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ZFIgr + CT IS EQUICONSISTENT WITH ZFIr

V. KH. KHAKHANIAN

“

ABSTRACT. The article is the answer to Friedman’s question: “...1is it known
whether ZF IR is equiconsistent with ZFIg+ “Every f € w" is recursive”?”
The answer is positive and we use the models of realizability type.

The present article is an answer to the question from [1] (see page 2: “...is it
known whether Z FIp is equiconsistent with ZFIgr+ “Every f € w"“ is recursive”). The
answer is positive and was announced by the author first in [2] and then in [3]. This
result is possible if we use the models of realizability type and fails in Heyting-valued
models (see [4]). In the paper we give the proof for a set theory with two kinds of
variables but it can be extended to the usual set theory with only set variables (see
also [2]).

1. The language of our theory (we denote it by ZFIgy) consists of variables
over natural numbers af, a3, ... and over sets a},a}, ..., predicate symbols €°, €', sym-
bols 0, L, symbols of logical connectives and quantifiers and function symbols for all
primitive recursive functions. The notions of a term and a functor are defined in the
usual way. The exact wordings of postulates are in [6], but we use the replacement
instead the collection and omit Axiom 9 from V| see [6], page 239. Our notations are
standard. We use letters z,y, z,u, v for designation of sets and m,n,k,e for designa-
tion of natural numbers. Also we identify a partial recursive function with its Godel’s
numbers.

2. The main difficulty is the construction of a universum A in the spirit of
(6], but we must use only replacement in the metatheory because (see [1]) the theory
ZFIgy is deductively weaker than ZFIg; with collection. The main thing in our
construction is the use of the transfinite induction and the transfinite recursion which
is derived by induction. Such constructions are made in [4] and [5]. Here we modify
such constructions for realizability models. The definition of an ordinal also is in [4]
and [5].
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Let On be the class of ordinals and w be the set of natural numbers. We suppose
that for every 8 < a relations are defined:

z extgh, z%y,

and the set Ag, where h and h are fourtuples of natural numbers and a natural number
respectively. We define Ac, = Ugcalp;

€A, =z C[(WwXwW)U(wXAgylA 3hVnhyzB(B < a A y%z
A(n,y) € £ —!h(n, k) A (h(n,k),2) € z);z exty = z € Ag;
2%y = (2 € Aa) A (y € Aa) AVnkzfg{((n, k) € z —hi(n, k)A

(h1(n, k), k) € y) A ({n, k) € y ='ha(n, k) A (ha(n, k), k) € z)A
[zezts f A yeztag — ((n,z) € z —!hs(n, f) A (ha(n, f)1,2) € yA

ye:tahS(n’ f)?) A ((na Z) € y _’!hl(n9g) A (hl(nag)lyz) € zA
zextohy(n,g)2)};z~y= 3a35(z'§y);

and we also define A = UaeonQa, 2* = {y|3k({k,y) € z}, z** = {n|3k(k,n) € z}.

We define the range of a set from A : rng(z) = U{rng(y) + 1|y € z*}. Now we
prove the following statements by induction:

a) Vz € A.rng(z) € On

b)Vze Az € Arnﬂ(:)'H

c) z € y* => rng(z) < rng(y).

3. The definition of realizability. We consider only points which contain
the formulas with variables over sets. So let f :w — w, g : w — A be valuations for
numerical and set theoretic variables.

1. R(e, f,g,8 = t) = |s(f)| = [t(f)|, where |s(f)| is the meaning of term s with
valuation f (it is very easy to define by induction on term’s construction).

2. R(e, f,9,s € ay) = (e, |s(f)]) € g(n)

3. R(e, f,9,a;, € a}) = (e1,9(m)) € g(n) A g(n)ezte;

4. R(e, f,9,Vz'p(2')) = Vz € A.R(e, f, 92, ¢(al))

5. R(e, f,9,32'¢(z")) = 3z € A.R(e, f, g2, ¢(al)).
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4. The proof of axiom realizability. The verification of the postulates of
predicate logic and the axioms of arithmetic proceeds in the same way as for Kleene’s

original realizability (see also [7]).

In the group of set-theoretic axioms we consider realizabilities of replacement
and the transfinite induction on sets. The realizabilities of other axioms are to be found
in [7].

a) realizability of the € — induction on sets

vz'[Vy'(y' € 2' = p(y')) = p(z")] = Vz'p()).
Let p realize the premiss. We have (by the recursion theorem) a number I such that
I(p) = p(u), where u(k) = I(p). If R(k, f,g2",a}, € a},), then rng(y) < rng(z) and by
induction hypothesis R(I(p), f, 92", ¢(ak)), i-e. R(u, f,g2,Vy'(y' € a, — ¢(y'))) and
hence R(p(u) = I(p), f, g2, ¢(al)). We employ the external transfinite induction and
obtain that
Vz € A.R(I(p), f, 92, #(an)) = R(I(p), f,9,Y2" ¢(z")).

b) realizability of the replacement axiom:
vz° € a} Iyl p(2% y') A V2! € a} Iy ¥(2, y') -
32'\Vz° € a}lIy' € 2'p(2% y") AVz! € a}Iy' € 2y(z', "))
We note that if R(k, f, g;‘;",a},, = al), then z ~ y. Here we consider a simplified variant
of the replacement which consists of only a “set” part. Let

R(k, f, gk, Vz' € a}3y' [¥(z",y") AV (¥(2),u!) = u! = ¢')));

if z € a*, then 3e3y € A.R(e, f, 92", ¥(a},a,)). Now let us consider B; = {u €
A|3e.R(e, f,92n,¥(a},a),))}. Since u ~ y, then that class is a set. Employing the
axioms of separation and extensionality we have:

Vz € a*3!B,Vy € Aly € Bz « 3e.R(e, f, g2y, ¥(a}, ap,))]-
Then we use external replacement and obtain that
30Vz € a*3B; € vWy € A(y € B: < 3e.R(e, f, g0, ¥(ah, a})))-

Let z = {0} x U,. This set is used for the proof of the realizability of replacement.
Then we must name a number which realizes the conclusion of the replacement but it
is constructed just as for the collection (see (7], page 204, point 3.6).

5. The fundamental result. So we have proved the following

Theorem. If ZFIgy + CT + ¢, then there exists a number e such that
vng(c’ ,’g’¢)‘

Corollary. As our proof was embedded in ZFIgr,, we have that ZFIgy + CT
is consistent relative to ZFIg;.
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