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1. Introduction. Let D be a bounded convex domain in C, and H(D) denote
the space of functions analytic on D with the topology of uniform convergence on
compact subsets. Let ¢ = {¢m}, ¢m : D — (0,00), m € N be a decreasing sequence
of functions bounded on compact subsets and some technical conditions are satisfied.

Let H(C) be the space of entire functions with the topology of uniform conver-
gence on compact subsets. Let ¢* = {¢h}, ¢m : C — (0,00) be a sequence defined
by ‘

Pm(A) = sug(RzAz —-¢m(2)), A€C, meN
2€

Consider two families of Banach spaces

Ho (D) ={f € H(D): ||fllm = sgP(If(Z)I/eXP%(Z)) <o}, meN,

Pp =Py, ={f € H(C): ||fllm = 8}(1:9(|f(«\)|/exp¢;.(«\)) <o}, meN,
and define
H, = Hy(D) =limprH, (D), P = Py =limindP,, .
In this paper we study the homogeneous convolution type system
(1) (Se, f™M(2)) =0, neNo, f€H,D)

with § € Hj(D). The sign * denotes the strong duality. This system is a generalization
of the homogeneous convolution equation

(Say f(z 4 1) = (S0, 3 SOV @) /0l = 3 (Ss, f(2))t" /! = 0.

6 Cepamuxa 2-3/93
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For any F € H}(D) define the Fourier-Laplace transform
F(A\) = (F.,expAz), A€C.
Denote W all f € H,(D) satisfying (1). Denote W+ all F € Hy(D) such that
(F,fy=0 forall feW.

Let I = (W*). Fourier-Laplace transform also realize isomorphism Hj — P. Then
(H;/W*) = P/I. General reasons from functional analysis gives isomorphism W* =
H}/W*. Isomorphisms above in a similar situation one can find in [2] and [3].

Let characteristic function L(A) = S(A) of convolution type system (1) have
zeros A = {);}, j €N, 0¢ A, and two estimates holds

(2) IL(A)| < Crexp(@y(A) + aln|A]), [A[> R >0,

(3) IL'(X;)] € Caexp(pn(X;) —alnfAj]),  jeN

for some n € N, a > 0.
Consider two families of Banach sequence spaces

Pma ={a=(a;) e CN: laflm = 5‘;P(|ajl/km('\j)) < oo},

Poa={b=(b;) e CN:|Bll}, = sup([b;lkm(3;)) < oo},

m € N and define
Pp =limindPpna, Pi=limprP;, ,
As we will see in section 2 (Pp)* = Py, (P)* = Pa.

Let |o denotes a restriction on A. As we will see in section 3 for any (a;) € Pp
there is w € P such that w|y = (a;). This implies isomorphism (P/I)|p = P realized
by restriction map |A. .

Note that Fourier-Laplace transform of (b;) € Py is 3 bjexp A;z.

So we have diagram constructed by isomorphisms above

W = {SbjezpA;z} — Pp = {(b;)}
Hy/W+ — P[T 2 Py = {(a;)}

and we have
W ={f(z)=)_bjexpA;z: (b;) € F})
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with convergence in the topology of H,(D).

2. Sequence spaces Py and P;. Let ¢* = {¢},}, ¢}, :C—(0,00), m€N
be increasing sequence and for any A > 0, m € N there is p = p(m, A) such that

(4) Pmap(A) = em(2) > Aln A, [A[ > rmp > 0.

Let A,{);},7 € N,0 ¢ A be a sequence such that

(5) Yl <o

for some A > 0.
Set k(X)) = exp i (X)), meN.

Lemma. 1°. P} is strong dual for Py.
2°. P, is strong dual for Py.
Proof. 1°. Let I be a linear continuous functional on Py, i.e. [ acts on Py
for any m € N and let ||!||2, be its norm in Py s, m € N. Define

(6) e;=(0,...,0,1,0,...), b =1(e;), j€EN.
s’
J
Let a € Py, i.e. a € Py A for some m € N. We formally write
(7) I(a) = I3 aje;) = Y asb;.
We have
1bikm(A)] = [km(A)I(€5)] = l(km(Xj)e5)] < NlIzmllkm(As)esllm = lH]lm < o0

Hence
(8) lIbll5, = sup(|b;lkm(A;)) < [lllm < o0
J

for any m € N and b € P,.
Fix m € N,a = (a;) € Pna. Let A > 0 be from (5) and p = p(m, A) be from
(4). Then
1a;b;] < llallmkm(A)1Bllmtp/ Kmap(Ai) < lallmllbllraspl A4, 1251 > rmp > 0
and ¥ ajb; converges absolutely. Also we have

llajbillmer = lajl llejllm+p = la;|/km+p(A;) <
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llallmkm(A5)/ kmt(A;) < llallm|As174, A5 > Fmp > 0,

and Taje; converges normally in P4, 4. Hence it converges in Pj. So (7) is correct.

It has been shown, in fact, that every functional ! € (PA)* corresponds to some
b = (b;) € P} defined by (6). Also every b = (b;) € P corresponds to some [ € (Py)*
if we use (4) as a definition for /. Indeed if @ € P, o, A be from (5), p = p(m, A) be

from (4) then
li(a)l = 1" a;b;] < llallmllBllsp 2 125174,

and
(9) 0l < 1Bllsp 3 1A~ < 0.

Hence ! is continuous. Linearity of ! is evident. Isomorphism of (P,)* and Py is
topological in virtue of (8) and (9).

2°. Let I be a linear continuous functional on P, i.e. [ acts in Py, , for some
m € N, and let ||/||2. be a correspondent norm. Define

(10) aj=1l(e;), jEN

Let b € P, hence b € Pz +p,A for any P. We formally write

(11) 1(6) = 13" bje;) = D asb;.
We have
la;/km(A)] = [1(ej/km(A))] < HlImlle; /Em(A)llm = [1ElIm < oo

Hence
(12) llallm = sup(la;|/km(A;)) < It < 00

and a € P,. Let A > 0 be from (5) and p = p(m, A) be from (4). Then
la;b;] < llallmkm(A) 16l 45/ Emsp(A5) < lallmllBllmsnl i1, [Aj] > 7y >0
and ¥ a;b; converges absolutely. Also we have
lIbse;llm = 1b51llesllm < C(Nellm+p/Em+p(Ai))km(As) <
< Bllsplil ™, 1251 2 Fmp > 0,

and 3 bje; converges normally in }",‘,.’A hence it converges in Py.

So (11) is correct.

It has been shown, that every functional ! € (Py)* corresponds to some a =
(aj) € Py defined by (10). Also every a = (a;) € Pp corresponds to some [ € (P})*
if we use (10) as a definition for /. Indeed let a € P, i.e. a € P, 5 for some m. Let
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b€ P}, hence b € Py, for any p. If we take A >0 from (5) and p = p(m, A) from
(4) then

) =13 @505 < llallmlIbllnsp 3 125174 < oo,
and

(13) Iy < llallm D 15174 < o0

Hence [ is continuous. Linearity of I is evident. Isomorphism of (P{)* and P, is
topological in virtue of (12) and (13). Lemma is proved. O

Remark 1. A = (kn(};)), Jj,m € Nis a Kothe matrix, P} is a Schwartz
space, P; = A®(A) [1]. Due to (4) and (5) we have prove that A*(4) = Al(A) in
this case. We have isomorphism (A!(A))* = k*°(A) where k°(A) denotes P5. Then
(PR)* = Pa.

Remark 2. Py is (LN*)-space, P} is (M*)-space, hence they are reflexive [4].
Then 1° and 2° are equivalent.

3. Interpolation. Let ¢* = {¢.}, ¢h :C — (0,00), m € N be an increasing
sequence of functions such that

(14) Pmip(A) = m(A) 2 I |Al, p=p(m), [|Al27rm >0,
(15) lom(A) = n) < C, A -pl <1

for all m € N. Let for every ¢, ¢h, m > n exist some subharmonic function ¥y, »
with the Riss measure ., , such that

(16) pma{AEC:|A=2| <t} <Clal't, |2|2R>0, 0<t <]
for some s > 0, and let

(17) Pm(A) = @R(A) £ ¥ma(A),

(18) Pn(A) + ¥ma(A) < ¢5(2), p=p(m,n),

for |A| > rman > 0.

Remark 1. Condition (16) is taken from [6]. If ¥ = ¥,, , € C? and
(19) |0¥/dz|, |8¥/8z| < Clz|*, |z2|> R >0,
then Green formula implies (16).

Remark 2. Condition (14) implies that if f(A) € P then Af(A) € P.

Theorem 1. Let L(\) be entire function satisfying (2) and (3). Then for any
(a;) € P ezists w € P such that w, = (a;).
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Proof. We have (a;) € P, i.e. (aj) € Pna for some m. Let n be taken from
(2) and (3) and without lost of generality m > n. Let ¥ = ¥, , be a subharmonic
function on C with (16), (17), (18). There is entire function N(A) such that

|¥(A) =In[N(A)|| < BIn|Al, [A|2R>0, A¢ E=UB;, >0,

Bij={A€C:|[A=X]|<C]Xj|7"}, BinB;=0 for i#;C>0,7y>0

where A = {A.},j € N-zeros of N(X) [6]. We may choose N(A) and E such that
ENnA=0]s).
Consider Lagrange series

(20) w(A) = D (GLNMN/(L'A)INA)A = A)A), AeC.

We have

IL'(Aj)] 2 Caexp(pm(A;) —aln|A;]), J €N,
INA)| 2 exp(¥(A;) - Bln[AjD),  [Aj12 R > 0.
Then (17) implies
la;/(L'(A)N (X)) < CIAj1°FE,  |Aj| 2 max(R, rm,n) > 0.
We have
[L(A)/(A=A;)] € |L(A)] € Crexp(@r(A)+aln|A]), [A=Al21, A>2R>0, j€EN.

Now let |A — Aj| < 1 and )’ gives maximum fo entire function L(A)/(A — A;) on the
circle |A — A;| = 1. Then (15) implies

|L(A)/(A = A)| € |L(X)]| € Crexp(pa(X) + aln|X]) =
= Crexp(¢h(A) + aln |A]) exp(pn () = ¢a(X) + a(ln [X'] = In |A])) <
< Cexp(pn(A) +aln|A]), |ALIA;|2 R > 0.
Hence (14) and (18) imply
IA*LA)N(A)/(A = Aj)| < C'exp(pp(A) + ¥(A) + (a+ B+ 8)In|A]) <
< C'exp(pp(A) + (@ + B+ 7)In|A]) < C'exppy(d), [Al> R" >0,

for some gq.
L(X) is a function of exponential type because of (2). Hence 3 |A;|™'~¢ < oo
for any ¢ > 0. Choose s > a+ f+1, s € N. Then

3 ai /(ML (AN (M)
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