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A MEAN VALUE THEOREM FOR NON DIFFERENTIABLE

MAPPINGS IN BANACH SPACES
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Abstract. We prove that if f is a real valued lower semicontinuous function
on a Banach space X and if there exists a C1, real valued Lipschitz continuous
function on X with bounded support and which is not identically equal to zero,
then f is Lipschitz continuous of constant K provided all lower subgradients of
f are bounded by K. As an application, we give a regularity result of viscosity
supersolutions (or subsolutions) of Hamilton-Jacobi equations in infinite dimensions
which satisfy a coercive condition. This last result slightly improves some earlier
work by G. Barles and H. Ishii.

Let X be a Banach space and f : X → R be an arbitrary function. It has been
proved by D. Preiss [12] that if X is an Asplund space and if f is Lipschitz continuous,
then the set D of all points of differentiability of f is dense in X and f satisfies the
mean value theorem ; that is, for every x, y ∈ X:

‖f(x) − f(y)‖ ≤ L‖x− y‖

where

L = sup{‖f ′(x)‖;x ∈ D} (= Lipschitz constant of f).
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When f is only assumed continuous, it is possible that f is nowhere differentiable. In
this case it is natural to look for weaker forms of differentiability. For an arbitrary
function f : X → R, we define the subdifferential of f at x by:

D−f(x) = {ϕ′(x); ϕ : X → R is C1 and f − ϕ has a local minimum at x}

and the superdifferential of f at x by:

D+f(x) = {ϕ′(x); ϕ : X → R is C1 and f − ϕ has a local maximum at x}.

It follows from the Borwein-Preiss smooth variational principle [2] that whenever X has
an equivalent Fréchet differentiable norm (away from the origin) and f is lower semi
continuous, D−f(x) 6= Ø for all x in a dense subset D of X. It is observed in [4] that
to get the above result the assumption on X can be replaced by the following weaker
hypothesis:

(*)
there exists a C1 function b : X → R, Lipschitz continuous, non identically
equal to zero with bounded support.

Let us mention here that R. Haydon ([8], [9]) constructed a Banach space sat-
isfying (*) but which does not have any equivalent Fréchet-differentiable norm. The
extension of [4] is based on the following smooth variational principle.

Theorem 1. Let X be a Banach space satisfying (*) and f : X → R be
lower semicontinuous and bounded below. Then for every ε > 0, there exists a bounded
Lipschitz continuous C1 function ϕ : X → R such that:

a) f − ϕ attains its minimum on X.
b) ‖ϕ‖∞ = sup{|ϕ(x)|;x ∈ X} < ε and ‖ϕ′‖∞ = sup{‖ϕ′(x)‖;x ∈ X} < ε.

Variants of this result to other kind of differentiability are given in [4]. The
purpose of this note is to prove the following theorem (we wish to thank the referee to
pointing out to us that our result extends recent work of R. Redheffer, W. Walter and
V. Weckesser [13], [14]):

Theorem 2. Let X be a Banach space satisfying (*) and let f : X → R

be lower semicontinuous. Assume that there exists a constant K > 0 such that for
all x ∈ X and for all p ∈ D−f(x), ‖p‖ ≤ K. Then f is Lipschitz continuous. More
precisely, for all x, y ∈ X |f(x) − f(y)| ≤ K‖x− y‖.

Corollary 3. Under the same assumption on X, if f : X → R is continuous,
then:

sup{ ‖p‖ ; p ∈ D−f(x), x ∈ X} = sup{ ‖p‖; p ∈ D+f(x), x ∈ X}.

These quantities are finite if and only if f is Lipschitz continuous on X, and in this
case they are equal to the Lipschitz constant of f .
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P r o o f o f c o r o l l a r y 3. Let us denote

s− = sup{ ‖p‖; p ∈ D−f(x), x ∈ X}

and
s+ = sup{ ‖p‖; p ∈ D+f(x), x ∈ X}.

According to Theorem 2, if s− or s+ is finite, then f is Lipschitz continuous with
Lipschitz constant less than or equal to inf{s−, s+}. Conversely, we claim that if f is
Lipschitz continuous with constant K, then s+ ≤ K and s− ≤ K. Once the claim is
proved, we get that either s+ = s− = +∞ or sup{s−, s+} ≤ K ≤ inf{s−, s+} and so
s+ = s− = K and this proves the corollary. Let us now prove that s+ ≤ K (the proof
of the inequality s− ≤ K is similar). Let ε > 0, x ∈ X and p ∈ D+f(x) such that
‖p‖ > s+ − ε. By definition, there exists ϕ : X → R C1 such that f − ϕ has a local
maximum at x and ϕ′(x) = p. Let h ∈ X, ‖h‖ = 1 be such that < p, h > > s+ − ε.
For t small enough, we have:

f(x− th) − ϕ(x− th) ≤ f(x) − ϕ(x).

So
f(x) − f(x− th) ≥ ϕ(x) − ϕ(x− th)

therefore

lim inf
t→0

t>0

f(x) − f(x− th)

t
≥ < ϕ′(x), h > > s+ − ε.

This shows that K > s+ − ε. Since this is true for all ε > 0, we obtain s+ ≤ K. �

P r o o f o f t h e o r em 2. Let us denote by B(x, r) the closed ball of center
x ∈ X and radius r. Let us fix x0 ∈ X and ε > 0. Since f is lower semicontinuous, it
is locally bounded below. Therefore there exist δ > 0 and M > 0 such that:

f(x) ≥ f(x0) −M

whenever ‖x− x0‖ ≤ 2δ. Next, according to a construction of Leduc [11], there exists
a Lipschitz C1 function d : X → R which is C1 on X\{0} and which satisfies:

i) d(λx) = λd(x) for all λ > 0

ii) there exists C > 0 such that ‖x‖ ≤ d(x) ≤ C‖x‖ for all x ∈ X.

We will prove that if x, y ∈ B(x0, δ/4), then

|f(x) − f(y)| ≤ C(K + ε)‖x− y‖.

Indeed, fix y ∈ B(x0, δ/4) and consider a C1 function α : [0,+∞) → [0,+∞) satisfying:

i) α(t) = (K + ε)t if t ≤ δ/2;
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ii) α′(t) ≥ K + ε for all t > 0;

iii) α(δ) ≥M .

Finally consider the function F on X defined by:

F (x) =

{

f(x) − f(y) + α(d(x− y)) if ‖x− y‖ ≤ δ
+∞ otherwise.

F is lower semicontinuous and bounded below. We claim that F ≥ 0. Otherwise, let
m = inf F < 0. By Theorem 1, there exists a C1 function ϕ : X → R such that:

1) F − ϕ attains its minimum at some point x1 ∈ X

2) ‖ϕ‖∞ < −m/2 and ‖ϕ′‖∞ < ε.

If x = y or ‖x−y‖ ≥ δ, then F (x) ≥ 0 and so (F −ϕ)(x) ≥ F (x)−‖ϕ‖∞ > m/2. On
the other hand, inf(F−ϕ) ≤ inf F+‖ϕ‖∞ < m/2. This proves that 0 < ‖x1−y‖ < δ.
Thus, if we let:

ψ(x) = f(y) − α(d(x− y)) + ϕ(x)

f − ψ has a local minimum at x1 and ψ is C1 in a neighbourhood of x1, therefore
p = ψ′(x1) ∈ D

−f(x1) and

‖p‖ ≥ α′(d(x1 − y))‖d′(x1 − y)‖ − ‖ϕ′(x1)‖ ≥ α′(d(x1 − y)) − ‖ϕ′(x1)‖ > K

this contradicts the assumption, and the claim is proved. In particular, we have proved
that if ‖x− y‖ ≤ δ/2C, then

(1) f(x) ≥ f(y) − (K + ε)d(x − y) ≥ f(y) − C(K + ε)‖x− y‖.

Since ‖x− x0‖ ≤ δ/4C implies that ‖x − y‖ ≤ δ/2C, inequality (1) is true for all x, y
in B(x0, δ/4C). Thus

(2) |f(x) − f(y)| ≤ C(K + ε)‖x − y‖

whenever x, y ∈ B(x0, δ/4C).

Now consider two arbitrary points x, y ∈ X. For each t ∈ [0, 1], let zt =
x+ t(y − x). By (2), there exists an open interval It containing t such that whenever
s, s′ ∈ It,

|f(zs) − f(zs′)| ≤ C(K + ε)‖zs − zs′‖ = C(K + ε)|s− s′| ‖y − x‖.

By compactness of [0, 1], there is a finite number of intervals It1 , It2 , . . . , Itn such that
⋃

k

Itk = [0, 1]. So there is an increasing sequence s1 = 0 < s2 < · · · < sp = 1 such

that each interval [si, si+1] is contained in one of the Itk . By the triangle inequality, we
have:

|f(x) − f(y)| ≤ |f(zs1
) − f(zs2

)| + |f(zs2
) − f(zs3

)| + · · · + |f(zsp−1
) − f(zsp)|

≤ C(K + ε)‖y − x‖.
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This proves that f is Lipschitz continuous and that the Lipschitz constant of f is less
or equal than C(K + ε). When the norm of X is Fréchet-differentiable on X\{0}, we
can assume that d(x) = ‖x‖, so C = 1 and we obtain the result sending ε to zero. In
the general case, according to Preiss’ theorem,

‖f(x) − f(y)‖ ≤ L‖x− y‖

where

L = sup{‖f ′(x)‖; f is differentiable at x}.

We conclude by noting that whenever f is differentiable at some point x and if X
admits a C1 smooth bump function, then D−f(x) = {f ′(x)} (see the proof of theorem
1.3 of [6]), so L ≤ K and f is Lipschitz continuous of constant less than or equal to K.

Remarks.

a) It is natural to try to extend Theorem 2 in the following way: Let X be a
Banach space satisfying (*) and let f : X → R be lower semi continuous. Assume that
there exists a constant K > 0 such that for all x ∈ X such that D−f(x) 6= Ø, there
exists p ∈ D−f(x) of norm less than or equal to K. Does it follow that f is Lipschitz
continuous? The answer is no in general: the function of Lebesgue on the unit interval
is a counterexample. Indeed this function is continuous but not Lipschitz continuous,
and one can check that D−f(x) is equal to {0} if x is not on the Cantor set C, is equal
to [0,+∞) if x is on C but is not an accumulation point of C from the left, and is
empty otherwise. We wish to thank J. P. Penot for pointing out to us this remark.

b) The assumption “f lower semicontinuous” in Theorem 2 is necessary. Indeed
take:

f(x) =











0 if x is not rational

1

q
if x =

p

q
with (p, q) = 1 and q > 0

f is continuous on a residual set (f is upper semicontinuous but not lower semicontin-
uous on R), f is not constant but sup{|p| ; p ∈ D−f(x), x ∈ R} = 0.

c) Theorem 2 remains valid if the assumptions on f are replaced by: f is upper
semicontinuous and there exists a constant K > 0 such that for all x ∈ X and for all
p ∈ D+f(x), ‖p‖ ≤ K (to see this, apply Theorem 2 to −f).

d) A geometric assumption on X is also necessary. For instance, if X admits
an equivalent nowhere Fréchet-differentiable differentiable norm ||| ||| (this is possible if
and only if X is not an Asplund space) then the function f defined by f(x) = −|||x|||
is Lipschitz continuous, D−f(x) = φ for all x ∈ X and so sup{‖p‖ ; p ∈ D−f(x), x ∈
R} ≤ 0 but f is not constant. It would be interesting to know if Theorem 2 holds in
every space which admits a C1 smooth bump function.
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e) If the function f of Theorem 2 is only defined on an open subset Ω of X,
easy modifications in the proof show that the conclusion can be replaced by:

|f(x) − f(y)| ≤ K ‖x− y‖

whenever the line segment [x, y] is contained in Ω.

f) It is possible to prove a mean value theorem for other kinds of differentiability.
If β is a bornology on X and ϕ is a real valued function on X, we say that ϕ is β-
differentiable at x0 ∈ X with β-derivative ϕ′(x0) = p ∈ X∗ if

lim
t→0

t−1
(

f(x0 + th) − f(x0)− < p, th >
)

= 0

uniformly for h in the elements of β. We denote by τβ the topology on X∗ of uniform
convergence on the elements of β. When β is the class of all bounded subsets (resp. all
singletons) of X, the β-differentiability coincides with the usual Fréchet-differentiability
(resp. Gâteaux differentiability), and τβ coincides with the norm (resp. weak∗) topology
on X∗. Finally, if f is a real valued function on X, the β-subdifferential of f at some
point x0 ∈ X is the set:

d−β f(x0)={ϕ′(x0);ϕ : X→R is β-differentiable and f−ϕ has a local minimum at x0}.

The following result is a straightforward adaptation of Theorem 2.

Proposition 4. Let X be a Banach space such that there exists a β-
differentiable function b : X → R, Lipschitz continuous, non identically equal to zero
with bounded support. Let f : X → R be lower semicontinuous. If we denote by
K = sup{‖p‖; p ∈ d−β f(x), x ∈ X}, we have for all x, y ∈ X:

|f(x) − f(y)| ≤ K‖x− y‖.

We conclude this paper with an application to a regularity result of viscosity
subsolutions of Hamilton-Jacobi equations which have a “coercive” structure. We are
concerned here with a nonlinear first order scalar partial differential equation of the
form

(1) F (x, u, Du) = 0 in Ω

where Ω is an open subset of a Banach space X, F : Ω × R × X∗ → R, u : Ω → R

is the unknown and Du denotes the gradient of u (i.e. the Fréchet derivative of u).
Even when X = R classical solutions do not exist necessarily. M. G. Crandall and P.
L. Lions [3] introduced a notion of solution for which one has existence and uniqueness
under some suitable structural conditions on F .
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Definition. A function u : X → R is called a viscosity supersolution of (1) on
Ω if:

i) u is lower semicontinuous;

ii) for every x ∈ Ω and for every p ∈ D−u(x), F (x, u, p) ≤ 0;

u is called a viscosity subsolution if

i′) u is upper semicontinuous;

ii′) for every x ∈ Ω and for every p ∈ D+u(x), F (x, u, p) ≥ 0.

Finally u is a viscosity solution of (1) on Ω if u is both a viscosity subsolution and a
viscosity supersolution of (1) on Ω.

According to Theorem 2 and Remark b) following its proof, we have:

Proposition 5. Let u be a viscosity subsolution of (1) on Ω. We assume
that X satisfies (∗) and that there is a constant K such that F (x, u, p) > 0 for all
(x, u) ∈ Ω × R and for all p ∈ X∗ such that ‖p‖ > K. Then for all x, y ∈ Ω such that
the line segment [x, y] is contained in Ω, |u(x) − u(y)| ≤ K‖x− y‖.

Results in the direction have been observed by G. Barles [1] and H. Ishii [10].
Let us observe here that if u0 is a viscosity supersolution of (1) on Ω and if v0 is a
viscosity subsolution of (1) on Ω, then in order to prove the existence of a viscosity
solution lying between u0 and v0, one can use Perron method as in [10]: Consider

S = {u : Ω → R; v0 ≤ u ≤ u0 and u is subsolution of (1) on Ω}

and set w(x) = sup{u(x);u ∈ S} so that w is Lipschitz continuous of constant K as
supremum of Lipschitz continuous functions with constant K, and it can be shown that
w is a viscosity solution of (1) on Ω. The point we want to emphasize here is that upper
semicontinuous and lower semicontinuous envelopes of the function w are used in [10],
but are not necessary if F is coercive as above since then we stay within the setting of
Lipschitz continuous functions.
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