SOME RESULTS ON THE COMMUTATIVE NEUTRIX PRODUCT OF DISTRIBUTIONS

ADEM KILIÇMAN, BRIAN FISHER

Abstract. Let \(f, g \) be distributions in \(\mathcal{D}' \) and let \(f_n = f * \delta_n, g_n = g * \delta_n \), where \(\{\delta_n\} \) is a certain sequence converging to the Dirac delta-function. The neutrix product \(f \square g \) is said to exist and be equal to \(h \) if

\[
\lim_{n \to \infty} \langle f_n g_n, \phi \rangle = \langle h, \phi \rangle
\]

for all \(\phi \) in \(\mathcal{D} \). Neutrix products of the form \(\ln x \square \delta(x) \) and \(x^{-s} \square \delta(x) \) are evaluated from which further neutrix products are obtained.

The following definition of a neutrix was given by van der Corput [1]:

Definition 1. Let \(N \) be an additive group of functions defined on a set \(N' \) with values in an additive group \(N'' \) with the property that the only constant function in \(N \) is the zero function. Then \(N \) is said to be a neutrix and the functions in \(N \) are said to be negligible.

Example 1. Let \(N' = N'' = R \), the real numbers and let \(N \) be the set of real-valued functions of the form

\[N = \{ a \sin x + b \cos x : a, b \in R \} \]

Then \(N \) is a neutrix.

Now suppose \(N' \) is a subspace of a topological space \(X \) having an accumulation point \(y \) which is not in \(N' \). Let \(N'' = R \) (or \(C \) the complex numbers). Let \(N \) be an additive group of real (or complex) valued functions defined on \(N' \), with the property that if \(N \) contains a function \(\nu(x) \) which converges to a finite limit \(c \) as \(x \) tends to \(y \), then \(c = 0 \). Then \(N \) is a neutrix, since if \(f \) is in \(N \) and \(f(x) = c \) for all \(x \) in \(N' \), then \(\lim_{x \to y} f(x) = c \) implies \(c = 0 \).

This leads us to the following definition:
Definition 2. Let f be a real (or complex) valued function on \mathbb{N}' and suppose there exists c in \mathbb{R} (or \mathbb{C}) such that $f(x) - c$ is in \mathbb{N}. Then c is called the neutrix limit of $f(x)$ as x tends to y and we write

$$\operatorname{N-lim}_{x \to y} f(x) = c.$$

Notice that if a neutrix limit c exists then it is unique, since if $f(x) - c$ and $f(x) - c'$ are in \mathbb{N}, then

$$c - c' \in \mathbb{N} \Rightarrow c = c'.$$

Also notice that if \mathbb{N} is a neutrix containing the set of all functions which converge to zero in the normal sense as x tends to y, then

$$\lim_{x \to y} f(x) = c \Rightarrow \operatorname{N-lim}_{x \to y} f(x) = c.$$

From now on, the neutrix \mathbb{N} we will use will have domain the positive integers, range the real numbers with negligible functions finite linear sums of the functions

$$n^\lambda \ln^{r-1} n, \quad \ln^r n : \quad \lambda > 0, \quad r = 1, 2, \ldots$$

and all functions which converge to zero in the normal sense as n tends to infinity.

Example 2. The Gamma function $\Gamma(x)$ is defined for $x > 0$ by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, dt,$$

but more generally we have

$$\Gamma^{(r)}(x) = \operatorname{N-lim}_{n \to \infty} \int_{1/n}^{1/n} t^{x-1} \ln^r t e^{-t} \, dt$$

for $x \neq 0, -1, -2, \ldots$ and $r = 0, 1, 2, \ldots$, see [7].

Example 3. The Beta function $B(x, y)$ is defined for $x, y > 0$ by

$$B(x, y) = \int_0^1 t^{x-1}(1 - t)^{y-1} \, dt,$$

but more generally, if

$$B_{r,s}(x, y) = \frac{\partial^{r+s}}{\partial x^r \partial y^s} B(x, y),$$

we have

$$B_{r,s}(x, y) = \operatorname{N-lim}_{n \to \infty} \int_{1/n}^{1-1/n} t^{x-1} \ln^r t (1 - t)^{y-1} \ln^s (1 - t) \, dt.$$
for \(x, y \neq 0, -1, -2, \ldots \) and \(r, s = 0, 1, 2, \ldots \), see [8].

Example 4. The distribution \(x^\lambda \) is defined

\[
\langle x^\lambda, \phi(x) \rangle = \int_0^\infty x^\lambda \phi(x) \, dx
\]

for \(x > -1 \) and by

\[
\langle x^\lambda, \phi(x) \rangle = \int_0^\infty x^\lambda \left[\phi(x) - \sum_{i=0}^{m-1} \frac{x^i}{i!} \phi^{(i)}(0) \right] \, dx
\]

for \(-m - 1 < \lambda < -m \) and arbitrary \(\phi \) in \(D \), but more generally,

\[
\langle x^\lambda \ln^r x, \phi(x) \rangle = N - \lim_{n \to \infty} \int_{1/n}^\infty x^\lambda \ln^r x \phi(x) \, dx
\]

for \(\lambda \neq -1, -2, \ldots \) and \(r = 0, 1, 2, \ldots \), see [6].

We now let \(\rho(x) \) be any infinitely differentiable function having the following properties:

1. \(\rho(x) = 0 \) for \(|x| \geq 1 \),
2. \(\rho(x) \geq 0 \),
3. \(\rho(x) = \rho(-x) \),
4. \(\int_{-1}^1 \rho(x) \, dx = 1 \).

Putting \(\delta_n(x) = n \rho(nx) \) for \(n = 1, 2, \ldots \), it follows that \(\{\delta_n(x)\} \) is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function \(\delta(x) \).

Now let \(D \) be the space of infinitely differentiable functions with compact support and let \(D' \) be the space of distributions defined on \(D \). Then if \(f \) is an arbitrary distribution in \(D' \), we define

\[
f_n(x) = (f \ast \delta_n)(x) = \langle f(t), \delta_n(x-t) \rangle
\]

for \(n = 1, 2, \ldots \). It follows that \(\{f_n(x)\} \) is a regular sequence of infinitely differentiable functions converging to the distribution \(f \).

The following definition for the product of two distributions was given in [3].

Definition 3. Let \(f \) and \(g \) be distributions in \(D' \) and let \(f_n = f \ast \delta_n \) and \(g_n = g \ast \delta_n \). We say that the neutrix product \(f \Box g \) of \(f \) and \(g \) exists and is equal to the distribution \(h \) on the interval \((a, b) \) if

\[
N - \lim_{n \to \infty} \langle f_n g_n, \phi \rangle = \langle h, \phi \rangle
\]
for all functions \(\phi \) in \(\mathcal{D} \) with support contained in the interval \((a, b)\). If
\[
\lim_{n \to \infty} \langle f_n g_n, \phi \rangle = \langle h, \phi \rangle,
\]
we simply say that the product \(f \cdot g \) exists and equals \(h \), see [2].

This definition of the neutrix product is clearly commutative. A non-commutative neutrix product, denoted by \(f \circ g \), was considered in [5].

We now prove the following theorem.

Theorem 1. Let \(f \) and \(g \) be distributions in \(\mathcal{D}' \) and suppose that the neutrix products \(f \square g^{(i)} \) exist on the interval \((a, b)\) for \(i = 0, 1, \ldots, r \). Then the neutrix products \(f^{(k)} \square g \) exist on the interval \((a, b)\) and

\[
(1) \quad f^{(k)} \square g = \sum_{i=0}^{k} \binom{k}{i} (-1)^i [f \square g^{(i)}]^{(k-i)}
\]

for \(k = 1, 2, \ldots, r \).

Proof. Let \(\phi \) be an arbitrary function in \(\mathcal{D} \) with support contained in the interval \((a, b)\) and suppose that the neutrix products \(f \square g^{(i)} \) exist on the interval \((a, b)\) for \(i = 0, 1, \ldots, r \). Put
\[
f_n = f \ast \delta_n, \quad g_n = g \ast \delta_n.
\]

Then
\[
\langle f \square g, \phi \rangle = N \lim_{n \to \infty} \langle f_n, g_n \phi \rangle,
\]
\[
\langle f \square g', \phi \rangle = N \lim_{n \to \infty} \langle f, g'_n \phi \rangle.
\]

Further
\[
\langle (f \square g)', \phi \rangle = -\langle f \square g, \phi' \rangle = -N \lim_{n \to \infty} \langle f_n, g_n \phi' \rangle
\]
\[
= -N \lim_{n \to \infty} \langle f_n, (g_n \phi)' - g'_n \phi \rangle
\]
\[
= N \lim_{n \to \infty} \langle f'_n, g_n \phi \rangle + N \lim_{n \to \infty} \langle f_n, g'_n \phi \rangle
\]

and so
\[
N \lim_{n \to \infty} \langle f'_n, g_n \phi \rangle = \langle (f \square g)', \phi \rangle - \langle f \square g', \phi \rangle.
\]

This proves that the neutrix product \(f' \square g \) exists and satisfies equation (1) for the case \(k = 1 \). Thus

\[
(2) \quad (f \square g)' = f' \square g + f \square g'.
\]
Now suppose that equation (1) holds for some $k < r$. Then by our assumption, the neutrix product $f^{(k)} \Box g$ exists and using equation (2) we have
\[
[f^{(k)} \Box g]' = f^{(k+1)} \Box g + f^{(k)} \Box g' = f^{(k+1)} \Box g + \sum_{i=0}^{k} \binom{k}{i} (-1)^i [f \Box g^{(i)}]^{(k-i)} \]
\[
= \sum_{i=0}^{k+1} \binom{k+1}{i} (-1)^i [f \Box g^{(i)}]^{(k-i+1)}.
\]
Thus
\[
f^{(k+1)} \Box g = \sum_{i=0}^{k+1} \binom{k+1}{i} (-1)^i [f \Box g^{(i)}]^{(k-i+1)}.
\]
Equation (1) now follows by induction.

The following two theorems hold, see [4] and [12] respectively.

Theorem 2. The neutrix product $x^r_+ \Box \delta^{(s)}(x)$ exists and
\[
x^r_+ \Box \delta^{(s)}(x) = \frac{(-1)^r s!}{2(s-r)!} \delta^{(s-r)}(x),
\]
for $r = 0, 1, 2, \ldots$ and $s = r + 1, r + 2, \ldots$.

Theorem 3. The neutrix product $x^{-r} \Box \delta^{(s)}(x)$ exists and
\[
x^{-r} \Box \delta^{(s)}(x) = c_{rs} \delta^{(r+s)}(x),
\]
where
\[
c_{rs} = \frac{(-1)^{s-1}}{(r-1)!(r+s)!} \int_{-1}^{1} v^{r+s} \rho^{(s)}(v) \int_{-1}^{1} \ln |v-u| \rho^{(r)}(u) \, du \, dv,
\]
for $r = 1, 2, \ldots$ and $s = 0, 1, 2, \ldots$ In particular
\[
x^{-r} \delta^{(r-1)}(x) = \frac{(-1)^r r!}{(2r)!} \delta^{(2r-1)}(x),
\]
for $r = 1, 2, \ldots$. Further,
\[
\frac{(-1)^s}{(s-1)!} x^{-r} \Box \delta^{(s-1)}(x) + \frac{(-1)^r}{(r-1)!} x^{-s} \Box \delta^{(r-1)}(x) = \frac{(-1)^{r+s}}{(r+s-1)!} \delta^{(r+s-1)}(x),
\]
for \(r, s = 1, 2, \ldots \).

Note that in the following, the distributions \(x_+^{-r} \) and \(x_-^{-r} \) are defined by

\[
x_+^{-r} = \frac{(-1)^{r-1}}{(r-1)!} (\ln x_+)^{(r)}, \quad x_-^{-r} = -\frac{1}{(r-1)!} (\ln x_-)^{(r)}
\]

for \(r = 1, 2, \ldots \) and not as in Gel’fand and Shilov [9].

The neutrix product \(x_+^{-r} \delta^{(r-1)}(x) \) was considered in [3] where it was proved that

\[
x_+^{-r} \delta^{(r-1)}(x) = \frac{(-1)^r r!}{2(2r)!} \delta^{(2r-1)}(x)
\]

for \(r = 1, 2, \ldots \).

We now prove the following generalization of this result.

Theorem 4. The neutrix products \(\ln x_+ \delta^{(s)}(x) \), \(\ln x_- \delta^{(s)}(x) \), \(\ln |x| \delta^{(s)}(x) \), \(x_+^{-r} \delta^{(s)}(x) \) and \(x_-^{-r} \delta^{(s)}(x) \) exist and

\[
\ln x_+ \delta^{(s)}(x) = b_s \delta^{(s)}(x) = (-1)^s \ln x_- \delta^{(s)}(x) = \frac{1}{2} \ln |x| \delta^{(s)}(x),
\]

where

\[
b_s = \frac{1}{s!} \int_{-1}^{1} v^s \rho^{(s)}(v) \int_{-1}^{v} \ln(v-u) \rho(u) \, du \, dv
\]

for \(s = 0, 1, 2, \ldots \) and

\[
x_+^{-r} \delta^{(s)}(x) = \frac{1}{2} c_{rs} \delta^{(r+s)}(x) = (-1)^r x_-^{-r} \delta^{(s)}(x)
\]

for \(r = 1, 2, \ldots \) and \(s = 0, 1, 2, \ldots \). In particular

\[
x_+^{-r} \delta^{(r-1)}(x) = \frac{(-1)^r r!}{2(2r)!} \delta^{(2r-1)}(x),
\]

for \(r = 1, 2, \ldots \). Further,

\[
\frac{(-1)^s}{(s-1)!} x_+^{-r} \delta^{(s-1)}(x) + \frac{(-1)^r}{(r-1)!} x_-^{-s} \delta^{(r-1)}(x) = \frac{(-1)^{r+s}}{(r + s - 1)!} \delta^{(r+s-1)}(x),
\]

for \(r, s = 1, 2, \ldots \).
Proof. We put

\[(\ln x_+)_n = \ln x_+ \ast \delta_n(x) = \int_{-1/n}^x \ln(x-t)\delta_n(t) \, dt\]

on the interval \((-1/n, 1/n)\). Then

\[
\int_{-1/n}^{1/n} (\ln x_+)_n \delta_n^{(s)}(x) x^i \, dx = \int_{-1/n}^{1/n} x^i \delta(x) \int_{-1/n}^x \ln(x-t)\delta_n(t) \, dt \, dx
\]

\[
= n^{s-i} \int_{-1}^1 v^i \rho(s)(v) \int_{-1}^v \ln(v-u)\rho(u) \, du \, dv - n^{s-i} \ln n \int_{-1}^1 v^i \rho(s)(v) \int_{-1}^v \rho(u) \, du \, dv,
\]

on making the substitutions \(nt = u\) and \(nx = v\), for \(i = 0, 1, 2, \ldots\)

It follows that

\[
(14) \quad \lim_{n \to \infty} \int_{-1/n}^{1/n} (\ln x_+)_n \delta_n^{(s)}(x) x^i \, dx = 0,
\]

for \(i = 0, 1, 2, \ldots, s-1\) and

\[
(15) \quad \lim_{n \to \infty} \int_{-1/n}^{1/n} (\ln x_+)_n \delta_n^{(s)}(x) x^s \, dx = \int_{-1}^1 v^s \rho(s)(v) \int_{-1}^v \ln(v-u)\rho(u) \, du \, dv = s! b_s,
\]

\[
(16) \quad \lim_{n \to \infty} \int_{-1/n}^{1/n} (\ln x_+)_n \delta_n^{(s)}(x) x^{s+1} \, dx = 0.
\]

Now let \(\phi\) be an arbitrary function in \(D\). Then

\[
\phi(x) = \sum_{i=0}^s \frac{\phi^{(i)}(0)}{i!} x^i + \frac{\phi^{(s+1)}(\xi x)}{(s+1)!} x^{s+1},
\]

where \(0 < \xi < 1\). Using equations (14), (15) and (16), it follows that

\[
\lim_{n \to \infty} (\ln x_+)_n \delta_n^{(s)}(x) \phi(x) = b_s \phi^{(s)}(0) = b_s \delta^{(s)}(x),
\]

proving equation (7) for \(s = 0, 1, 2, \ldots\).

Equation (8) follows on replacing \(x\) by \(-x\) in equation (7) and equation (9) then follows on noting that \(\ln |x| = \ln x_+ + \ln x_-\).

Theorem 1 now shows us that the neutrix product \(x_+^{r} \square \delta^{(s)}(x)\) exists and

\[
x_+^{r} \square \delta^{(s)}(x) = \sum_{i=0}^r \binom{r}{i} \frac{(-1)^{r+i-1}}{(r-1)!} b_{s+i} \delta^{(r+s)}(x)
\]

\[
= (-1)^r x_+^{-r} \square \delta^{(s)}(x)
\]
on replacing x by $-x$. From equation (4) we have

$$x^{-r} \square \delta^{(s)}(x) = x_{-}^{-r} \square \delta^{(s)}(x) + (-1)^r x_{-}^{-r} \square \delta^{(s)}(x) = c_{rs} \delta^{(r+s)}(x).$$

Equations (10), (11), (12) and (13) now follow and further we have

$$c_{rs} = 2 \sum_{i=0}^{r} \binom{r}{i} \frac{(-1)^{r+i-1}}{(r-1)!} b_{s+i}$$

for $r = 1, 2, \ldots$ and $s = 0, 1, 2, \ldots$ In particular

$$\sum_{i=0}^{r} \binom{r}{i} \frac{(-1)^{r+i-1}}{(r-1)!} b_{r+i-1} = \frac{(-1)^{r} r!}{2(2r)!},$$

for $r = 1, 2, \ldots$, since

$$c_{r,r-1} = \frac{(-1)^{r} r!}{2(2r)!}.$$

Thus each b_{2s+1} can be solved as a linear sum of b_0, b_2, \ldots, b_{2s} and so each c_{rs} is a linear sum of $b_0, b_2, \ldots, b_{2s}, \ldots$

Theorem 5. The neutrix products $x_{-}^{-r} \square x_{-}^{s}$ and $x_{-}^{-r} \square x_{+}^{s}$ exist and

$$x_{-}^{-r} \square x_{-}^{s} = \sum_{i=s+1}^{r} \frac{(-1)^{r-s+i} s!}{(r-1)!} b_{i-s-1} \delta^{(r-s-1)}(x)$$

$$= (-1)^{r-s-1} x_{-}^{-r} \square x_{+}^{s},$$

for $r = 1, 2, \ldots$ and $s = 0, 1, \ldots, r-1$.

Proof. The product of $\ln x_{+}$ and x_{-}^{s} is a straightforward product of locally summable functions, see [2], and

$$\ln x_{+} \cdot x_{-}^{s} = 0$$

for $s = 0, 1, 2, \ldots$ Putting $g(x) = x_{-}^{s}$, we have

$$g^{(i)}(x) = \begin{cases}
 \frac{(-1)^{s} s!}{(s-i)!} x_{-}^{s-i}, & 0 \leq i \leq s, \\
 (-1)^{s+1} s! \delta^{(i-s-1)}(x), & i > s.
\end{cases}$$

Thus, by equation (19) we have

$$\ln x_{+} \cdot g^{(i)}(x) = 0.$$
for $i = 0, 1, \ldots, s$ and by equation (7) we have
\[
\ln x^+ \square g^{(i)}(x) = (-1)^{s+1}s!b_{i-s-1}\delta^{(i-s-1)}(x)
\]
for $i = s + 1, s + 2, \ldots$. It now follows from equation (1) that
\[
(ln x^+)^{(r)} \square g(x) = (-1)^{r-1}(r-1)!x^+ \square x^s
\]
\[
= \sum_{i=0}^{r} \binom{r}{i} (-1)^i [\ln x^+ \square g^{(i)}(x)]^{(r-i)}
\]
\[
= \sum_{i=s+1}^{r} \binom{r}{i} (-1)^{s+i-1}s!b_{i-s-1}\delta^{(r-s-1)}(x).
\]
Equation (17) follows immediately and equation (18) follows on replacing x by $-x$.

Theorem 6. The neutrix products $x^+ \square x^+, x^- \square x^-, x^r \square x^s$ and $x^{-r} \square x^s$ exist and
\[
x^+ \square x^+ = x^+ - (-1)^{r+s}\frac{\psi(r-s-1) + \psi(r-1)}{(r-s-1)!}\delta^{(r-s-1)}(x) + \sum_{i=s+1}^{r} \frac{(-1)^{r+i}s!b_{i-s-1}\delta^{(r-s-1)}(x)}{(r-1)!}
\]
\[
x^- \square x^- = x^- + \frac{\psi(r-s-1) + \psi(r-1)}{(r-s-1)!}\delta^{(r-s-1)}(x) + \sum_{i=s+1}^{r} \frac{(-1)^{s+i}s!b_{i-s-1}\delta^{(r-s-1)}(x)}{(r-1)!}
\]
\[
x^r \square x^s = x^r - (-1)^{r+s}\frac{\psi(r-s-1) + \psi(r-1)}{(r-s-1)!}\delta^{(r-s-1)}(x) + \sum_{i=s+1}^{r} \frac{2(-1)^{r+i}s!b_{i-s-1}\delta^{(r-s-1)}(x)}{(r-1)!}
\]
\[
x^{-r} \square x^s = (-1)^r x^- + (-1)^r\frac{\psi(r-s-1) + \psi(r-1)}{(r-s-1)!}\delta^{(r-s-1)}(x) + \sum_{i=s+1}^{r} \frac{2(-1)^{r+s+i}s!b_{i-s-1}\delta^{(r-s-1)}(x)}{(r-1)!}
\]
for $r = 1, 2, \ldots$ and $s = 0, 1, \ldots, r - 1$.

Proof. The product of x^+_r and the infinitely differentiable function x^s is given by
\[
x^+_r x^s = x^+ - (-1)^{r+s}\frac{\psi(r-s-1) + \psi(r-1)}{(r-s-1)!}\delta^{(r-s-1)}(x),
\]
for \(r = 1, 2, \ldots \) and \(s = 0, 1, \ldots, r - 1 \), see [9]. It follows that
\[
x_+^{-r} \, \square x_+^s = x_+^{-r} \cdot x^s - (-1)^s x_+^{-r} \, \square x_-
\]
\[
= x_+^{-r+s} - (-1)^{r+s} \frac{\psi(r - s - 1) + \psi(r - 1)}{(r - s - 1)!} \delta(r - s - 1)(x) +
\]
\[
- \sum_{i=s+1}^{r} \frac{(-1)^{r+i}s!}{(r - 1)!} b_{i-s-1} \delta(r - s - 1)(x)
\]
proving equation (20).

Equation (21) now follows from equation (20) on replacing \(x \) by \(-x \). Equation (22) follows from equations (18) and (20) and then equation (23) follows from equation (22) on replacing \(x \) by \(-x \).

Theorem 7. The neutrix products \((x_+^r \ln x_+ \, \square \delta(s)(x))\), \((x_-^r \ln x_- \, \square \delta(s)(x))\) and \((x^r \ln |x|) \, \square \delta(s)(x)\) exist and

\[
(x_+^r \ln x_+) \, \square \delta(s)(x) = \binom{s}{r} (-1)^r r! b_0 \delta(s-r)(x) + \sum_{i=r+1}^{s} \binom{s}{i} \frac{1}{2} (-1)^r (i - r - 1)! c_{i-r,0} \delta(s-r)(x),
\]

\[
(x_-^r \ln x_-) \, \square \delta(s)(x) = \binom{s}{r} r! b_0 \delta(s-r)(x) + \sum_{i=r+1}^{s} \frac{1}{2} r! c_{i-r,0} \delta(s-r)(x),
\]

\[
(x^r \ln |x|) \, \square \delta(s-r)(x) = \binom{s}{r} (-1)^r r! b_0 \delta(s-r)(x) + \sum_{i=r+1}^{s} (-1)^r (i - r - 1)! c_{i-r,0} \delta(s-r)(x),
\]

for \(r = 0, 1, 2, \ldots \) and \(s = r, r + 1, \ldots \).

Proof. We define the function \(f(x_+, r) \) by
\[
f(x_+, r) = \frac{x_+^r \ln x_+ - \psi(r) x_+^r}{r!}
\]
and it follows easily by induction that
\[
f^{(i)}(x_+, r) = f(x_+, r - i),
\]
for \(i = 0, 1, \ldots, r \). In particular,
\[
f^{(r)}(x_+, r) = \ln x_+,
\]
so that
\[f^{(i)}(x_+, r) = (-1)^{i-r-1}(i-r-1)!x_+^{-i+r}, \]
for \(i = r + 1, r + 2, \ldots \). Now \(f^{(i)}(x_+, r) \) is a continuous function which is zero at the origin for \(i = 0, 1, \ldots, r - 1 \) and so
\[f^{(i)}(x_+, r).\delta(x) = 0, \]
for \(r = 0, 1, \ldots, r - 1 \). Using equation (7) we have
\[f^{(r)}(x_+, r)\square\delta(x) = b_0\delta(x) \]
and using equation (10) we have
\[f^{(i)}(x_+, r)\square\delta(x) = -\frac{1}{2}(-1)^{i-r-1}(i-r-1)!c_{i-r,0}\delta^{(i-r)}(x) \]
for \(i = r + 1, r + 2, \ldots \)

Using equations (1), (27), (28) and (29) we have
\[
\begin{align*}
f((x_+, r)\square\delta(x)) &= \sum_{i=0}^{s} \binom{s}{i} (-1)^i [f^{(i)}(x_+, r)\square\delta(x)]^{(s-i)} \\
&= \sum_{i=r}^{s} \binom{s}{i} (-1)^i [f^{(i)}(x_+, r)\square\delta(x)]^{(s-i)} \\
&= \binom{s}{r} (-1)^r b_0\delta^{(s-r)}(x) + \\
&\quad + \sum_{i=r+1}^{s} \binom{s}{i} \frac{1}{2}(-1)^r (i-r-1)!c_{i-r,0}\delta^{(r-s)}(x).
\end{align*}
\]
Thus
\[
(x_+^r \ln x_+)}\square\delta^{(s)}(x) = r!f(x_+, r)\square\delta^{(s)}(x) + \psi(r)x_+^{r}\square\delta^{(s)}(x)
\]
and equation (24) follows on using equation (3).

Equation (25) now follows from equation (24) on replacing \(x \) by \(-x\) and equation (26) follows on noting that
\[
x^r \ln |x| = x_+^r \ln x_+ + (-1)^r x_-^r \ln x_-.
\]

For further related results, see Gramchev [10], and for a survey of recent results and theories in the product of distributions, see Oberguggenberger [11].
REFERENCES

Department of Mathematics and
Computer Science
University of Leicester,
Leicester, LE1 7RH
England

Received 28.06.1993
Revised 10.02.1994