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PERTURBATIONS OF SYSTEMS DESCRIBING THE MOTION

OF A PARTICLE IN CENTRAL FIELDS
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Abstract. The present paper deals with the KAM-theory conditions for systems
describing the motion of a particle in central field.

1. Introduction. The question of integrability of Hamiltonian systems is one
of the oldest problems of classical mechanics [1]. Classical results due to Poincare and
Bruns show that most of the Hamiltonian systems are not integrable. This has lead
Poincare to define the main problem of dynamics to be the study of Hamiltonian systems
which are close to integrable ones. The most powerful approach to such systems is the
KAM-theory. Before giving a brief account of KAM-theory we remind the structure of
the integrable Hamiltonian systems.

The phase space of the generic integrable Hamiltonian systems with n-degrees

of freedom is foliated into invariant manifolds the typical fibre being a n-dimensional

torus, on which the motion is quasiperiodic. A natural question is whether small

perturbations destroy these tori, KAM-theory gives conditions for the integrable sys-

tems which guarantee the survival of most of the invariant tori. The conditions are

given in terms of the so-called action – angle variables J1, J2, . . . , Jn ; ϕ1, ϕ2, . . . , ϕn.

Without going into details, we remind that the action – angle variables can be intro-

duced for any integrable system locally near a fixed torus and have a property that

1991 Mathematics Subject Classification: 70D10, 70H05, 70K89, 58F07, 34D10
Key words: particle in central field, KAM-theory, Abelian integrals, Picard-Fuchs equations



92 Ognyan Christov and Dragomir Dragnev

J = (J1, J2, . . . , Jn) maps a neighbourhood of a fixed torus on an open subset of R
n.

The functions ϕ1, ϕ2, . . . , ϕn are the co - ordinates on any of the nearby tori. Moreover,

the first integrals become functions of the action variables J1, J2, . . . , Jn. Finally to any

fixed torus there corresponds an invariant torus on which the motion is quasiperiodic

with frequencies (ω1(J), . . . , ωn(J)) = (∂H/∂J1, . . . ∂H/∂Jn) (see [2] for details).

One condition, stated by Kolmogorov (see [2], app. 8) on the Hamiltonian of the

integrable system that ensures the survival of most of the invariant tori under small

perturbations is that the frequency map

J → (ω1(J), ω2(J), . . . , ωn(J))

should be non-degenerate. Analytically this means that the Hesseian

(1.1) det

(
∂2H

∂Jj∂Jk

)
j, k = 1, . . . , n,

does not vanish. We should note that the measure of the surviving tori decreases with

the increase of both perturbation and measure of the set where the above Hesseian is

too close to zero.

Another condition of this type, stated by V. Arnold and J. Moser (see [2, app.8],

[3]) is that of isoenergetical non-degeneracy, which can be explained as follows. Fix an

energy level H0 = h0. If the Hamiltonian H0 is written in action variables, then define

the following map Fh0
from the (n−1) dimensional variety H−1

0 (h0) into the projective

space P
n−1:

Fh0
: J → (ω1(J) : ω2(J) : . . . : ωn(J)) .

The system is isoenergetically non-degenerate if the map Fh0
is a homeomorphism. An-

alytically the isoenergetical non-degeneracy is tantamount to the nonvanishing of the

determinant

(1.2) det




∂2H0

∂J2

∂H0

∂J

∂H0

∂J
0




The checking of the conditions (1.1) and (1.2) is a very difficult problem however, there

exist several methods for solving such problems.

Knörrer [4] found a method for checking Kolmogorov’s condition by reducing

the number of degrees of freedom. Using this method he has proved that Kolmogorov’s

condition is fulfilled almost everywhere for several systems including the geodesic flow

on the ellipsoid and K.Neumann’s system.
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In a recent paper Horozov [5] has proved that for the system describing the

spherical pendulum, condition (1.1) is satisfied everywhere out of the bifurcation di-

agram of the energy – momentum map. The crucial role in [5] is played by certain

algebraic curves and Abelian integrals on them. The condition (1.2) for the spherical

pendulum is checked in [6].

The purpose of this paper is to check the KAM-theory conditions (1.1) and

(1.2) for the system describing the motion of a particle in central fields with potentials

V = arn+1. The problem of the motion of the particle in a central field with potential

V (r), where r is the distance between the attracting centre and the particle, is not new

and is considered in [6, 7], for instance. It is known that the motion takes place in

a plane through the origin. Therefore, the problem is reduced to a system with two

degrees of freedom. It is also well known that the problems with such potentials are

completely integrable [7, 8]. The natural co - ordinates in which the system takes the

simplest form are the polar co - ordinates x = rcosϕ, y = rsinϕ, where r ∈ (0,∞)

and ϕ ∈ [0, 2π]. Without loss of generality we put the mass of the particle equal to 1

(m = 1). Then, the Lagrangian of the system is

L = ṙ2/2 + r2ϕ̇2/2 − arn+1. ( fig.1)

Fig. 1. The effective potential for n = 0

Using the Legendre transformation, we obtain the corresponding Hamiltonian system

via

H =
p2

r

2
+
p2

ϕ

2r2
+ arn+1,

where pr = ∂L/∂ṙ = ṙ, pϕ = ∂L/∂ϕ̇ = ϕ̇r2. The symplectic structure is ω = dσ where

(1.3) σ = prdr + pϕdϕ.
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As ϕ is a cyclic co-ordinate, the system is integrable with obvious integrals

F = pϕ = f = const ,

(1.4) H =
p2

r

2
+
f2

2r2
+ arn+1 = h = const .

In this paper we will study the cases in which there exist tori and the problem is solved

via elliptic functions – n = 0, 3 (a > 0) and n = −5/3, −7/3 (a < 0), which we call

cubic, because algebraic curves are polynomials of 3-rd degree and cases n = 5, (a > 0),

5/2 (a < 0) which are reduced to polynomials of 4-th degree (quartic).

The paper consists of two parts. The Part A is devoted to the cubic cases

and only the case n = 0 is considered in details. In Section 2 the action variables are

introduced and the result is stated. The proof is given in Section 3. For the proof of

the result we use the method from [5]. Section 4 gives the keypoints for the other cubic

cases – n = 3, −5/3, −7/3. The quartic cases are studied in Part B and again only

one case: n = −5/2 is considered in details. We introduce the action variables and

state the corresponding result for the quartic cases in Section 5. The proof is given in

Section 6, by using Picard-Fuchs and Riccati equations for evaluating the number of

zeros of an elliptic integral.

Part A. CUBIC CASES

2. Statement of the result for the cubic cases. For the case n = 0 the

first integrals are

F = pϕ = f = const ,

(2.1) H =
p2

r

2
+

f2

2r2
+ ar = h = const .

The values of H and F for which the real movement takes place define the set

U =

{
(h, f) : h ≥ 0, 0 ≤ f2 ≤

8h3

27a2

}
.

In order to introduce the action – angle variables we need to exclude from U the critical

values of the energy – momentum map (H,F ). It is easy to calculate that these points

are the boundaries of U i.e. the points satisfying the equations

f = 0, f2 =
8h3

27a2
.
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Denote by Ur the set of regular values of the energy - momentum map

Ur = {(h, f) : h > 0, 0 < f2 <
8h3

27a2
}. (fig.2)

Fig. 2. The set of the regular values of the energy-momentum

For the points (h, f) ∈ Ur the level surface determined by the equations H = h, F = f

is a torus Th,f . Choose a basis γ1, γ2 of the homology group H1(Th,f ,Z) with the

following representatives. For γ1 take the curve on Th,f defined by fixing r, pr, pϕ and

letting ϕ run through [0, 2π]. For γ2 fix ϕ and let r, pr make one circle on the curve

given by the equation
p2

r

2
+

f2

2r2
+ ar = h.

Now we can define the action co - ordinates J1, J2 by the formula

Jj =

∫

γj

σ, j = 1, 2,

where σ is canonical one - form (1.3). Trivial computations give

(2.2) J1 = 2πf,

(2.3) J2 =

∫

γ2

prdr = 2

∫ r+

r
−

√
(2h − 2ar − f2/r2)dr,

where r+ > r− are the two roots of the equation

h− ar − f2/2r2 = 0.
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Put y2 = 2hr2 − 2ar3 − f2. Denote the oval of the curve

Γh,f = {(y, r) : y2 = 2hr2 − 2ar3 − f2} by γ. Then we have

(2.4) ψ(h, f)
def
= J2 =

∫

γ

ydr

r
.

Denote by H̃(J1, J2) the Hamiltonian of the considered system in action - angle co -

ordinates. We state the theorem which is one of the aims of this paper.

Theorem 1. For (h, f) ∈ Ur the following determinants do not vanish

(2.5) det




∂2H̃

∂J2
1

∂2H̃

∂J1∂J2

∂2H̃

∂J1∂J2

∂2H̃

∂J2
2




6= 0.

(2.6) det




∂2H̃

∂J2
1

∂2H̃

∂J1∂J2

∂H̃

∂J1

∂2H̃

∂J1∂J2

∂2H̃

∂J2
2

∂H̃

∂J2

∂H̃

∂J1

∂H̃

∂J2
0




6= 0,

i.e. the system with Hamiltonian (2.1) is nondegenerate and isoenergetically nondegen-

erate.

Remark. The condition of isoenergetical non-degeneracy guarantees stability

of action variables in sense that they remain always near their initial values when the

perturbations are small (see [2, app. 8]).

We shall give the conditions (2.5) and (2.6) explicit form in terms of Abelian

integrals of second kind. Using the expressions (2.2) and (2.4) for J1 and J2 we can

determine F̃ and H̃ implicitly from the equations

J1 = 2πF̃ ,

J2 = ψ(F̃ , H̃).
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Lemma 1 (Horozov [5]).

(2π)2(∂ψ/∂h)4 det




∂2H̃

∂J2
1

∂2H̃

∂J1∂J2

∂2H̃

∂J1∂J2

∂2H̃

∂J2
2




= det




∂2ψ

∂h2

∂2ψ

∂h∂f

∂2ψ

∂h∂f

∂2ψ

∂f2



.

P r o o f. Differentiating equality J2 = ψ(J1/2π, H̃(J1, J2)) by J1 and J2, we

obtain

0 = ψf
1

2π
+ ψh

∂H̃

∂J1
,

1 = ψh
∂H̃

∂J2
.

From here we find
∂H̃

∂J1
= −

1

2π

ψf

ψh
,

∂H̃

∂J2
=

1

ψh
.

Differentiating again these equalities we have

∂2H̃

∂J2
1

= −
1

(2π)2
ψffψ

2
h − 2ψhψfψhf + ψ2

fψhh

ψ3
h

,

∂2H̃

∂J1∂J2
= −

1

2π

ψfh − ψhh(ψf/ψh)

ψ2
h

,

∂2H̃

∂J2
2

= −
ψhh

ψ3
h

.

Consequently

det




∂2H̃

∂J2
1

∂2H̃

∂J1∂J2

∂2H̃

∂J1∂J2

∂2H̃

∂J2
2




=
1

(2π)2
1

ψ4
h

(ψhhψff − ψ2
hf ).

This completes the proof of Lemma 1. �
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Similarly, we have

Lemma 2.

(2π)ψ3
h det




∂2H̃

∂J2
1

∂2H̃

∂J1∂J2

∂H̃

∂J1

∂2H̃

∂J1∂J2

∂2H̃

∂J2
2

∂H̃

∂J2

∂H̃

∂J1

∂H̃

∂J2
0




= ψff .

The proof of Lemma 2 is a straightforward computation using Lemma 1 and

therefore is omitted. It is easy to see that

ψh =

∫

γ

rdr

y
6= 0

in Ur, because r+ > r− > 0 and

∫

γ

dr

y
6= 0 since it is the period. So, instead of Theorem

1 we shall prove the equivalent to it.

Theorem 2. (i) For the (h, f) ∈ Ur the determinant

D = det




∂2ψ

∂h2

∂2ψ

∂h∂f

∂2ψ

∂h∂f

∂2ψ

∂f2



.

does not vanish.

(ii) For the (h, f) ∈ Ur the expression D1 = ψff does not vanish.

The proof will be given in Section 4.

Next we would like to show that the entries of D (and D1) can be represented as

elliptic integrals. If we differentiate (2.4) twice formally, we get the following expressions

(2.7)

∂2ψ

∂h2
= −

∫

γ

r3dr

y3
,

∂2ψ

∂h∂f
= f

∫

γ

rdr

y3
,

∂2ψ

∂f2
= −

(∫

γ

dr

ry
+ f2

∫

γ

dr

ry3

)
.
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(We have used that y∂y/∂f = −f , y∂y/∂h = r2 which follows by differentiating the

curve Γh,f .)

The differential forms containing y−3 have poles along γ. A standard way to

get rid of the poles on the integration path is to consider Γh,f as a complex curve.

Topologically it is a torus from which one point is removed [10]. The differential form

yr−1dr is holomorphic on γ. If we deform cycle γ into cycle γ′ homological to γ on

which functions y and r have neither poles, nor zeroes. Then by Cauchy’s theorem [9]

the function ψ(h, f) can be defined by the integral (2.4) on γ′ instead of γ. After these

notes it is clear that the derivatives (2.7) are well defined. We again denote γ′ by γ.

3. Proof of the result for the cubic cases. The proof will be made with

the help of several lemmas. First, we shall need the functions

(3.1) wj =

∫

γ

rjdr

y3
, j = 0, 1.

The next lemma gives a representation of D as a quadratic form in w0, w1.

Lemma 3. The determinant D has the following representation

(3.2) D = −f2w1(w1 − 2hw0/3a).

P r o o f. We have to express derivatives (2.7) by the integrals w0, w1. Obviously

ψhf = fw1. For ψff we make the following transformations:

∂2ψ

∂f2
= −

(∫

γ

dr

ry
+ f2

∫

γ

dr

ry3

)
= −

∫

γ

y2 + f2

ry3
dr

= −

∫

γ

2hr − 2ar2

y3
dr.

So,

ψff = −2hw1 + 2a

∫

γ

r2dr

y3
.
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Now, we express integrals

∫

γ

r2dr

y3
and

∫

γ

r3dr

y3
via w0 and w1 in the following way:

∫

γ

r2dr

y3
=

1

3

∫

γ

dr3

y3
= −

1

6a

∫

γ

d(−2ar3)

y3
=

= −
1

6a

∫

γ

d(y2 − 2hr2 + f2)

y3
= −

1

3a

(∫

γ

dy

y2
− 2h

∫

γ

rdr

y3

)
=

(2h/3a)w1.

Similarly,

∫

γ

r3dr

y3
= −

1

6a

∫

γ

rd(−2ar3)

y3
= −

1

6a

∫

γ

rd(y2 − 2hr2 + f2)

y3
=

= −
1

3a

(∫

γ

rdy

y2
− 2h

∫

γ

r2dr

y3

)
.

Integrating first summand by parts, we obtain

∫

γ

r3dr

y3
= (f2/a)w0.

Consequently

ψhh = −(f2/a)w0, ψff = −(2h/3)w1

from where we obtain the representation (3.2). This completes the proof of Lemma 3.

Earlier in [9] was proved that w0 < 0 in Ur. We introduce the function δ =

w1/w0. Then D and D1 have the following form

(3.3) D = −f2w2
0δ(δ − (2h/3a)),

(3.4) D1 = −(2/3)hw0δ.

Next, we need some other functions for the study of δ. In order to introduce

them, we put the family of elliptic curves Γh,f into the normal form:

(3.5) Γp = {(u, v) ∈ C
2, v2 = 2(u3 − 3u+ p)}

by the translation r = x+ (h/3a) and the rescaling y = αv, x = βu, where

(3.6) β = −h/(3a), α2 = −aβ3.
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If we put

(3.7) p(h, f) =
4h3 − 27a2f2

2h3
,

we get (4.5). In these variables the integrals w0 and w1 become

w0 =
β

α3

∫

γ(p)

du

v3
, w1 =

β

α3

∫

γ(p)

(βu+ h/3a)du

v3
.

Introduce the new functions

θ0(p) =

∫

γ(p)

du

v3
, θ1(p) =

∫

γ(p)

udu

v3

and their ratio

ρ(p) = θ1(p)/θ0(p).

In these notations we have

δ = βρ+ h/3a = (1 − ρ)h/3a.

Then, in these variables the expressions D and D1 become

(3.8) D = −f2β
2

α6

h2

9a
θ2
0(ρ+ 1)(ρ− 1),

(3.9) D1 = −2
β

α3

h2

9a
θ0(1 − ρ).

Note that p|f=0
= 2 and p|f2=8h3/27a2 = −2. The following result from [5] is crucial

for the proof of the theorem.

Lemma 4 (Horozov, [5]). (i) The function ρ(p) is strictly monotonous

decreasing in the interval [−2, 2],

(i) ρ(−2) = 7/5, ρ(2) = 1.

P r o o f o f T h e o r e m 2. For D and D1 we have expressions (4.8) and (4.9)

D = −f2β
2

α6

h2

9a
θ2
0(ρ+ 1)(ρ− 1),

D1 = −2
β

α3

h2

9a
θ0(1 − ρ).
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Lemma 4 shows that D and D1 vanish on the boundary of the set Ur. This finishes the

proof of the theorems.

4. Remarks on the perturbations of another cubic cases. The results

of the Sections 2 and 3 can easily be expanded on the cases n = 3, −5/3, −7/3. Here

we list the keypoints of these cases.

4.1. n = 3. V (r) = ar4, a > 0, Ur =

{
(h, f) : h > 0, 0 < f2 <

4h3/2

3(3a)1/2

}
.

After a change of the variable x = r2, the algebraic curve is

y2 = 2hx− 2ax3 − f2.

Then

D = w2
0((h/3)δ − (f2/4)),D1 = (2/3)hw0 6= 0.

After putting the algebraic curve into the normal form we obtain

D = −
(3a)2

h2
θ2
0

(
ρ−

p

2

)
.

4.2. n = -5/3. V (r) = ar−2/3, a < 0,

Ur =
{
(h, f) : h < 0, 0 < f2 < −(2a/3)(2a/3h)2

}
. After a change of the variable x =

r2/3, the algebraic curve is

y2 = 2hx3 − 2ax2 − f2.

Then, if we put β = −(a/3h), α2 = hβ3

D = −54f2w2
0δ(δ + 2β)), D1 = aw0δ.

After putting the algebraic curve into the normal form we obtain

D = −54f2β
6

α6
θ2
0(ρ+ 1)(ρ− 1), D1 = a

β2

α3 θ0(ρ− 1).

4.3. n = -7/3. V (r) = ar−4/3, a < 0,

Ur =
{
(h, f) : h < 0, 0 ≤ f2 < −(4a/3)(a/3h)1/2

}
. After a change of the variable x =

r2/3, the algebraic curve is

y2 = 2hx3 − 2ax− f2.

Then, if we put β = −(a/3h)1/2, α2 = hβ3,

D = 45w2
0β

4(aδ + f23/4)), D1 = 2aw0 6= 0.
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After putting the algebraic curve into the normal form we obtain

D = 45a
β7

α6
θ2
0(ρ− p/2).

The proof of Theorem 1 (Theorem 2) proceeds the lines explained above.

PART B. QUARTIC CASES

5. Statement of the results for the quartic cases. As it is mentioned

above only the case n = −5/2 will be considered in details. For this case the integrals

of the motion are:

F = pϕ = f = const ,

(5.1) H =
p2

r

2
+
f2

2r2
+ ar−3/2 = h = const .

Similarly, as in Part A, Section 2 we introduce action variables

J1 = 2πf,

(5.2) J2 =

∫

γ2

prdr = 2

∫ r+

r
−

√
(2h− 2ar−3/2 − f2/r2)dr,

where r+ > r− are the two roots of the equation

h− ar−
3

2 −
f2

2r2
= 0.

After changing variables z = r1/2 we put

(5.3) y2 = 2hz4 − 2az − f2.

Denote the oval of the curve Γh,f = {(y, z) : y2 = 2hz4 − 2az − f2} by γ. Then,

ψ(h, f)
def
= J2 =

∫

γ

ydz

z
.

Here Ur =
{
f, h < 0, 0 ≤ f2 < −3a

(
2 3
√
a/(4h)

)}
.

Theorem 3. For (h, f) ∈ Ur the determinants (2.5) and (2.6) do not vanish.
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Now, using Lemma 1 and Lemma 2 from Part A, Section 2 and that ψh 6≡ 0 in

Ur, we shall prove instead of Theorem 3 equivalent to it

Theorem 4. For (h, f) ∈ Ur the expressions

D = ψhhψff − ψ2
hf ,

D1 = ψff

do not vanish.

At last, we express the entries of D (D1) as elliptic integrals. Using the same

arguments as in Part A we obtain

∂2ψ

∂h2
= −2

∫

γ

z7dz

y3
,

∂2ψ

∂h∂f
= 2f

∫

γ

z3dz

y3
,

∂2ψ

∂f2
= −

(∫

γ

dz

zy
+ f2

∫

γ

dz

zy3

)
.

6. Proof of the result for the quartic cases. First, we shall need the

functions

(6.1) wj =

∫

γ

zjdz

y3
, j = 0, 1.

Lemma 5. The determinant D has the following representation

D =
7a2

4h2
w0(2f

2w0 + 3aw1).

P r o o f. Obviously for the proof we need to express the integrals ψhh, ψhf , ψff

via w0 and w1. This may be done by a way similar to that in Lemma 3. So,

ψhh = (a/4h)(5f2w0 + 7aw1),

ψhf = (fa/2h)w0,

ψff = 3aw0,
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from where the representation for D is obtained.

Next, we bring the algebraic curve (5.3) into the normal form v2 = (a/2)u4 +

bu2 + 2ku + 2p, where a = ±1, b = ±2. Using that in our case b = 0, we bring our

curve into the following normal form

(6.2) v2 = −(1/2)u4 + 2u+ 2p

putting y = αv, z = βu, where β = 3

√
a

4h
, α2 = −a 3

√
a

4h
and p =

f2

(
2a 3

√
a
4h

) .

Note, that when (h, f) ∈ Ur, p ∈ (−3/4, 0]. Denote by

θj(p) =

∫

γ(p)

ujdu

v3
, j = 0, 1.

Then, the expressions D and D1 take the following forms

D =
7f2a2β2

2h2α6
θ0

(
θ0 +

3

4p
θ1

)
,

D1 = 3aβθ0/α
3.

Next, we shall express the integrals θ0 and θ1 (and consequently D and D1) via two

Abelian integrals which do not vanish when p ∈ (−3/4, 0]. In order to do this we shall

use the Picard-Fuchs equations for the algebraic curve (6.2), which are derived in [9].

Following the notations in [9], we put

Ij =

∫

γ(p)
vujdu, j = 0, 1, 2 . . .

It is obvious that θj = −I ′′j , j = 0, 1. (′ = d/dp)

The Picard-Fuchs equations for the algebraic curve (6.2 ) are:



I ′′0

I ′′2


 =

1

σ




−16p2 9

12p 16p2






I ′0

I ′2


 ,

where σ = 64p3 +27. Actually we need I ′′1 , so we add 4pI ′′1 +3I ′′2 = 0 (see [8, appendix])

to these equations. Then

(6.3) I ′′0 = (−16p2I ′0 + 9I ′2)/σ,

(6.4) I ′′1 = −3(3I ′0 + 4pI ′2)/σ.
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Using these equations the expressions D and D1 become

D =
7a3β3

4h2α6
I ′0I

′′

0 ,

D1 = −3aβI ′′0 /α
3.

Since I ′0 and I ′2 do not vanish when p ∈ (−3/4, 0] and I ′0 = T (I ′′0 = T ′) where T is the

period, the proof of the theorem is reduced to proving that the period T has no critical

points when p ∈ (−3/4, 0].

Lemma 6. T ′ 6= 0, when p ∈ (−3/4, 0].

P r o o f. The period function T (p) satisfies a second order Picard-Fuchs equation

[9]

σT ′′ + σ′T ′ + 28p T = 0

and x(p) = T ′(p)/T (p) satisfies a Riccati equation

(6.5) σ(x′ + x2) + σ′x+ 28p = 0.

We shall prove that x(p) 6= 0 when p ∈ (−3/4, 0]. It is easily obtained from [8] that

lim
p→−3/4

x(p) = 7/36 > 0. Suppose that there exist p0 ∈ (−3/4, 0) and x(p0) = 0. It is

clear from (6.5) that p0 is not a critical point with multiplicity and

x′(p0) = −28p0/(64p
3
0 + 27) > 0.

But this is a contradiction because for p ≤ p0 x′(p) must be ≤ 0 (fig. 3). Now , let

p0 = 0. From the equation (6.2) we obtain

T ′ = I ′′0 = I ′2/3|p0=0
6= 0.

This completes the proof of Lemma 6 and Theorem 4.
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Fig. 3. Possible behaviour of x(p)

7. Remark on the perturbation of another quartic case. The results

from the Sections 5 and 6 are valid also for the case n = 5 (V (r) = ar6, a > 0). Here

are the keypoints.

Ur = {f, h > 0, 0 ≤ f2 < 3h 3

√
h/(4a)/2}

D = 1
4w0(−f

2w0 + 3hw1/2).

D1 = −3hw0/4.

Then after putting the corresponding algebraic curve into the normal form, we obtain

D = − f2β2

4α6 θ0
(
θ0 + 3

4pθ1
)
,

D1 = −3hβθ0/4α
3.

Here, the Picard-Fuchs equations and Lemma 6 are applied.

Unfortunately, the condition (1.1) for the quartic cases n = −1/3 (a > 0) and

n = 3/2 (a < 0) cannot be shown by the present analysis.
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