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VECTOR ¢-SADDLE POINTS IN A DIFFERENTIAL GAME
DESCRIBED BY A HYPERBOLIC SYSTEM

DIKO SOUROUJON

ABSTRACT. An antagonistic differential game of hyperbolic type with a vector
pay-off function is considered in the present paper. It is proved that there exists
an ¢-Slater saddle point, Ve € R‘;' for this game. Sufficient conditions in order
that a certain situation of program strategies is an ¢-Slater (Pareto) saddle point
are given. By means of an example it is shown that these sufficient conditions are
not valid if at least one of the strategies is non-program. This example is also an
illustration of the fact that two e-Slater saddle points will not be interchangeable
and equivalent if at least one of the strategies of these points is non-program.

Introduction. The main purpose in Section 1 is to obtain Theorems of exis-
tence of a saddle point (an ¢-Slater saddle point) for the game (1) with a scalar (vector)
pay-off function (Theorem 2 and Theorem 3). Theorem 1 is an essential result which
enables us to use the method for the parabolic case, see [11, 12]. Theorem 1 is proved
for oy = 1in [3,5] and for oy = 0 - in [5] under some additional regularity properties
of the coefficients in (4). But in the present paper these coefficients do not have such a
regularity and this is the reason that the solution of (2)-(4) belongs to a space, larger
than L3(G). Therefore the Dirichlet boundary-value conditions for problem (2)-(4)
require additional considerations which are given in Theorem 1.

Section 2 comprises an example showing that the sufficient conditions of Lemma
4 and Corollary 4 are not valid for non-program strategies.

The following multicriterial antagonistic differential game with a vector pay-off
function is considered:

(1) <E7 {u’ V}, {pl(h(T))}‘eN)v

where N=1,..., N, N > 1 is the number of criteria.
The controlled system = is described by the boundary-value problem of hyper-
bolic type

(2) *y/ot* = Ay + byuy + eyvy + fi in G = (1o, T) x D,
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(3) y e Yo, Oy/ot = ¥ in Q

(4) 010y/0va + 02y = bauz + c3v2 + f in £ = (2,T) x T,

where 0; € {0,1},i=1,2,01 + 02> 1.

First we are going to consider the problem (2)-(4) formally. Then the initial
and boundary-value conditions will be specified.

It is supposed that the coefficients of equation (2)-(4) satisfy the conditions:

Yo = %o(z) € L2(Q), w1 = wn(z) € (H3(Q))",

h=hzHeL(G), =Y AAO)(=),

=1
where f,l)(t)eLoo(to,T), £(z) € La(T), j=1,...,m; HYQ) = W2(Q), Ly(Q) =

HJ(Q), H}(Q) = W,(Q) etc., [6,8,9] and H™*(G) = H_{(G) etc., see [10], are the
respective Sobolev spaces, H* is the dual functional space of H (for example H;'(Q) =
(H3(Q))*, H™"*(G) = (Hgo(G))*, r > 0,8 > 0 etc.). The functions by = by(z,t) and
¢; = c1(z,t) (b2 = ba(z) and ¢3 = ¢2(z)) are measurable, bounded in G(I') and take
values in R! and R™ (R™ and R™?) respectively; Q # @ is a bounded and open set in
R" with a boundary I' = Q. The operator A is of the form:

M= Y @i - s,

I,J—

where a;;(z) = aji(z), a(z) > ap = const > 0, da;j(z)/0zk, i,j,k = 1,...,n are
functions which are measurable (in the Lebesgue sense), bounded in Q and there exist
constants @ > 0 and 3 > 0 such that for each z € Q and ¢ = (&,...,£:) € R", the
following inequalities are valid:

ad <) ax)6E <BY €&
=1

=1 =1

O[)/dva = 37, a.,(z) % ]cos (v, z;) is the conormal derivative, corresponding to the
zj
self-adjoint elliptic operator A of second order and v is the exterior normal to I'; the

set © and its boundary I satisfy Conditions 1), 2) and R from [6, p. 212, 222].

Next, the sets of strategies will be described. The following sets P(t) = P;(t) x
Py(t) (Q(t) = Q:1(t) x Q2(1)), t € [to,T], 0 < to < T where Py(t) C L2(2;R™) and
Py(t) € R™(Qq(t) C L2(Q;R™) and Q2(t) C R™2) are given. These sets are convex,
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closed (in the respective spaces), measurable and uniformly bounded with respect to t,
Vt € [to, T). The vector-functions u = (u;,u3) € P(t) and v = (v, v7) € Q(t) are called
program strategies.

The present paper deals with the formalization of a differential game described
by a hyperbolic system. The solution of the initial boundary-value problem is treated
as in [10] and the controlled process obtained is considered for another space. The
respective objects are linked by one and the same Fourier series.

1. Saddle points and vector ¢-saddle points. Let H = Ly(R2) x (H3())*

for oy = 1 and H = Hy'(R) x (H2o(R))", (where H2o(2) %f HY(R) n H2(R)) for
o = 0.

Let us consider the set ® = {¢ € H}(G)|8%p/01* = Ap + g in G, ¢(z,T) =
(8¢/8t)(z,T) =0in Q, 018¢/dvs+02¢ =0in E = (to, T) xI', where g = g(z,t) takes
all the possible values of H, H = L3(G) for oy = 1 and H = Hg";(G) = H}([to, T),
Ly(Q)) for s; = 0}. Then @ can be equipped with the structure of a Hilbert space,
where ||¢||ls = ||g||# and the operator ¢ — 8%¢/8t? — Ay is an isomorphism & — H,
see [8, p. 301].

Now the problem (2)-(4) will be specified. From conditions (2)-(4) (after the
formal application of Green formula and integration by parts) the following equation
is obtained

b ") ¢
L2 - Apizdt = [ (b + oy + fi)dzdt — [ so(z) 22z, to)dz
G ot G 0 ot

(5)
+ /n n(2)e(z, to)dz + /2 (bauz + cava + o) F(¢)dTdt, Yo € &,
where 80/8 : R
_J -0¢/0vy foroy =
Fly) = { @ for oy = 1.

Lemma 1. There ezists a unique function y € Ly(G) foroy = 1 (y € H>"(G)
for o1 = 0), satisfying (5).

The proof of Lemma 1 for ¢; = 1 is given in [8, p. 328, Lemma 7.1] and
for &y = 0 - in [10, p. 116, Theorem 4.1]. Note that the assumptions made in the
introduction imply that the conditions given in [8, 10] are satisfied. For example, for
8, = 0, the operator A satisfies the conditions in [10, p.99-100, (1.6), (1.7), (1.9)]; the
function g = byug + cavg + fa € Ly(L) satisfies the condition in [10, p.115, (4.14)), etc.
The proof is completed.

Thus, following [3] and [10],the solution of problem (2)-(4) will be the function
y of Lemma 1. v

Further, in Theorem 1 we shall prove by Fourier method that in the case oy = 0
the solution y(z,t) is continuous with respect to tH ~'(f2)-valued distribution.
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As in (3] and [4], we give the following definition.

Definition. Letto < t; < t3 < T and P(ty,t3] (Q(t1,t2]) be a set of
restrictions of program strategies from P(t) = P(to,T) (Q(t) = Q(to,T)) in (t1,23) x Q
; h is an arbitrary chosen element of H.

If an ordered triplet (t;,13,h) corresponds to a unique measurable function of
P(t1,t3] (Q(t1,t2]), then such a mapping will be called a positional strategy

U:(ti,t2,h) = u(t) € P(t, 12)(V : (11,12, h) — (1) € Q(t1, 1a]),

see [3,4].
The sets of positional strategies related to P(t)(Q(t)) are denoted by U(V).
Let A € A be an arbitrary partition of the interval [to,T] by the points t; =

T <73 <...<Tpa) =T and let us define §(A) = max { (7541 — r,-)l .

1,.am(a)-1]J’
see [3]. The function

ha(t] = halt; po, U, V] = (yalt; po, U, V], ¥a[t; po, U, V])

= (valz,t;po, U, V], ¥a[2,t; po, U, V]) = (yalz, 1), ¥a[2,1]), to <t<T,
(po = {to, ¥o, 11}, V[, 1] = (3y/Bt)al[z,1])
is defined as follows. In the interval (7;,7j41), 5 = 0,1,...,m(A) — 1 the function
ya[z,t] is the solution of (2) and (4) with
u = u(;)(t) = U(7j, 7541, halts) € P(15,7544),

v = v;)(t) = V(75, T41, haltj]) € Q(7j, Ti41).
The function ha[t; po, U, V] satisfies the initial conditions of (3), where t €

(10,m] and for each of the consequent intervals (7;,7;41), 7 = 1,...,m(A) — 1, the
initial conditions are defined by the preceding interval, i.e.

(6) halt; po, U, V]L = ha[rj; -1, ha[ri-1], U, V].
87,

Thus the function ya(z,t] for t € (7;,7;41) is presented by the Fourier series of the type
(11), (12), where (yo,y:1) is replaced by (6) and u = (uy,u3), v = (v;, v;) are taken as
above and y/, [z,t] = (9y/dt)a[z,1].

Definition. The function ha[t; po, U, V] thus defined is called a step motion
which is caused by the positional strategies U and V, the partition A € A and the
initial position py = {to, yo, 1}, (3, 4].
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The following set is considered:

D(m) - {hA[-] - hA[';Po, v, V]IUEU.VGV.AEA} .

Obviously
D(po) = {h(‘) = h(;; po, , v)|u€P(¢) veQ(t)} ’

where h(t) = (y(t),y'(t)) and y(t) is the solution of the system (2)-(4) for the given
functions u(t) € P(t), v(t) € Q(t) and y/(t) = (dy/dt)(z,1), Vt € [to, T]. The following
assertion will be proved by using [5]:

Theorem 1. For each choice of the initial position pg € [0, T]xH, u(t) € P(t),
v(t) € Q(t), there ezists a corresponding solution of (2)-(4) such that

a) h(t) = (3(t), ¥'(8)) € H, Yt € [to, T),

b) the set D(po) is a compact subset in C([to, T], H),

c) the set D(T; po) = D(po) N {t = T} is a compact subset in H.

Proof. The assertions of Theorem 1 are proved in [3, 5] for 0; = 1. Therefore
let us consider the case for ; = 0. We shall solve the problem (2)-(4) by the Fourier
method. To this end we shall prove that the Fourier series is convergent in the space
H%~1(G) and satisfies (5). Further, we prove that this Fourier series is convergent in
C([to, T), H~'(R2)) and that it satisfies a), b), c).

From the conditions imposed on the operator A the spectral problem Aw =
—Xwin Q, w = 0 in T is solvable in H}(Q) for countably many eigenvalues A = A;,
j =1,2,.... Each of them has a finite rate frequency and they can be arranged into
an increasing sequence 0 < A\; < A3 < ...A; < ...,A; = when j — oo, (by taking
into account their rate frequency) [6]. The corresponding eigenfunctions w; form an
orthogonal basis in L3(R), i.e. (wi,w;) =0 for i # jand ||lwj||=1,4,7=1,2,....

First, the following boundary-value problem will be considered

(7) 2} = Az; in G, z1(to) = 21(to) =0in @, zy =gwin I, 2 € Ly(G),

where g = g(z) € Ly(T), wy = wy(t) € H}(to,T), wi(to) = 0, 2" = 8%2/0t*.
From [5] it follows that the problem (7) has a unique solution which is given by

the Fourier series
o0

= EZIJ‘UJ' € C([‘Ov T]’LQ(Q))'

J=1
where

t
3= —,\J"/z/‘ wy(7)(g,0w;/0va)rsin VAi(t = 1)dr
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and

oo
021 /0t = 2 w;
=1

(8) _
=- Z[A;l/z /‘ wy(1)(g,8w;/dva)rsin \/X;(t — 7)d7] w;(z) € H>(G),

i=1 -
(w(t) = wi(t)), obtained after integration by parts.

On the one hand, the boundary-value problem of the type (7) with the boundary
condition z = gw in ¥ will be considered, where w(t) = wj(t) can be an arbitrary
function of Ly(to,T). Here gw € L2(X) and from (10, p. 116, Theorem 4.1, the

oo

solution z = z(z,t) = Z z;w; of such a boundary-value problem can be obtained by
J=1
taking into account that z € H%~1(G) satisfies the following equation of type (5):

e _ oy
9) /G 252 - Ap)dad = - /2 w(t)g(z)zE-drdt, Vo€ .
Putting in (9)

(10) ez, 1) = Y(t)wj(z),

where ¥(t) € H?*(o,T), ¥(T) = ¢/(T) = 0, (see also [8, p. 329]), it follows that
z; = z;(t) satisfies the conditions

z;' + Ajz; = —w(t)(g,0w;/Ova)r, zj(to)= ;(to) =0, j=1,2,...,
hence

t
25 = —,\;1/2/‘0 w(7)(g, dw;/dva)rsin \/A;(t — 7)dr.

oo
After comparing the obtained Fourier series z = Zz,w,- to (8), we conclude that
=1

o0
3= E zjw; = 02, /0t. Since the functions (10) form a basis of ®, (here ® C H??(G),
=1
(10, p. 114]), it can be proved that the function z = 8z,/8t, given by (8), satisfies
(9), i.e. z is the solution of the considered boundary-value problem of type (7) with
w(t) = wi(t), where w(t) is an arbitrary function of L,(to,T).
On the other hand, the problem

Zg = Az? + f in G’ z2(‘(’) = Yo, Z;(to) =W in ﬂv 2= 0in Ea
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has a unique solution z; € C([to, T}, L2(R)), [9, p. 320-327). Thus, the existence of
a solution of the problem (2)-(4) is proved and this solution can be presented by the
Fourier series

(11) ¥(z,1) = Y wi(th;(2),

i=1
where

vi(t) = (vo,w;)cos /A;(t — to) + (31, w;)A; /*sin /X (t - to)

t
#7177 / (fr + b + e101,w)),@)sin V/Aj(t - 7)dr
to

—A13 / ' 3 SN (=), 8w /va)rsin /X;(t - T)dr
(12) ' k=1

X /., (ua(r)ba(z), B;/Bva)rsin v/t — 7)dr

-7 /., (ualr)ex(z), Bw;/Bva)rsin v/35(t ~ 7)dr,

oo o0
see also [5). It is sufficient to prove that the series Z '\;l(yj(t))2 and Z a\j"(dy,- /dt)?

=1 =1
are uniformly convergent, where t € [to, T], u(t) EJP(t), v(t) € Q(t) (similar method is
used in [5]). Let us consider the first of the above series. From the representation of
y;(t) this series is majorated by a sum of several terms. Let us for instance consider
one of them having the form

oo ma t 2
Z '\,'-1 (;\;l/2 E/'o v2k(7)sin \/:\;(t - 1)dr(ck(2z), 8‘-’:‘/8”.4)!‘)

=1 k=1
00 my t 2 my

SZ(E / var(r)sin /X(t - 7)dr E(ca.(z),w,-/au)%/x})
=1 \k=1 't k=1

where ¢3(+) = (€21(+)y- -+ €ama (), ©2(+) = (v21(*), - - -, Vam,(+))-
The latter is uniformly convergent in t € [to, 7] and vy € Q;(t), since

Z /‘o vak(7)sin /A;(t — 7)dr

k=1

2 ma
< const - Z “"””L(t..r) < const
k=1




Vector ¢-saddle Points in a Differential Game ... 31

and according to [5, Lemma 2.2] the series

oo m3

303 (ear(z), 0w; /va)}/ 2,

=1 k=1

is convergent. Similarly the remaining terms corresponding to the boundary function
of (4) are considered.

oo
The uniform convergence of the series z a\j'z(y;-(t))2 is obtained by using the
)=1
same method. Let us point out that from this convergence it follows that

v (twi(z) = D vi(twj(),

1=1 =1

when m — oo as continuous functionals in the space H3 (). The theorem is proved.

Remark 1. Let 0; = 0 and let the assumptions of Theorem 1 hold. It follows
from (5, Theorem 2.2] that the set D(pp) is a compact subset in H%~1(G) x H*~%(G).
The proof is obtained using the proof of Theorem 1. For example a representation of
the type z = 8z,/9t, where 2; € C([to, T], L2(f2)) (see (8)) can be used for the terms
of y(z,t), including the boundary function byuz + cav; + fa.

Remark 2. Let (yo, ) be an arbitrary function of ¥ = H; () x (H3o(Q))
and let y = y(z,t) be defined by (11) and (12). The same method can be used to prove
that A = (y,¥') € C([to, T], H).

Theorem 1, Remark 1 and Remark 2 are sufficient to prove the existence of step
motions.

The result of game (1) is evaluated by criteria, given by the functionals p; in ¥,
i € N; p(h(T)) = (p1(R(T)),...,pNn(R(T))) is called a vector pay-off function of game
(1). It is supposed that the functionals p; are strong continuous in . The first player
choosing the strategy U € U strives to smaller possible values of all criteria p;(h(T)),
t € N; the second using a strategy V € V, strives to their maximization. Each player
chooses a strategy of his own which is independent of the other player’s strategy.

First, consider the case N = 1,i.e. the game (1) is with a scalar pay-off function

pi(A(T)):
(13) (3,{’1»"},1’1(’*(7)»

Definition 1. The situation (U*,V*) € U xV is called e-saddle point for game
(13) if there ezists a constant 6y > 0 such that

Vhyn (-] € ham [0, U®)y Vhya[-]) € Ay [+ po, US, V*],
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‘VhA(” [] € hA(’)[';pO’ V‘] with 6(A(M)) S 609 (m o 1, 2, 3))
the following inequalities hold:

(14) P1(ha[T)) — € < p1(ha@ [T)) < p1(hao[T)) + ¢.

Here
ham [P0, U] = {ha)[500, U, 0] | v € Q(2)}

(haw 500, V] = {hpo[-3 00,4, V] | u € P(1)})

is the corresponding bundle of step motions caused by the strategy U¢ (V*), the par-
tition A(Y) (A()) and the initial position po = {to, ¥o, v1}-
The following assertions hold.

Theorem 2. There erists an ¢-saddle point for each choice of the initial
position po € [0,T] x H and each € > 0 in the game (13). .

We have to point out that similar assertions are obtained in [11, 1, 2]. Next
Theorem 2 will be proved by using primarily Theorem 1 and the proof of the analogous
assertion in [11] without any details.

Proof of Theorem 2. Consider the set M;(c) = {h € H|pi(h) < ¢}. From
Theorem 1, the set My(c) N D(T’; po) is compact in H and for it the Theorem of the
Alternative holds (see [3] - for oy = 1 and [4] - for 0; = 0). Let us note that for
oy = 0 all the conditions of [4, Theorem 2.1] are satisfied; this can be proved following
(4, Example 3.1): In our case X = H and the respective system of ordinary differential
equations (see Example 3.1 of [4]) is of the form

¥ +A5u; = (fi + b + e1vn,w;5) 1) = (f2 + ua()ba(2) + va(t)ea(2), 0w /Bva)r

vi(t) = 1'-“
where y(t;) = z(), y'(t;) = z(?), z}7 = (z(V),w;), 2% = (2, w;), y(t) is the solution of
(2)-(4), Aj, w; are defined in the proof of Theorem 1 z = (z),z2)) Y (t;,2,t5,u,v) =
h(tz; t1,z,u,v). The operators A;, Aj(t), the sets M;, N; etc., are defined as in [4,
Example 3.1). Condition 1 and Condition 2 of [4] are obtained by using Theorem 1
and its proof. The other conditions of [4, Theorem 2.1] are proved as it is shown in [4,
Example 3.1]. Thus the conditions of [4, Theorem 2.1] are verified.

For each initial position po = {to,y0,%1} € [0,T] x H let us consider the set of
the numbers ¢ for each of which there exists a corresponding strategy U € U, realizing
an ¢-approach towards M,(c). The set of these numbers is denoted by C;. It can be
proved that C; = [¢}, 00) for some number ¢}.

Let the strategy U° € U be a solution of an -approach problem towards M (c}).
This means that for each ¢ > 0, there exists a number §(¢) > 0, such that for each

’ y;(t1)=1‘?‘, J=1 #9 '
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step motion ha[-] € ha[; po, U°] with §(A) < é(¢), the following condition is satisfied:
p1(ha[T]) < ¢} + €. Take the exact upper limit of this inequality when §(A) — 0. We
get:

(15) lim sup pr(halT)) < .
6—0 '.A [']ehA[WvUolvs(A)Ss '
From Theorem 1 it follows that such a limit exists and is bounded. It will be shown

that there is an equality in (15) as a matter of fact. Suppese that there exists a strategy
U* € U such that

(16) lim sup p1(halT)) = < cg, (¢ €R).
§=0 ha[)ehalpo,U*).6(A)<S

The relation (16) means that ¢} € C, and at the same time, ¢j < ¢} = minC;. The
obtained contradiction shows that for each strategy U € U,

: sup p1(ha[T)) 2 ¢
§=0  hs[lehal-r0.U)5(A)<S
= lim sup p1(halT])

§=0 pa[)ehalpo.U0),5(8)<S

= inf lim su p1(ha[T)) = ¢,
VElis-0 »A[-leh.,[-;m‘.’vl.s(A)ss (SalTh=%
i.e. U° € U is the minimax strategy of game (13). It is proved similarly that there
exists a strategy V° € V for which the following relation holds:

p(ha(T])

sup lim inf
Vev&—‘O hal'lehgl';N'V]vS(A)Ss

pi(halT)) = ¢ (cg €R),

= lim inf
§—0 ha[)€hal-ipo,V0).8(8)<E
i.e. VO €V is a maximin strategy.
To prove Theorem 2 it is sufficient to show that ¢} = ¢3. First it is supposed that
c3 < c}. Then, there exists a number ¢, such that ¢} < ¢, < ¢}, i.e. ¢, € [¢§,0) = C;
and according to the Theorem of the Alternative, the evasion problem from the set
M, (c.) is solvable. Then there exists a strategy V. € V and numbers &, > 0, 6, > 0,
such that for each step motion ha[-] € hal-;po, Va] with §(A) < 4., the following
inequality holds: py(hafT]) > c. + €., where it is assumed that €, < ¢} — ¢.. Then

J . 33 1ays
B hallchalam Vel 6(a)<s AhalTh 2 e +8

and

pi(ha(T])

¢3 = sup lim inf
vev =0 hal]ehaliro,Ve).6(A)<E
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> lim p1(ha[T)) 2 cu + €. > ¢} + €.,

> inf
§—0 ha[)€halir0,Ve)6(8)<E
i.e. a contradiction is obtained.
Next we have to show that the inequality c3 > ¢} is not satisfied. Suppose the
contrary, i.e.

. A — 24l

5 nalichatimrosargs PRI = > <o

Let v = (c3 —¢})/3. From the last inequality it follows that there exists such a §(y) > 0
that for each step motion ha[-] € ha[-; po, V°] with 6(A) < §(7), the following inequality
is satisfied: py(ha(T]) > ¢3 — 7. From this inequality it follows that the evasion
problem is solvable for the number & = ¢} + v and the corresponding set M,(é), since
¢3—7 = ¢} +2y > ¢. Butsince & > ¢} and C, = [¢}, +00), then the e-approach problem
is solvable for the set M,(¢), which contradicts the Theorem of the Alternative. This
contradiction proves ¢} = ¢3. Thus the proof is completed.

Lemma 2. Let the situation (U*,V*) € U X V be an ¢-saddle point for game
(13). Then there ezists a constant do > 0 such that Yhy)[-] € haq)l-; po, U¢] and
Vhya[-] € haga)l-;po, V] with §(A™) < &, m = 1,2, the following inequalities are
valid:

_ . . . ¢ e
pi(hao|[T]) - £ < lim m‘]n'g(f“s‘ pr(ha[T; po, U®,V*))

(17)
< lim inf
§—0 Aal).8(a)<s

for each € > ¢, where ¢ is defined in (14).

Conversely from (17) it follows that the situation (U*,V*¢) is an ¢-saddle point
with € > £.

Now let us consider the case when N > 1. First some standard notations will
be introduced

Pr(ha[T;p0, U, V]) < pr(ha@)(T)) +E,

Rl>v ={p=(p1,.---,PN) € RNIp; > 0,Vi € N},
RY ={o=(p1,...,on) € RV|py 2 0,Vi € N},

RY = {p=(p1,....on) €R"|pi 2 0,Vi€ N,p # 0n},

where Oy is the zero-vector in RV, p(1) > p(?) «= p(1) — o) e RY = (@ < p(),

P ¥ pD = p(1) — p(?) g RY. The other relations are introduced. For example

P > p() if and only if the relation p() > p(? is not satisfied, if and only if 3ig € N :

P < oD or pV) = p@.
Besides,

LIM p(halTipo, U,V]) = (fim | inf - pi(halTipo,U,V]), ..
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}1_190 hA[-]?(fA o pn(halT; po, U, V])),

LI ha[T; po, U, = (lim su ha(T;po,U,V]), ...,
ho“l’( alT;po, U, V]) = (lim hA[‘]v‘&)s‘ p1(ha[T;p0, U, V])

lim su ha(T; po,U,V))),
lim M[‘M&)g pn(ha(T; po 1)

Let € = (&1,...,6EN) € R';’ be a fixed vector.
Definition 2. The situation (U®,V*) € UXV is called an ¢-Slater saddle point
for game (1) if there ezists a constant §(¢) > 0 such that Vhym)[-] € hym[+; po, U]

and Yhya)[] € haa[+p0,VE] with §(A™) < §(¢), m = 1,2, the following vector
inequalities are valid:

p(hA(l)[T]) - € }I;-I-.Mo- P(hA[T; Po, U‘v V‘])
(18)
p(hA(z) [T]) - £ #rsl—g p(hA[T; Po, U‘v V‘])'

If in the relations (18), the signs ¥ and £ are replaced respectively by ¥ and £, then
the situation (U¢,V*) is called an ¢-Pareto saddle point for game (1).

The given definition for an ¢-Slater (Pareto) saddle point includes the concept
of an ¢-saddle point for game (13) with a scalar pay-off function (Definition 1) as a
particular case.

The following assertion is obtained from Lemma 2:

Corollary 2. The ¢-Slater and the ¢-Pareto saddle points are £-saddle points,
VE > ¢ in game (13) with a scalar pay-off function.

It is easy to prove the following assertion:

Lemma 3. Let the situation (U0),VU)) € U x V be an €;-saddle point for the
differential game with a scalar pay-off function (=, {U,V}, p;(h(T))) for some constant
€; > 0, j € N. Then, this situation is an ¢-Slater saddle point for game (1), Ve =
(€1y..-1Ejy.--,EN), where e; > 0, Vi € N and &; > ¢;. From Theorem 2 and Lemma 3
we have [12]:

Theorem 3. There ezists an c-Slater saddle point in the differential game (1)
for each choice of € € Rg .

2. Sufficient conditions. Example. Now sufficient conditions for existence
of an ¢-Slater saddle point will be given. For this purpose the following differential
game with scalar pay-off function is considered:

(19) =, {u' V},Pp(h(T))),
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where ps(h(-)) = 3 _ Bipi(h()) and B = (By,...,BN) € RY.

ieN
By analogy with the differential game described by a system of ordinary dif-
ferential equations and partial differential equations of parabolic type the following
assertions hold.

Lemma 4. For the situation (U*,V*) € U x V it is supposed that

1) (U*,V*) consists of program strategies U* <+ u*(-) = {u(t),to <t < T} and
Ve +o*(:) = {v(t),to <t < T},

2) (U*,V*) is a y-saddle point (y > 0) for game (19), where 3 € R’Zv.

Then, for each vector ¢ = (e1,...,én) € RY with Eﬂ;e; > v the situation

ieN

(U*,V*) is an ¢-Slater saddle point for game (1).

Lemma 4 is proved by using the proof of (7, Assertion 9.1] and taking into
account that

LIM p(ha[T; po, U™, V7)) =I;1_.% p(ha[T; po, U*,V*]) = p(h(T; po, u™(-), v*(-))

since U* and V* are program strategies.

Corollary 4. Let us consider the situation (U*,V*) € U x V which has the
following properties:

1) It consists of program strategies U* + u*(-), V* + v*(-);

2) It is a y-saddle point for game (19), Vy > 0.

Then, the situation (U*,V*) is an ¢-Slater saddle point for game (1), Ve € RY.

Lemma 4 and Corollary 4 are valid only if U* and V* are program strategies.
The example given at the end of this paper shows that Lemma 4 and Corollary 4 are
not true for the positional strategies (U*,V*).

The following lemma is proved by analogy with Lemma 4.

Lemma 5. For the situation (U*,V*) € U x V it is supposed that:

1) it consists of program strategies;

2) it is a y-saddle point (y > 0) for game (19), where 3 € RY.

Then, for every vector € € R’;’ such that Z Biei > v, the situation (U*,V*) is

ieN

an ¢-Pareto saddle point for game (1).

Two situations (UM, V(D)) € U x V (UP, V() € U x V are ¢-Slater saddle
points for each ¢ € R’,v are called

1. equivalent, if

LIM p(ha[T;po, UM, VD)) =LIM p(ha[T; po, UD, V)
§—0 5§—0
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and
. 1)y = . 2) y@.
IélM P(hA[Tv POrU vV ]) IéIM p(hA[Tva’U 9V ])a

2. interchangeable, if (U(1), V(?)) and (U(?), V(1)) are ¢-Slater saddle points, for
each ¢ € RY.

For game (13) with a scalar pay-off function it is proved, that all saddle points
are equivalent and interchangeable (see [7, Lemma 1.5]). The ¢-saddle points have
similar properties.

In general when N > 1, the ¢-Slater saddle points are not interchangeable and
are not equivalent which is shown by the following example.

Example. It is supposed that the controlled system = for game (1) is described
by the following boundary-value problem

d*y/ot* = 3*y/8z® in G =(0,1)x (0,7)
(20) y(z,0) = (dy/dt)(z,0) =0 for z € Q= (0,x)
—(0y/0z)(0,t) = u(t) + »(t), (dy/dz)(x,t)=0 for te€ (0,1).

Program and positional strategies will be used, where P;(t) = Q,(t) = [0,1]
and Py(t) = Q1(t) = O. The set of strategies of the first (second) player is denoted by
U(V) as well.

The vector pay-off function has two components

p(h(T)) = (p1(¥(1)), p2(¥(1)))

and it is of the form
~ ~
)= [ u(a1ds, () = - [ oz 1)ds.
This differential game will be denoted by

(21) E AU, v} {p(¥(1)), p2(¥(2))})

further on. Here N = 2 and p; = —p;. Then, from Definition 2, each situation
(U*,V*) € U x V for which the condition

(22) f}jg p(ya(1;0,0,0,U%,V*]) =1;1_1}g p(va[1;0,0,0,U%,V"])

is satisfied will be an ¢-Slater saddle point, Ve € R%. In particular, this assertion is
valid for the case when U* and V* are program strategies.
Consider the program strategies

U =u@()=0, VO +uO(t)=0, Vtelo,1),
UM =uM(@)=1, VO +o(t)=1, Vtel0,1),
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Each of the situations U(®,V(®) and U("), V(1)) is an ¢-Slater saddle point for game
(21) Ve € R?, because the condition (22) is satisfied for them.
From [5], the solution y(t) of (20) for fixed functions u(t) and v(t) is of the form

t T
y(t)= = /o /o (u(€) + v(€))d€dr

+ Ei"‘wj(O)/o [u() + v(r)Jsin j(t — T)drw;(z),

1=1

where w; = /2/7 cos jz. Since /'wj(z)dz = 0, we obtain
0
* 1,1 1,1
p) =[x [ [ 1ue)+ vdearaz = [ [ 1ue)+ v@lagar

Thus, the following assertion is proved:

Lemma 8. The functional py(y(1)) = p1(u, v) is strictly monotonously increas-
‘ing with respect to u and v. More ezactly, if uy(t)+ v1(t) < uz(t)+v2(t), Vt € [0,1] and
uy + v; # uz + v2 as functions in L2(0,1), then py(uy,v1) < p1(uz,v2). In particular,
min py(u,v) = 0 and it is attained for u(t) = v(t) = 0, similarly max p;(u,v) = 2¢ > 0,
(c = const > 0) and it is attained for u(t) = v(t) = 1.

From Lemma 6,

p1(ha[1;0,0,0, UM, VM) = 2¢ > 0 = py(ha[1;0,0,0,U©@, V),

where the value of the functional p,(ha[1;0,0,0,U0) V0)]), (5 = 0,1) does not depend
on the partition A € A, it is one and the same for all A € A. Thus the program
situations (U(®), V() and (U™, V(1) are not equivalent.

Next let us proceed by constructing the situation (U(?),V(?)| for positional
strategies U(2) and V(?). Let us remind that a positional strategy is a mapping, for
which to every ordered triplet (2,2, h(t;)) € [0,1] x [0,1] x M, (Vt;,t2 € [0,1] : ¢} < t3)
there corresponds a function u € P(t),t;] (v € Q(ty,t2]) [4], (here H = Ly(0,7) X
(H}(0,7))*). Let the set S C [0,1], (0 € S, 1 € S) be such that the sets S and [0,1]\ §
are dense in the interval [0,1]. The strategies U(?) and V(?) are defined as follows: if
for the triplet (¢,,t3,h), t; and t; belong to S and h(t;) = (0,0), then U® + u(?) =0
V@ £ v = 1; otherwise U(?) + u(? =1 and V(? + v = 0.

The constructed situation (U(*),V(?) is an &-Slater saddle point, Ve € R2,
since for every partition A € A, u®(t) + v((t) = 1, Vt € [0,1], where u(?)(t) and
v(3)(t) correspond to the strategies U(?) and V(?) and hence

LIM p(ya[1;0,0,0,U®,V¥]) =LIM p(ya[1;0,0,0,U®,v)) = (¢, ~c).
§—0
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It will be shown that the ¢-Slater saddle points (U(?),V(9) and (U(?, V(#}) are
not interchangeable. More exactly, it will be proved that the situation (U(?),V(?) is
not an ¢-Slater saddle point for game (21) for € = (¢1,€;) € R2 and ¢, + €3 < ¢, where
the number ¢ > 0 is defined in Lemma 6.

Suppose the contrary, i.e. that for (U(?), V(9), the relations (18) are satisfied.
The first of them is valid if and only if, there exists a constant §(¢) > 0 such that for
Vha[] € ha[+;0,0,0,U?)] for 6(A) < §(¢) at least one of the following two inequalities

23 1))-e <l inf 1;0,0,0,U v©
(23) palth e <fim  inf ;s )

24 1 > li inf 1;0,0,0,U®, v)),

(24) p(va(l]) + €2 2 lim i) <6 P(val )

is valid. Indeed, if the first relation (18) holds, but the inequality (23) is not satisfied,
then

1)-e2 < I : :0,0,0,U®, yON).
pa(va[l]) - €2 < lim u[-lf?(%)g p2(ya[1;0,0,0,U )

Multiplying the last inequality by —1 and taking into account that

p2(yall]) = -, (val1]),

(24) is obtained.

The exact lower limit in (23) is reached in such a sequence of partitions {A(*)}5°
C A for which all points of the partitions r}k) €[0,1],7 =0,1,...,m(A), corresponding
to AKXk =1,2,... belong to S and the exact lower limit is equal to 0. The exact
upper limit in (24) is obtained by using such sequences of partitions {5(")}‘,” C A, for
which for every partition A¥) k = 1,2,..., the numbers 1"’(") € (0,1) do not belong to
S and the exact upper limit is equal to c¢. Thus, the inequalities (23) and (24) take the
form

(25) pr(ha(l]) — €1 <0 and py(ha[l]) + €22 ¢,

where ha[] € ha[+;0,0,0,U(?)] is an arbitrary element and §(A) < é(¢).
Now consider the step motion

ha,.[] = ha,.[0,0,0,UP VO] s € [0,1).

The partition A, is defined as follows: if the numbers of the partition #; € [0,s°),
J=0,1,-, p < m(A) -1, then #; € §, and if the numbers 7; € (s°,1), j = p +
1,...,m(A) - 1, then 7; € S. Moreover for every constant §(¢) > 0, the partition A,.
can be chosen so that §(A,e) < §(¢). Furthermore, Yha (-] = ha,.[+;0,0,0, U@, yo)
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0 < p1(ha,.[1]) £ ¢, while the minimum of py(ha .[1]) is reached for s° = 1 and the
maximum for 8° = 0. The latter is obtained from Lemma 6. We take into account that

0 for 0<t< 3

w®() + () = { 1 for °<t<1”’

(3° € (s°-48(A,s),5°]) and that the solution of (20) depends continuously of the control
realizations "u” and "v”. Hence, the solution of (20) depends continuously on §°. Thus
it follows (choosing &(A,) sufficiently small) that the set {p1(ya,.[1;0,0,0, U3, VO],
Vs® € [0,1), VAo : 6(A,e) < 8(¢)} is dense in the interval [0,c]. Therefore, for each a
and b such that 0 < a < b < ¢, there exist ¢ € (a,b) and A® € A with §(A(®)) < §(¢)
so that the following equality is valid:

(26) P1(¥a®(1;0,0,0,UP, V) = ¢,

Let ¢ = (£1,€2) € R? and e; + €2 < ¢. Then, the number ¢ can be chosen so that
¢ € (e1,¢ — €3) and for the step motion hyee)[-] = (ya@ ], ¥y []), corresponding to
(26), none of the inequalities (25) is satisfied. This shows that the relations (18) are
not valid, i.e. the situation (U(?),V(9) is not an ¢-Slater saddle point, Ve = (e1,€2) €
R? : &) + &2 < c. Therefore the e-Slater saddle points for game (21) (U(?),V(?) and
(U(©), v(9) are not interchangeable.

In game (19) constructed for the considered differential game (21) put 8, = 8; =
0,5. Then the scalar pay-off function pg(y(1)) = 0. From Definition 1, each situation
(U,V) €U x V is y-saddle point for a game defined in (19) for 3, = 3, = 0,5, Vy > 0.
Moreover, for the program situations (U*,V*), U* + u(t), V* + v(t), the assertions of
Lemma 4 and Corollary 4 are valid, i.e. they are ¢-Slater saddle points for game (21),
Ve € R2>. At the same time, as shown above, the positional situation (U @), V(°)) is not
an ¢-Slater saddle point for game (21) if ¢ = (1,€2) € R’> and €, + €2 < ¢, where the
number ¢ > 0 is defined in Lemma 6.

Thus, for the situation (U, V(%)) € & x V, in which U(?)is positional and V(?)
is a program strategy, Lemma 4 and Corollary 4 are not valid due to the fact that
strategy U(°) is positional.
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