n.

{. IfA}X = XB;, YA} = B]Y for everyi=1,2,...,n, where A} and B are
adjoint operators of A; and B; (i = 1,2,...,n), n-tuples A and B are called double quasisimilar.

It is evident that if X and Y are operators like in Definition 1. which satisfy con-
ditions 1-3, then Y* and X* carry out quasisimilarity between A* = (A],..., A;) and B* =
(B;,...,B;). One can guess immediately that if A and B are quasisimilar (double quasisimilar)
n-tuples such are A —z = (4; — z1,...,Ap — z,) and B— 2z = (By — z1,..., Ba — z,), where
z=(z1,...,22) € C" and if A; and B; (i = 1,...,n) are invertible then A~! = (ATY, ... A7Y
and B~! = (By!,..., B;!) are quasisimiliar (double quasisimiliar) too.

Let A = (A;,...,A,) be a n-tuple of commuting operators in L(H). We recall the
inductive definition of the Koszul complex associated with the n-tuple A (see also [9,10,1]) which
we denote by K.(A). In the case n = 1 the Koszul complex of a single operator A is simply

0—HZAH=0. Let K.(A’) be the Koszul complex of the n—1-tuple A’ = (A;,..., Ay). Then
the operator A, defines an endomorphism of the complex K.(A’). The cone of this morphism
is by definition the Koszul complex K.(A) = {H;,d;}-, of the n-tuple A = (A’, A,). It is easy
to see that the i-th term H; of this complex is a direct sum of ('.‘) copies of the Hilbert space
H and the differential of this complex d; : H; — H;4, are bounded linear operators

Let A and B be n-tuples and K.(A) = {H;,d;}"_, and K.(B) = {Hi,ai}]-, the

corresponding Koszul complexes. We denote by h; and x; (i = 0, 1,..., n the cohomology groups
of this complex, i.e. h; = kerd;/Imd;_;, x; = kera;/Ima;_, (i = 1,2,...,n), ho = kerdy,
Xo = ker ap.

It is not difficult to see that if A and B are quasisimilar then such are d; and a;
(i=0,1,...,n) and

(1) d; X = Xa;, Yd; = a;Y, forevery i =0,1,...,n,
but if A and B are double quasisimilar then
(2) d;X = Xa], Yd] =a]Y, forevery i =0,1,...,n

is satisfied too. Here X and Y are the operators from Definition 1.

Lemmal. IfA = (A,,...,A,) and B = (B,,..., B,) are double quasisimilar n-tuples
of commuting operators, h; and x; (i =0,1,...,n) are the cohomology groups of the complezes
K.(A) and K.(B) respectively, then dimh; = dimy; (i=0,1,...,n).

Proof. Let i = 0 first. Then hy = kerdy = n;l=1 ker A; and xo = kerdy =
ﬂ;‘=l ker A;. As according to Definition 1. ker X = ker Y = {0}, then dimY (ho) = dimh, and
dimY(xo) = dimxo. On the other hand Y (kerdy) C kerag. Indeed, for some z € Y (ker do)
there exists t € ker dp such that z = Yt. We obtain by (1)

apzr = agYt = Ydot = 0.

Analogously X(xo) C kerdp and therefore dimY (kerdg) < dimkerag and dim X (kerag) <
dimkerdy. Then
dimhg = dimY (ho) < dim xo,
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dim xo = dim X (x0) < dimho,

hence dim hg = dim xo.

Let now i = n. Then h, = cokerd,_, and x, = cokera,_;. As h}, is isomorphic to
kerdy,_, and x}_, is isomorphic to kera},_,, d;,_, and a;,_, are quasisimilar (by Y~ and X*),
then by the previous case we have dimhj, = dimx;, and hence dimh, = dimxn.

Let i be arbitrary, 0 < i < n. It is clear that H; = Imd;_; & (kerd;)* & L; and
H; = Ima;_; ® (ker a;)* ® N; where L; and h; are isomorphic all together and such are N; and
xi- We show that Y (L;) C Ni. So, let ¢ € L; is arbitrary. Then c € kerd; and cLlImd;_,. But
as the following diagram
Hioy = Hi =% Hip

Y| Y| Y|

Hioy 2= Hi =% Hin
is commutative, we obtain that Yc € kera;. Let z € Ima;_; is arbitrary, then there exists
t € H;_, such that z = a;_;t. Then we have

(Ye,z) = (Ye,aioat) = (aj_Ye, t) = (Yaj_yc,t) =0

according to (2) and because ¢ € (Imd;—;)* C kerd;_,. Thus we obtain YcLlIma;_, and
therefore Ye € N;. Analogously X(N;) C L;. Since ker X = kerY = {0} we have

dimL; = dimY(L;) < dim N;,
dim N; = dim X(N;) < dim L;,

i.e. dim L; = dim N; and hence dimh; = dim x;. The Lemma is proved.

Remark. We notice that in the cases i = 0 and i = n of the Lemma 1’s proof we did
not use the double quasisimilarity of A and B, but quasisimilarity of these n-tuples only.

The following lemma will be useful.

Lemma 2. Let the compler {H;,di;}?_, be ezact. Then there ezist linear bounded
operators b; : Hiyy — H; (i=0,1,...,n) from the algebra generated by d; and d; such that

(3) dibioa+bdi=1,i=1,...,n.

Proof. We determine the operators b; by induction, beginning from the right side of
the complex.

Since d, = 0 we put b, = 0. That’s why in the case i = n we have to prove that there
exists an operator b,y : Hp — Hn—) such that d,_1b,_; = I. By assumption cokerd,_1 =
{0} therefore kerd;,_, = {0}. Hence the operator d,_1d;_, is invertible. Putting b,_) =
d%_,(dn-1d;,_,)"" we reach the desired equation dn_1bn_y = I.

Let for i > k the operators b; be determined. We have to show that there exists
an operator by : Hi41 — Hi with the property dibe + be41dieyr = I. It is easy to see
that the operator Q = br41di41 is projection of Hiy4y onto (ker di41)t. Then the operator
M = Q + did}(I — Q) is invertible. Now we put

be = diM~! on Imd,
=10 on H; ©Imd,
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By elementary checking using the exactness of the considering complex one can see
that the operator b; satisfies the equation (3). The proof is completed.

Let A and B be double quasisimilar n-tuples of commuting operators in £(H) and
K.(A) = {H;,d;}"_, and K.(B) = {H;, a;}, be their Koszul complexes. Let b; and 3; be the
operators constructed in Lemma 2 for the complexes K.(A) and K.(B) respectively. Then by
Lemma 2 and equations (1) and (2) we obtain

(4) b X = XB;, Yb; = 3;Y forevery i =0,1,...,n.

In his fundamental paper [9] and [10] J. L. Taylor introduced the notion of parame-
terized Koszul complex (we denote it by K.(A,z) = {H;,di(z)}}-,) of a commuting n-tuple A
of bounded linear operators. This is the Koszul complex inductive definition which was given
above but of the n-tuple A—z = (A; —z1,..., Ap — 2,) where z = (z1,...,2,) € C™. We notice
that the differentials d;(z) : H; — Hi41 (i =0,1,...,n) of the complex K.(A, z) are linear and
hence analytic functions of z € C™. By h;(z) (i = 0,1,...,n) we denote the cohomology groups
of K.(A,2z2).

The Taylor spectrum o(A) of the commuting n-tuple A is by definition the set of
all points z € C™ such that the complex K.(A,z) is not exact free [9]. The essential Taylor
spectrum o,(A) of the n-tuple A is the set of all points z € c¢" such that the complex K.(4, z)
is not Fredholm, i.e. either there exists ip (0 < ip < n) such that Imd;,(z) is not closed, or
there exists jo (0 < jo < n) such that dimhj,(z) = +oo (1], [2]. The Fredholm spectrum or(A)
of the n-tuple A is the set op(A) = 0(A)\o.(A).

J. L. Taylor has constructed an analytic functional calculus for n-tuples of commuting
operators [10]. In [7] another construction is given (see also [11] [12]) as follow. Let f(z) be an
analytic function in a neighbourhood of ¢(A4) and S be a smooth surface around o(A) such that
SNo(A) = Q. Then the value of the function f(z) for the n-tuple A is given by the formula

(5) f(A) = ZQ—:i)—"/sf(:)R(A,z)Adzl A...Adz,,

where R(A, z) = n'bo(z) Adby(z)A...ABb,_1(z) is a O-closed differential form of type (0,n—1)
in C™\o(A). Here by(2),...,by_1(2) are the operators constructed in Lemma 2 for the complex
K.(A,z) for z € C™\o(A).

Let A and B are double quasisimilar n-tuples in £(H) and X and Y be the operators
from Definition 1. Let b;(z) and B;(z) (i = 0,1,...,n) be the operators constructed in Lemma
2 for the complexes K.(A, z) and K.(B, z) respectively and z € C"\(¢(A) Uo(B)). Then from
(4) we have R(A,z)X + XR(B,z) and Y R(A,z) + R(B, z)Y for every z € C"\(0(A) Uo(B)).
Now if f(z) and g(z) are functions analytic in a neighbourhood of ¢(A) U o(B) then

(6) f(A)X = Xg(B), Y f(A) = g(B)Y.

Let K.(A,z) = {H;,di(z)}?-, be the parameterized Koszul complex of the n-tuple A
and hi(z) (i=0,1,...,n) be the cohomology groups of this complex. Let I = (iy,12,...,1x) be
a subset of N with the properties: 1) i; < iy < ...1k; 2) ip —ip—1 > 2 forevery p=2,3,...,k;
3)0<i, <nforeveryp=1,...k.

Definition 2. We call semi-Fredholm spectrum of n-tuple A corresponding to the set
I the set o' (A) of all points = € C™ such that or there ezxists jo (0 < jo < n) such that Imd;,(z)
is not closed, either there exists j, €I such that dimh;, (z) = +oo.
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It is not difficult to prove that o/(A) is a nonempty compact subset of o.(A) and
(7 do.(A) C Nro’ (A).

Let again A = (A,,...,A,) and B = (B,,..., Bp) be n-tuples of commuting operators
in C(H) and K.(A, z) = {H;,di(z)}~, and K.(B, z) = {H;, ai(z)}]-, be corresponding Koszul
complexes. By h;(z) and x;(z) (i =0,1,...,n) we denote the cohomology groups of these two
complexes.

Lemma 3. If A and B are double quasisimilar n-tuples, then

(8) a.(A\e’(4) c Ny’ (B),

9) o(B)\ N, ¢’ (B) C o(A),

where I C N and J C N are in Definition 2, I 1s fized and intersections in (8) and (9) are
over all J such that INJ = 0.

Proof. We prove (8) first. The inclusion (7) implies that the right side of (8) is
nonempty. If o.(A)\o?(A) = O, then (8) is trivial. That is why there exists z° € a.(A)\o’(A).
Then Imd;(2°) is closed for every i = 0,1,...,n and hy(z°) is finite dimensional for every p€l
but since z° € o.(A), there is r (0 < r < n) such that dimh,(z%) = +oo. It is clear that
r € I. Lemma 1 implies that dim x,(z°) < +oo for every p€l and dimx,(z°) = +oo. If J is
an arbitrary subset of N such that INJ = @, then 2° € o7(B) by Definition 2. Thus, (8) is
proved.

Let us prove (9). By an argument like above, we suppose that the left side of (9) is
nonempty. Let z! € o(B)\ N; ¢/ (B), where the intersection is over all J C N like in definition
2 such that INJ = @. If z! € op(B), then there exists i (0 < ip < n) such that x;,(z!) # {0}
By Lemma 1 we have h;,(z!) # {0}, hence z! € o(A). If 2! € 0.(B)\Ns ¢?(B), then Ima;(z')
in closed for every i = 0,1,...,n and there exists r (0 < r < n) such that dimx,(z!) = +oo.
By Lemma 1 again we have dimh,(z!) = +0o0, i.e. z! € ¢(A). The lemma is proved.

We need the following lemma which is a version of Lemma 4.3 in [8].

Lemma 4. Let X.(z) = {Xi,di(z)}~, be a complez of Hilbert spaces and d;(z) are an-
alytic functions in a neighbourhood of z° € C™. Let Imd;(z°) be closed for everyi=0,1,...,n
and h;(z) be the cohomology groups of the complex X.(z). Then in a sufficiently small neighbour-
hood of z° there erists a complex of Hilbert space L.(z) = {Li,ai(z)}"- withdim L; = dim h;(z°)
for every i =0,1,...,n, where a;(z) are analytic operator-valued functions and there erists an
analytic quasi-isomorphism of complezes ¢.(z) : L(z) — X.(2).

The proof of Lemma 4 is very similar to this one given in [8], so we omit it.

The following theorem is a generalization of Theorem 2.1 in [5].

Theorem 1. If A = (A;,...,An) and B = (B,,...,B,) are double quasisimilar
n-tuples of commuting operators in L(H), then

(10) o (A)n (e’ (B) £ 0,
J

where I C N and J C N are in Definition 2, I 1s a fized and intersection s over all J such
that INJ = 0.
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Proof. For the sake of convenience we put

M=o (A\o!(4), N= [ '(B)
mJJ-Q

It is clear by Lemma 3 that N # O.

We consider some cases.

I. M # Q. Since M is open but N is closed the inclusion (8) gives us M C N. If
z € OM, then for every neighbourhood U, of z we have U; N M # @. Hence OM C o.(A).

Let 2% € OM, i.e. z°EM and 2° € 0.(A). Hence z° € 0/(A). But 8M C N and thus
2% € s/ (A) N N. This case is completed.

II. M = Q. In this case 0.(A) = o/(A). We suppose that (10) is wrong, i.e. through
this case we suppose that ¢/(4A)N N = 0.

1. Let first op(A) = O. Now o(A) = 0.(A) = o/(A). We show that N is a closed and
open subset of o(B). It is enough to be proved that N is open. If N is not open there exists a
sequence {z™}%_, C o(B)\N such that z™ m = 0o z° € N. By (9) we have {z™} C ¢(A), so
that z° € o(A) = ¢/(A), i.e. 20 € o/(A) N N which is impossible by assumption. Hence N is a
closed and open subset of o(B).

Let f(z) be an analytic function in a neighbourhood of N U ¢(A) and S is a smooth
surface around N such that SNo(A) = O. We have by (4) that

f(A) = (—2;1".)—'.'/5](2)13(14,2)/\(121/\.../\(12,. =0,
and
f(B) = (Q’t—li),,-‘[gf(z)R(B,z)/\dz;/\...Adz,. #0.

But (6) implies 0 = f(A)X = Xf(B) and 0 = Y f(A) = f(B)Y, therefore f(B) = 0. This
contradiction shows that this situation is impossible.

2. Let now op(A) # O. It is easy to see that there exists a component Lo of C"\o.(A)
such that N C Lo.

Let first Lo C o(A), i.e. Lo C or(A). Then for every z € Lo there is i (0 < i < n)
such that h;(z) # {0} and by Lemma 1 we have z € (B), hence Lo C o(B). We denote by
P the boundary of unbounded component of C*\Lo. If dimop(A) < n, P will be an arbitrary
component of the boundary of Ly. Since P C o(A) = of(A), then PN N = O. We show
that PNo.(B) = O. It is enough to show that PN (d.(B)\N) = @. Let us assume that
there is 2° € P N (o.(B)\N). Then there is a subset Jo of N as in Definition 2 with the
property Jo NI = @ and such that z° € o.(B)\e’°(B). That is why Ima;(z°) is closed for
every i = 0,1,...,n and for every j€Jo we have dim x;j(z°) < +00 but exists p € Jo such that
dim x,(z°) = 400. According to Lemma 4 there is neighbourhood U, of the point z° such that
for every z € U,o we have dimx;(z) < +oo for every J€Jo and dim x,(z) = 400. It follows by
Lemma 1 that dimh,(z) = +oo for every z € U,o. Since 2% € P, then U,o Nor(A) # O. Then
for every z € U0 Nap(A) we have dim hy(z) = +oo which is impossible. Thus we proved that
PNea,(B) = 0. Since P C o(B) we have P C op(B). The set o5 (B) is open but P is compact.
That is why there exists an open set Ko C op(B) such that P C K. Let Q be the boundary of



Quasisimilarity of n-tuples of operators 239

the unbounded component of C™\Kj. It is clear that Q C 9K, and hence Q N Ly = oo. Then
QNN = co. But by (7) we have

Q CdKo C do.(B)d( o’ (B)C () o’(B)=N
J J
m;.ﬂ
We obtained a contradiction, so the situation is impossible.
Let now Lo ¢ o(A). It is clear that L, intersects o(A) in a finite number of points from

or(A) only. We have by (9) that there is a smooth surface S around N and SNo(A) = oo.
Then by (6) the operators

1

Ty = W/SR(A,z)Adzl/\.../\dz,.

and 1
Tg = mi)—n/sR(B,z)Adz,A...Adz,.

are double quasisimilar. But T4 is a finite rank operator while Tz is not. This contradiction
completes the proof of the theorem.

Remark. In tie case of single operators A and B Theorem 1 reduces to the Theorem
2.1 from [5]. In this case, as the remark after Lemma 1 shows, it is not necessary for A and B
to be double quasisimilar but similar only.
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