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AN HEURISTIC ALGORITHM FOR THE MULTIPLE-CHOICE
MIN-MAX PROBLEM

VLADIMIR TZOKOV

ABSTRACT. The Min-Max form of the Multiple-Choice Problem is considered in
the present paper. An heuristic algorithm based on some heuristic strategies and
information from the last simplex tableau of the Linear Programming Relaxation
is given. The results of computational experiments are presented.

1. Introduction. Let Il be an optimization problem. Denote by F(II) the
feasible region for the problem II. If z € F(II), denote by Z(z) the value of the
objective function at point z. Let N = {1,...,n} and M = {1,...,m} be index sets
and let Ny,..., Nx be k mutually exclusive sets of variable indices such that

k
N=|JN: and Ni[|Ne=0 for h#t.

=1
For these sets define the following set:
G={z€eB": Z zj=1, i=1,...,k},
JEN;

where B = {0,1}. Then the problem II is called Multiple Choice Problem if F(IT) C G.
If A is a matrix with m rows and n columns, b € R™, ¢ € R", then the well
known Multiple Choice Integer Programming (MCIP) is

(MCIP) min{cz : Az > b, z € G}.

This problem was posed at first by Healey (1964) [5]. A lot of mathematicians have
worked on it, namely: Tomlin (1970), Armstrong (1975), Sweeny and Murphy (1981),
Bean (1984), etc. The Multiple Choice Knapsack Problem (MCKP), 0-1 Multiple
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Knapsack Problem (0-1 M K P), Generalized Assignment Problem (GAP), formulated
and described in [1], are important particular cases of (M CIP). In this paper we shall
consider the Min-Max form of the Multiple Choice Problem and we shall obtain its
relationship with (M CIP) in Section 2.

Let A be a matrix whose columns are partitioned into blocks (i.e. into index sets
N,,..., Ni respectively). The Multiple Choice Mini-Max Problem is one of selecting
exactly one column from each block so that the resulting sum has a minimal maximal
component. Denote by a;, i € M the vector-rows of A and the Multiple Choice
Min-Max Problem can be described by

(MCM P)min min max(a;z).

If we want to maximize the minimal component of the resulting sum, then we obtain
the Multiple Choice Max-Min Problem:

(MCMP)masz max min(a;z).

After transforming (MCM P)min and (MCM P)mq, into problems of Integer Linear
Programming, their models become equivalent, so further we shall envisage both prob-
lems with (MCMP).

2. Complexity of the Multiple Choice Problems. Now we shall show that
these problems are N P-hard in strong sense (we refer the reader to Garey and Johnson
(1979) [2] for a thorough discussion on this concept).

Theorem 2.1. (MCIP) is NP-hard in strong sense.

Proof. The Generalized Assignment Problem is N P-hard in strong sense [1].
Since (GAP) is a particular case of (MCIP), hence (MCIP)is also N P-hard in strong
sense. O

Theorem 2.2. (MCMP) is NP-hard in strong sense.

Proof. We shall find a pseudo-polynomial transformation of (MCIP) into
(MCMP). Consider an instance of (MCIP):

(1) min ¢z
(2) aiZ‘Zbi,iGM.

(3) z€G.
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Construct the following problem:
(4) . min max(cz , L(b; — a;z) : i € M),

k
h L= i + 1.
where 2:2% ¢+
This is a problem (M CM P) for which ¢ is the first vector-row of the matrix and the
others can be obtained by

b; . )
d.','=L(F-aij),J€N,l€M.

Without loss of generality we shall assume that ¢; > 0 for j € N because for every
B > 0 and y € G the equation

Y (cj+ By =) ¢y +kB

JEN JEN
is satisfied. If a solution y of (M CIP) exists, then cy < L. Hence if y € G satisfies
all constraints (2), then the maximum in (4) is in the first component and cy < L. If
y € G does not satisfy at least one of constraints (2), then the maximum in (4) is at
least L.

Thus function f is found, which transforms every instance of (MCIP) into

an instance of (MCMP) and this transformation is pseudo-polynomial [2]. Hence
(MCMP) is N P-hard in strong sense. 0O

3. Heuristic strategies. Let AL be an approximate algorithm for solving the
optimization problem II (assume criterion maz). If I is an instance of II denote by
Var(I) the value of the objective function of the solution, given by AL. Let Vopr(I)
be the optimal solution value.

Theorem 3.1. Unless P # NP, no polynomial approzimate algorithm AL
for solving (MCM P)qaz can ezist such that V4 (I)T > Vopr(I) for every instance I
of (MCM P)par and arbitrary constant T'.

Proof. Suppose that there exist such an algorithm and a constant. Consider
the recognition version of the Minimal Set Covering Problem R(MSCP): A set of
items and n subsets, k < n are given. Question: Is there a set covering of the given set
with at most k subsets? ‘

This problem is N P-complete [2]. Let an example of R(MSCP) be given.
Construct k identical sets of vector-columns. Each vector represents a subset by

- { (k4 1)T item i is in subset j
Y 1 otherwise ’
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If such a set covering exists, then for the corresponding problem (MCM P)ma:
we have Vopr(I) > kT and else Vopr(I) = k. Hence for AL we have that V. (I) > k
if such a set covering exists and V41(I) < k otherwise. So the algorithm AL solves
exactly every instance of R(M SCP) and hence P = N P, which is a contradiction. O

3.1. 2—opt strategy

This strategy was applied to a number of other problems such as the Travelling
Salesman Problem [3].

For every z € G we denote by Q(z) = {y € G : y differs from z in exactly two
components }.

Definition 3.2. z € G is called local minimum for (MCM P)min if Z(z) <
Z(y) for every y € Q(z).
It is obvious that |Q(z)| = n — k for every z € G. A local minimum is found
throught the following simple procedure by starting from z € G:
PROCEDURE 2-OPT(X);
FLAG := 0;
WHILE (FLAG = 0) DO
find y € Q(z) with minimal Z(y);
IF (Z(y) < Z(z)) THEN X := Y ELSE FLAG := 1;
END WHILE;
RETURN(X);

3.2. Greedy strategy. This strategy is well known from 0-1 Knapsack Prob-
lem [2].For w € R™ we define [w] = max;em(w;). Let @, € R™ ; X,Y € B".
Consider the following procedure:
PROCEDURE GREEDY(N;,i = 1,k);

O“c" ‘°

a:

ﬂ

X .

Y :=
FOR: :=1TO k DO

select j € N; : [a + a;] is minimal;

select [€ N; : Z a,;; is minimal;
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Yi:=1;
END FOR;
IF ([a] > [B]) THEN X := Y;
RETURN(X);

The time complexity of this procedure is O(mn).

Lemma 3.3. Let X be the solution obtained by the Greedy procedure and let
a;; 20 fori € M, j € N. Assume that X° is an optimal solution of the problem
(MCMP)pin. Then Z(X) < min(k, m) Z(X°).

Proof. (i) Obviously E Bi < Z(AXO).- is satisfied and since a;; > 0 for
every i € M and j € N hence [';]Mg m [,'45\‘""] =m Z(X°).
(ii) We define

#i = min[a;]

and denote by s the index such that y, > y;fori=1,...,k.

On the one hand, solution X° includes a vector from N, and it follows that
Z(X°) = [AX°] > u,. On the other hand we have that for every i = 1,...,k exists
1(3) = [aj5)] < pa.

We denote by a' the vector a at the end of i-th pass in FOR loop. Now we
show that [a'] < i pu,:

[a@'] < p, because the first vector is selected with minimal maximal component.

Suppose that [a'~'] < (i — 1)u,. Then we have [a'] < [a*! + aj;)] <
[a*=1] + [a;i)] < (i = 1)y + s = i p,. Hence [a] < k p, < k Z(XO).

From (i) and (ii) we obtain immediately that Z(X) < min(k,m) Z(X°) O

The value min(k,m) cannot be decreased. Consider the following example :
we have k = m identical sets of vector-columns. We have |[N;| = m 4+ 1 = k + 1 for

1= 1,...,k. The vectors of N; are the vector-columns of the following matrix :
p p+1 0 0 0
p 0 p+2 0 0
M,=|p O 0 p+2 0
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where p € Z,. Applying the Greedy procedure, we obtain

kp k(p+1) p+1
k 0 +2
a=| Pls=| | |axe=| "
kp 0 p+2

with [AX] = k p. It is obvious that [AX?] = p+ 2 and

. p+2 _1
Pll.n;o kp Kk
This example also shows that the 2-OPT strategy cannot improve X because Z(X) <

Z(Y) for every Y € Q(X).

4. An heuristic algorithm. A survey on the heuristic algorithms for the
(MCIP) shows that in most cases they exploit the information from the last simplex
tableau of the Linear Relaxation Problem (LRP) [6], [7]. The idea of the algorithm
which we propose is to combine this information with described heuristic strategies.

The Linear Relaxation Problem of the (MCM P)min is

(LRP) min £
(5) f—zaiﬂj?_O,iGM,
JEN
(6) sz=0,r=l,...,k,
JEN,
z; >0,j€N.

Denote by X the optimal solution of this problem; u; — dual variable values,
corresponding to constraints (5), i € M; v, — dual variable values, corresponding to
constraints (6), r = 1,...,k.

If j € N, then we denote by s(j) the index of the subset in which j is included,
80 j € N,(j). Now we can determine the reduced costs of the variables by

rj= Ea.-ju,- -v,;), JE€ N.
iEM

Lemma 4.1. Let X € G such that X; = 1 for some j € N. Then Z(X) >
Z(Y)+r,-.
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Proof. The dual problem of (LRP) is equivalent to the Lagrangean dual
obtained by dualizing the constraints (5):

(LG) 13‘12&())( mig u;(z a;;z;) : Z u; = 1.
iEM  jEN iEM

Consider the problem with the additional constraint z; = 1. Then we have Z(LG :
z; = 1) > Z(LG) + rj = Z(LRP) + r; and since Z(LR) is a lower bound of every
solution of (MC M P)pin, finally we obtain that Z(X) > Z(X)+r;. O

We shall eliminate the variables with greater reduced costs. From the dual
theory we have that if X, # 0, then r; = 0. Therefore for every basis variable r; is
zero. Then we propose the following costs of the variables :

(7) Pj="j—?;=Eaij“i—”.(j)-:\’_j.vjeN
i€EM

and the heuristic algorithm can be described as follows:

PROCEDURE HOPT;
FORi:=1TO kDO N, := N;;
solve LRP and determine X, u,v;
determine p; for j € N from (7);
sorting the variables so that p; > p; > ... 2> py;
R :=00;
t:=1;

WHILE (t j n) DO
CALL GREEDY(¥,,i=1k);
X9 := X;
CALL 2-OPT(X);
IF (Z(X) < R) THEN
R := Z(X);
H:=X;
END IF ;
FL := 0;
WHILE (FL=0) DO
i:=s(t);
IF (|N;]=1forr=1,...,k) THEN
FL :=1;
t:=n;
END IF;
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IF (|N;| > 1) THEN
M= N\ {th
IF (X? = 1) THEN FL := ;
END IF;
t:=t+1;
END DO;
END DO;
RETURN(H);
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5. Computational results. The algorithm has been encoded in C and applied
to ten randomly generated examples with different sizes (numbers vary in the range of
0,999). The program was run on PC 486, 5755.8 KWhetstones/sec. The times, optimal
values and the values of the heuristic solutions are given in the following table:

Table 1: PC-AT 486 in seconds.

Problem | m | sets | vectors | Vopr Vg Time
pl 2| 20 200 | 4287 4287 0.055
p2 2| 50 1000 | 7172 7196 0.22
p3 5| 10 - 200 | 2781 2816 0.11
p4 51 20 500 | 5162 5183 0.385
p5 5| 50 1000 | 13627 13668 2.198
p6 10| 10 100 | 3931 3931 0.165
p7 10| 20 200 | 7643 7643 0.33
p8 10| 20 500 | 6787 6877 1.593
p9 20| 10 100 | 4602 4740 0.824
plo 20 |- 10 200 | 4468 4508 1.484

The exact algorithm, described in [8] has been used for comparision. The solu-
tion of problem p10, through this algorithm takes more than 3 hours.

REFERENCES

(1) S. MARTELLO, P:. ToTH. Knapsack Problems. John Wiley & Sons, 1990

(2] M.R. GArey, D.S. JonNsON. Computers and Intractability, A Guide to the
theory of N P-Completeness. W. H. Freeman and Company, San Francisco,

1979.



82

3]

(4]

(3]

(6]

(7

(8]

Vladimir Tzokov
H. SALkiIN, K. MATHUB. Foundations of integer programming. North-Holland,
1989. ‘

J.C. BEAN. A Langrangian algorithm for the Multiple Choice Integer Program-
ming. Operations Research, 32 (1984), 1185-1193.

W.C. HEALEY, Multiple Choice Programming. Operations Research, 12 (1964),
122-138.

D.J. SWEENEY, R.A. MURPHY. Branch-and-bound methods for multi-item
sheduling. Operations Research, 29 (1981), 853-864.

S.G. CHANG, D.W.TCHA. A heuristic for multiple Choice Programming. Com-
puters and Operations Research, 12 (1985), 25-37.

N. YANEV, V. TzZoKoV. An algorithm for a Min-Max Combinatorial Problem.
Mathematics and education of mathematics, 22 (1993), 163-173 (in Bulgarian).

Sofia University “St. KL. Ohridski”

Faculty of Mathematics and Informatics

5, James Bouchier str

1126 Sofia Received 18.05.93
BULGARIA Revised 17.06.93



