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OPTIMIZATION OF DISCRETE-TIME, STOCHASTIC SYSTEMS∗

Nikolaos S. Papageorgiou

Communicated by A. L. Dontchev

Abstract. In this paper we study discrete-time, finite horizon stochastic systems
with multivalued dynamics and obtain a necessary and sufficient condition for
optimality using the dynamic programming method. Then we examine a nonlinear
stochastic discrete-time system with feedback control constraints and for it, we
derive a necessary and sufficient condition for optimality which we then use to
establish the existence of an optimal policy.

1. Introduction. In this paper we consider the problem of optimization of

discrete-time, probabilistic dynamical-systems, monitored by a multivalued equation.

Such systems stand in the interface of optimal control theory and mathematical eco-

nomics. In fact in the last section of the paper, we consider a discrete-time, finite

horizon, stochastic control system with nonlinear dynamics and feedback control con-

straints, and we derive for it necessary and sufficient conditions for optimality, using

techniques from the theory of dynamic programming. More precisely, through a non-

linear stochastic functional equation (Bellman’s equation), we establish these necessary

and sufficient conditions, under generally mild hypotheses on the data. We also use

them to obtain an optimal process (path).
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The study of such probabilistic discrete-time systems, was initiated by Morozan

[9]. A comprehensive introduction ot the subject, with special emphasis on various

stochastic economic models, can be found in the book of Arkin-Evstigneev [1].

2. Preliminaries. Let (Ω,Σ) be a measurable space and X a Polish space (i.e.

a complete separable, metrizable space). By Pf (X) (resp. Pk(X)) we will be denoting

the family of all nonempty closed (resp. compact) subsets of X. A multifunction

F : Ω → Pf (X) is said to be measurable if it satisfies one of the following three

equivalent statements:

(i) for every U ⊆ X open, F−(U) = {ω ∈ Ω : F (ω) ∩ U 6= Ø} ∈ Σ,

(ii) for every x ∈ X, ω → d(x, F (ω)) = inf{d(x, z) : z ∈ F (ω)} is measurable, where

d(·, ·) is a complete metric generating the topology of X,

(iii) there exist fn : Ω → X, n ≥ 1 measurable functions, s.t. for all ω ∈ Ω, F (ω) =

{fn(ω)}n≥1.

A multifunction G : Ω → 2X is said to be “graph measurable”, if GrG =

{(ω, x) ∈ Ω × X : x ∈ F (ω)} ∈ Σ × B(X), with B(X) being the Borel σ-field of X.

For a Pf (X)-valued multifunction, measurability implies graph measurability, while

the converse is true if there exists a σ-finite measure µ(·) defined on Σ, with respect

to which Σ is complete. For further details on the measurability of multifunctions, we

refer to the survey paper of Wagner [12].

Let µ(·) be a finite measure on Σ and assume that (Ω,Σ, µ) is a complete

measure space. Given a multifunction G : Ω → 2X \ {Ø}, by SG we will denote the

set of Σ-measurable selectors of G(·); i.e. SG = {g : Ω → X measurable s.t.g(ω) ∈

G(ω), ω ∈ Ω}. The next theorem originally due to Aumann (see for example Wagner

[12]), gives us conditions that guarantee the nonemptiness of SG. Recall that a Souslin

space, is a Hausdorff topological space X for which there exists a Polish space P and

a continuous map from P onto X. So a separable Banach space Z equipped with the

week topology (denoted by Zω), is clearly a Souslin space. Just let P be the space Z

endowed with the strong (norm) topology and consider the identity map from P onto

Zω. So a Souslin space is always separable, but need not be metrizable.

Theorem 2.1 (Aumann). If (Ω,Σ, µ) is a finite, complete probability space,

X a Souslin space and G : Ω → 2X \ {Ø} a graph measurable multifunction, then

SG 6= Ø.

Let Σ0 ⊆ Σ be a complete sub-σ-field of Σ, X a Polish space and f : Ω×X → R

an integrand such that f(·, ·) is Σ×B(X)-measurable, for every ω ∈ Ω, f(ω, ·) is upper
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semicontinuous (u.s.c) on X and there exists ϕ(·) a µ-integrable function such that

f(ω, x) ≤ ϕ(ω) µ-a.e. for all x ∈ X. The next result due to Klei [7], establishes the

existence and uniqueness of the conditional expectation of f(·, ·) with respect to Σ0.

Theorem 2.2 (Klei). If (Ω,Σ, µ), Σ0 and f(ω, x) are as above, then there

exists a unique integrand g : Ω × X → R which is Σ0 × B(X)-measurable, g(ω, ·) is

u.s.c. and for all u ∈ L0(Ω,Σ0;X) and B ∈ Σ0 we have
∫

B
f(ω, u(ω))dµ(ω) =

∫

B
g(ω, u(ω))dµ(ω).

Remark: We denote g(ω, x) by EΣ0f(ω, x). As always uniqueness should be

understood up to sets of measure zero in the ω-variable. It should be mentioned that

the above result of Klei extends earlier ones obtained by Dynkin-Evstigneev [5] and

Thibault [11].

Finally let Y , Z be Hausdorff topological spaces. A multifunction H : Y →

2Z \ {Ø} is said to be upper semicontinuous (u.s.c), if for all C ⊆ Z closed, H−(C) =

{y ∈ Y : H(y) ∩ C 6= Ø}. Recall (see for example, Berge [4]), that if H(·) has closed

values, then upper semicontinuity in the above sense implies that H(·) has a closed

graph; i.e. GrH = {(y, z) ∈ Y × Z : z ∈ H(y)} is closed in Y × Z. The converse is

true, if H(Y ) =
⋃

y∈Y

H(y) is compact in Z.

3. Multivalued stochastic systems. The mathematical setting is the follow-

ing: Let (Ω,Σ, µ) be a probability space TN = {0, 1, 2, . . . , N} is our finite, discrete-time

horizon and {Σk}
N
k=0 is a finite sequence of increasing complete sub-σ-fields of Σ, with

ΣN = Σ. Each sub-σ-field Σk is interpreted as the information about states that are

realized up to time k ∈ TN (i.e. the collection of all events prior to time instant k,

including k). Let {Xk}
N
k=0 be Polish spaces, representing the state space for each time

instant k ∈ TN . The mutlivalued, discrete-time, finite horizon system under consider-

ation, is the following:

(1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

Ω

N
∑

k=0

Lk(ω, xk(ω))dµ(ω) → sup = M

s.t. xk+1(ω) ∈ Fk+1(ω, xk(ω)) µ-a.e., k = 0, 1, 2, . . . , N

x0(ω) = v0(ω).

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

This general formulation incorporates, in particular, the models of a developing

economy, proposed by Gale (see for example Makarov-Rubinov [8] and Takayama [10]).
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In Gale’s model Xk = R
m
+ × R

m
+ ; i.e. the state space consists of pairs of nonnegative

m-dimensional vectors. Subsets G1, . . . , GN of R
m
+ ×R

m
+ representing the technological

constraints at each time instant k are given and Fk(x, y) is defined to be the collection

of all pairs (x′, y′) ∈ Gk such that x′ ≤ y. The pair (x, y) should be understood as

a production process, with x the input vector and y the output vector. So Gk is the

collection of all production processes that are technologically realizable at time k. Then

the dynamical inclusion zk ∈ Fk(ω, zk−1) describing an admissible program (path) of

our system (1), can be rewritten in the form (xk, yk) ∈ Gk, xk ≤ yk−1. As we already

mentioned above, the first relation reflects technological limitations, while the second

says that at each time instant k, the input can not exceed the output produced in k−1

(i.e. we can not live above our means). Also Lk(ω, x) represents the utility realized by

the input x.

The hypotheses on the data of (1) are the following:

H(F ): Fk : Ω × Xk−1 → 2Xk \ {Ø}, k = 1, 2, . . . , N is a multifunction s.t.

(a) (ω, x) → Fk(ω, x) is Σk × B(Xk−1) × B(Xk)-measurable and has
compact values (i.e. for each (ω, x) ∈ Ω × Xk−1, Fk(ω, x) ∈ Pk(Xk)),

(b) x → Fk(ω, x) is u.s.c. on Xk−1.
H(L): Lk : Ω × Xk → R, k = 1, 2, . . . , N is an integrand s.t.

(a) (ω, x) → Lk(ω, x) is Σk × B(Xk)-measurable,
(b) x → Lk(ω, x) is u.s.c. on Xk,
(c) there exists an integrable function ϕk(·) s.t.

Lk(ω, x) ≤ ϕk(x) µ-a.e. for all x ∈ Xk.

For economy in the notation, set Jk(x)=
∫

ΩLk(ω, x(ω))dµ(ω), x ∈ L0(Σk,Xk) =

{y : Ω → Xk,Σk−measurable} and Γk(z) = SFk(·,z(·)) = {y ∈ L0(Σk,Xk) : y(ω) ∈

Fk(ω, z(ω)), ω ∈ Ω} with z ∈ L0(Σk−1,Xk−1).

Inductively, we define the following “global” Bellman functions (dynamic pro-

gramming functions):

VN (x) = JN (x), x ∈ L0(ΣN ,XN )

and Vk−1(x) = sup [Jk−1(x) + Vk(y) : y ∈ Γk(x)] , k = 1, 2, . . . , N.

By a “feasible program” (path) of (1), we mean a finite sequence {xk}
N
k=0 s.t.

xk ∈ L0(Σk,Xk), x0 = v0 and xk+1(ω) ∈ Fk+1(ω, xk(ω)). An “optimal program”, is a

feasible program that maximizes the intertemporal criterion

∫

Ω

N
∑

k=0

Lk(ω, xk(ω))dµ(ω).

Using the previously defined global Bellman functions, we can have our first optimality

conditions for problem (1):

Proposition 3.1. If hypotheses H(F ) and H(L) hold, and v0 ∈ L0(Σ0,X0),
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then program {x0
k}

N
k=0 is optimal if and only if

Vk(x
0
k) = Jk(x

0
k) + Vk+1(x

0
k+1), k = 0, 1, . . . , N − 1.

P r o o f. ⇓: First we will establish the equality for k = N − 1. By definition we

have:

VN−1(x
0
N−1) = sup

[

JN−1(x
0
N−1) + VN (y) : y ∈ ΓN (x0

N−1)
]

= sup
[

JN−1(x
0
N−1) + JN (y) : y ∈ ΓN (x0

N−1)
]

.

Since by hypothesis program {x0
k}

N
k=0 is optimal, it is clear that the above

supremum is realized at y = x0
N . So we have established the validity of the optimaly

equation for k = N − 1.

Now suppose the equation holds for k = N − 1, . . . ,m + 1. Then by definition

we have:

Vm(x0
m) = sup

[

Jm(x0
m) + Vm+1(y) : y ∈ Γm+1(x

0
m)

]

.

Let ε > 0 and choose {yk}
N
k=m such that ym = x0

m, yk+1 ∈ Γk+1(yk) and

Vk(yk) −
ε

N − m
≤ Jk(yk) + Vk+1(yk+1), k = m,m + 1, . . . , N − 1.

Then we get

Vm(x0
m) −

(

ε

N − m

)

(N − m) ≤
N

∑

k=m

Jk(yk).

But since {x0
k}

N
k=0 is an optimal program, we have that

N
∑

k=m

Jk(yk) ≤
N

∑

k=m

Jk(x
0
k)

⇒ Vm(x0
m) − ε ≤

N
∑

k=m

Jk(x
0
k).

Because of the hypothesis, we have

N
∑

k=m

Jk(x
0
k) = Jm(x0

m) + Vm+1(x
0
m+1)

⇒ Vm(x0
m) − ε ≤ Jm(x0

m) + Vm+1(x
0
m+1).
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Since ε > 0 was arbitrary, let ε ↓ 0, to get

Vm(x0
m) ≤ Jm(x0

m) + Vm+1(x
0
m+1).

The opposite inequality is always true from the definitions of the global Bell-

mann functions. Therefore

Vm(x0
m) = Jm(x0

m) + Vm+1(x
0
m+1)

and so by induction, we have established the validity of the optimality equation for all

k = 0, 1, . . . , N .

⇑: Let {wk}
N
k=0 be a feasible program. From the optimality equation, we have:

V0(x
0
0) =

N
∑

k=0

Jk(x
0
k).

But by the definition, V0(x
0
0) = sup

[

J0(x
0
0) + V1(y) : y ∈ Γ1(x

0
0)

]

≥ J0(x
0
0) + V1(w1) = J0(v0) + V1(w1)

≥ J0(v0) + J1(w1) + V2(w2)

≥ . . . ≥
N

∑

k=0

Jk(wk).

Since {wk}
N
k=0 was an arbitrary feasible program, we conclude that {x0

k}
N
k=0 is

indeed optimal.

Q.E.D.

Now we define the pointwise Bellman functions as follows:

vN (ω, x) = LN (ω, x)

and vk(ω, x) = EΣk sup[Lk(ω, x) + vk+1(ω, y) : y ∈ Fk+1(ω, x), k = 0, 1, 2, . . . , N − 1].

First we will show that these pointwise Bellman functions are well defined.

To this end, let hn(ω, x) = vN (ω, x) and hk(ω, x) = sup[Lk(ω, x) + vk+1(ω, y) : y ∈

Fk+1(ω, x)].

Proposition 3.2. If hypoteses H(F ) and H(L) hold, then (ω, x) → hk(ω, x)

is Σk+1 × B(Xk)-measurable, k = 0, 1, . . . , N , with

ΣN+1 = ΣN = Σ and x → hk(ω, x) is u.s.c.
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P r o o f. First note that by a simple induction argument and by using Theo-

rem 2.1 of this paper, as well as Theorem 2, p. 122 of Berge [4], we can have that for

all k = 0, 1, 2, . . . , N and ω ∈ Ω, x → hk(ω, x) is u.s.c.

Next note that because of hypothesis H(L), for k = N , hN = vN = LN is

ΣN × B(XN )-measurable. Then assume that we have established the measurability

of hk(ω, x) for k = N,N − 1, . . . ,m + 1. Set ηk(ω, x, y) = Lk(ω, x) + vk+1(ω, y).

Then since by the induction hypotesis, hk+1(ω, y) is Σk+2 × B(Xk+1)-measurable and

we know that hk+1(ω, ·) is u.s.c., we deduce from Theorem 2.2, that vk+1(ω, y) is

Σk+1×B(Xk+1)-measurable and vk+1(ω, ·) is u.s.c. Thus, ηk(ω, x, y) is Σk+1×B(Xk)×

B(Xk+1)-measurable and ηk(ω, ·, ·) is u.s.c. Invoking Lemma 2 of Balder [3], we can

find ηn
k : Ω × Xk × Xk+1 → R integrands s.t. ηn

k (·, x, y) is Σk+1-measurable, ηn
k (ω, ·, ·)

is continuous and ηn
k (ω, x, y) ↓ ηk(ω, x, y) as n → ∞.

Set hn
k(ω, x) = sup[ηn

k (ω, x, y) : y ∈ Fk+1(ω, x)]. Because of hypothesis H(F ) (a),

we can find ym : Ω×Xk → Xk+1, m ≥ 1 functions which are (Σk+1×B(Xk), B(Xk+1))-

measurable s.t. {ym(ω, x)}m≥1 = Fk+1(ω, x) (see Section 2). So

hn
k (ω, x) = sup

m≥1
ηn

k (ω, x, ym(ω, x)).

Since ηn
k (ω, x, y) is jointly measurable (being measurable in ω, continuous in

(x, y)), we have that (ω, x) → ηn
k (ω, x, ym(ω.x)) is Σk+1×B(Xk)–measurable for all m ≥

1 ⇒ (ω, x) → hn
k(ω, x) is Σk+1 ×B(Xk)–measurable. Furthermore from Theorem 1.44,

p. 101 of Attouch [2], we have

hn
k(ω, z) ↓ hk(ω, x) for all (ω, x) ∈ Ω × Xk as n → ∞,

⇒ hk(ω, x) is Σk+1 × B(Xk)-measurable.

So by induction we have established the claim of this proposition.

Q.E.D.

Therefore invoking Theorem 2.2, we deduce that vk(ω, x) is a well-defined Σk ×

B(Xk)-measurable function and for all ω ∈ Ω, x → vk(ω, x) is u.s.c.

The next result will be needed in the proof of the main theorem in this section.

Proposition 3.3. If hypotheses H(E) and H(L) hold and x(·) ∈ L0(Σk,Xk),

then Vk(x) =
∫

Ω hk(ω, x(ω))dµ(ω).

P r o o f. We will establish the equality by induction.

For k = N , we have
∫

Ω hN (ω, x(ω))dµ(ω) =
∫

Ω LN (ω, x(ω))dµ(ω) = JN (x) =

VN (x).
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Suppose we have established the claim of the proposition for k = N , N −

1, . . . ,m + 1. Then we have

∫

Ω
hm(ω, x(ω))dµ(ω) =

∫

Ω
sup[Lm(ω, x) + hm+1(ω, y) : y ∈ Fm+1(ω, x)]dµ(ω).

Using Theorem 2.2 of Hiai-Umegaki [6], we get

∫

Ω
sup[Lm(ω, x) + hm+1(ω, y) : y ∈ Fm+1(ω, x)]dµ(ω)

= sup

[
∫

Ω
(Lm(ω, x(ω)) + hm+1(ω, y(ω)))dµ(ω) : y ∈ SFm+1(·,x(·))

]

⇒

∫

Ω
hm(ω, x(ω))dµ(ω) = sup

[

Jm(x) + Vm+1(y) : y ∈ SFm+1(·,x(·))

]

= Vm(x).

So by induction, we have proved the claim of the proposition.

Q.E.D.

Now we are ready to state and prove our main result of this section, which gives

us a pointwise necessary and sufficient condition for optimality of a feasible program.

This condition is a stochastic version of Bellman’s dynamic programming functional

equation.

Theorem 3.1. If hypotheses H(F ) and H(L) hold, v0 ∈ L0(Σ0,X0) and

{xk}
N
k=0 is a feasible program, then program {xk}

N
k=0 is optimal for (1) if and only if

vk(ω, x0
k(ω)) = Lk(ω, x0

k(ω)) + EΣkvk+1(ω, x0
k+1(ω)) µ-a.e., k = 0, 1, . . . , N − 1.

P r o o f. ⇓: From Proposition 3.1, we have that

Vk(x
0
k) = Jk(x

0
k) + Vk+1(x

0
k+1), k = 0, 1, . . . , N − 1.

Using Proposition 3.3, we can write

Vk+1(x
0
k+1) =

∫

Ω
hk+1(ω, x0

k+1(ω))dµ(ω) =

∫

Ω
EΣk+1hk+1(ω, x0

k+1(ω))dµ(ω)

since by definition x0
k+1 ∈ L0(Σk+1,Xk+1) (see Theorem 2.2). But then from the

definition of the pointwise Bellman functions, we have

∫

Ω
EΣk+1hk+1(ω, x0

k+1(ω))dµ(ω) =

∫

Ω
vk+1(ω, x0

k+1(ω))dµ(ω)
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⇒ Vk+1(x
0
k+1) =

∫

Ω
vk+1(ω, x0

k+1(ω))dµ(ω).

Therefore using Theorem 2.2, we have

0 =

∫

Ω

[

hk(ω, x0
k(ω)) − Lk(ω, x0

k(ω)) − vk+1(ω, x0
k+1(ω))

]

dµ(ω)

=

∫

Ω
(EΣkhk(ω, x0

k(ω)) − EΣkLk(ω, x0
k(ω)) − EΣkvk+1(ω, x0

k+1(ω)))dµ(ω)

=

∫

Ω
EΣk(hk(ω, x0

k(ω)) − Lk(ω, x0
k(ω)) − vk+1(ω, x0

k+1(ω)))dµ(ω).

But by definition we have

hk(ω, x0
k(ω)) − Lk(ω, x0

k(ω)) − vk+1(ω, x0
k+1(ω)) ≥ 0 µ-a.e.

⇒ EΣk(hk(ω, x0
k(ω)) − Lk(ω, x0

k(ω)) − vk+1(ω, x0
k+1(ω))) = 0 µ-a.e.

⇒ EΣkhk(ω, x0
k(ω)) = vk(ω, x0

k(ω)) = Lk(ω, x0
k(ω)) + EΣkvk+1(ω, x0

k+1(ω)) µ-a.e.

for k = 0, 1, . . . , N − 1.

⇑: From the Bellman equation we have

∫

Ω
vk(ω, x0

k(ω))dµ(ω) =

∫

Ω
Lk(ω, x0

k(ω))dµ(ω)

=

∫

Ω
vk+1(ω, x0

k+1(ω))dµ(ω) k = 0, 1, . . . , N − 1.

But note that from the definition of vk(ω, x) and using Proposition 3.2, we have

∫

Ω
vk(ω, x0

k(ω))dµ(ω) =

∫

Ω
EΣkhk(ω, x0

k(ω))dµ(ω) =

∫

Ω
hk(ω, x0

k(ω))dµ(ω) = Vk(x
0
k)

and
∫

Ω
vk+1(ω, x0

k+1(ω))dµ(ω) =

∫

Ω
EΣk+1hk+1(ω, x0

k+1(ω))dµ(ω)

=

∫

Ω
hk+1(ω, x0

k+1(ω))dµ(ω) = Vk+1(x
0
k+1).

So Vk(x
0
k) = Jk(x

0
k)+Vk+1(x

0
k+1) for k = 0, 1, 2, . . . , N−1, which by Proposition

3.1 implies that the feasible program {x0
k}

N
k=0 is indeed optimal.

Q.E.D.
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4. Discrete-time, stochastic optimal control. In this section we turn our

attention to a discrete-time stochastic optimal control system, with feedback control

constraints. Using Bellman functions, we derive a necessary and sufficient condition

for optimality of a feasible program, which is then used to establish the existence of an

optimal program.

Let (Ω,Σ, µ), {Σk}
N
k=0 and {Xk}

N
k=0 be as in Section 3. Also, we are given a

collection of Polish spaces {Yk}
N
k=0 modelling the control space at each time instant k.

The problem under consideration is the following:

(2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

Ω

N
∑

k=0

Lk(ω, xk(ω), uk(ω))dµ(ω) → sup = M ′

s.t. xk+1(ω) = fk(ω, xk(ω), uk(ω)) µ-a.e.

x0(ω) = γ0(ω), uk(ω) ∈ Uk(ω, xk(ω)) µ-a.e.

By a feasible “state-control” policy we mean two sequences {xk}
N
k=0 and {uk}

N
k=0

such that xk ∈ L0(Σk,Xk) and uk ∈ L0(Σk,Xk) and they satisfy the constraints of prob-

lem (2) above. An optimal policy, is a feasible policy that maximizes the intertemporal

integral criterion.

We will need the following hypotheses on the data of (2):

H(f): fk : Ω × Xk × Yk → Xk+1, k = 0, 1, 2, . . . , N − 1 are maps s.t.

(1) ω → fk(ω, x, y) is Σk-measurable,

(2) (x, y) → fk(ω, x, y) is continuous.

H(U): Uk : Ω × Xk → Pk(Yk), k = 0, 1, . . . , N , are multifunctions s.t.

(1) (ω, x) → Uk(ω, x) is (Σk × B(Xk), B(Yk))-measurable,

(2) x → Uk(ω, x) is u.s.c.

H(L)′: Lk : Ω × Xk × Yk → R, k = 0, 1, . . . , N are integrands s.t.

(1) (ω, x, y) → Lk(ω, x, y) is Σk × B(Xk) × B(Yk)-measurable,

(2) (x, y) → Lk(ω, x, y) is u.s.c.,

(3) Lk(ω, x, y) ≤ ϕ(ω) µ-a.e. for all x ∈ Xk, u ∈ Uk(ω, x) and with ϕk(·) an

integrable Σk-measurable function.

Define inductively the following pointwise Bellman functions:

vN (ω, x) = sup [LN (ω, x, u) : u ∈ UN (ω, y)]
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and vk(ω, x) = max
[

Lk(ω, x, u) + EΣkvk+1(ω, fk(ω, x, u)) : u ∈ Uk(ω, x)
]

.

First we will check that these are well-defined functions.

Proposition 4.1. If hypotheses H(f), H(U) and H(L)′ hold, then for every

k = 0, 1, . . . , N , (ω, x) → vk(ω, x) is Σk ×B(Xk)-measurable and x → vk(ω, x) is u.s.c.

P r o o f. For k = N , we have by definition:

vN (ω, x) = sup [LN (ω, x, u) : u ∈ UN (ω, x)] .

Using Lemma 2.2 of Balder [3], we can find Ln
N : Ω×XN×YN → R Caratheodory

integrands (i.e. ω → Ln
N (ω, x, y) is ΣN -measurable, (x, y) → Ln

N (ω, x, y) is continuous;

hence (ω, x, y) → Ln
N (ω, x, y) is jointly measurable, see for example Arkin-Evstigneev

[1] s.t. Ln
N (ω, x, y) ↓ LN (ω, x, y). Also let ul : Ω × XN → YN , l ≥ 1, be measurable

functions s.t. UN (ω, x) = {ul(ω, x)}l≥1. The existence of this sequence is guaranteed by

hypothesis H(U) (1) (see Section 2). Then vn
N (ω, x) = sup [Ln

N (ω, x, u) : u ∈ UN (ω, x)]

= supl≥1 Ln
N (ω, x, ul(ω, x)) ⇒ (ω, x) → vn

N (ω, x) is ΣN × B(XN )-measurable. Because

UN (ω, x) ∈ Pk(YN ) from Theorem 1.44, p. 101 of Attouch [2], we have that vn
N (ω, x) ↓

vN (ω, x) as n → ∞ ⇒ (ω, x) → vN (ω, x) is ΣN × B(XN )-measurable. Also from

Theorem 2, p. 122 of Berge [4], we have that x → vN (ω, x) is u.s.c.

Next, assume that we have established the claim of the proposition for k =

N,N − 1, . . . ,m + 1. We have:

vm(ω, x) = sup
[

Lm(ω, x, u) + EΣmvm+1(ω, fm(ω, x, u)) : u ∈ Um(ω, x)
]

.

From the induction hypothesis and Theorem 2.2, we know that

(ω, x, u) → EΣmvm+1(ω, fm(ω, x, u)) is Σm × B(Xm) × B(Ym)-measurable

and (x, u) → EΣmvm+1(ω, fm(ω, x, u)) is u.s.c. So as above, by approximating (ω, x, u)

→ Lm(ω, x, u) + EΣmvm+1(ω, fm(ω, x, u)) with Caratheodory integrands, we can get

that (ω, x) → vm(ω, x) is Σm × B(Xm)-measurable and x → vm(ω, x) is u.s.c. So by

induction we have proved the proposition.

Q.E.D.

Now we can state and prove a necessary and sufficient condition for optimality

in (2)

Theorem 4.1. If hypotheses H(f), H(U), H(L)′ hold, γ0 ∈ L0(Σ0,X0)

and
(

{x0
k}

N
k=0, {u

0
k}

N
k=0

)

is a feasible state-control policy, then
(

{x0
k}

N
k=0, {u

0
k}

N
k=0

)

is
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an optimal policy if and only if

vk(ω, x0
k(ω)) = Lk(ω, x0

k(ω), u0
k(ω)) + EΣkvk+1(ω, x0

k+1(ω)) µ-a.e.

P r o o f. ⇓: Again our proof proceeds by induction.

For k = N , by definition we have

vN (ω, x0
N (ω)) = sup

[

LN (ω, x0
N (ω), u) : u ∈ UN (ω, x0

N (ω))
]

.

We claim that for µ-almost all ω ∈ Ω, u0
N (ω) realizes this supremum. Suppose

not. Then there exists A ∈ ΣN = Σ, µ(A) > 0 such that

LN (ω, x0
N (ω), u0

N (ω)) < vN (ω, x0
N (ω)) for ω ∈ A.

Let H : A → 2YN \ {Ø} be defined by

H(ω) = {u ∈ YN : LN (ω, x0
N (ω), u) = vN (ω, x0

N (ω)), u ∈ UN (ω, x0
N (ω))}.

From hypothesis H(U) (1), we know that Gr UN (·, x0
N (·)) ∈ ΣN ×B(YN ), while

from hypothesis H(L)′ and Proposition 4.1 above, we know that

(ω, u) → LN (ω, x0
N (ω), u) − vN (ω, x0

N (ω)) = θN (ω, u)

is ΣN × B(YN )-measurable. Therefore

Gr H = {(ω, u) ∈ A × YN : θN (ω, u) = 0} ∩ Gr UN (·, x0
N (·)) ∈ (ΣN ∩ A) × B(YN ).

Apply Aumann’s selection theorem (see Theorem 2.1 in this paper), to get

w : A → Y a (ΣN ∩ A)-measurable function s.t. w(ω) ∈ H(ω) for all ω ∈ A. Set

u0
N = χAcu0

N +χAw and u0
k = u0

k, k = 0, 1, . . . , N−1. Clearly then
(

{(x0
k}

N
k=0, {u

0
k}

N
k=0

)

is feasible and
N

∑

k=0

Jk(x
0
k, u

0
k) <

N
∑

k=0

Jk(x
0
k, u

0
k)

where as in Section 3, Jk(x, y) =
∫

Ω Lk(ω, x(ω), y(ω))dµ(ω). But then this last inequality

contradicts the optimality of
(

{(x0
k}

N
k=0, {u

0
k}

N
k=0

)

. So our claim follows.

Now suppose we have proved the validity of the optimality equation for k =

N,N − 1, . . . ,m + 1. We have:

vm(ω, x0
m(ω)) =
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sup
[

Lm(ω, x0
m(ω), u) + EΣmvm+1(ω, fm(ω, x0

m(ω), u)) : u ∈ Um(ω, x0
m(ω))

]

.

Let w ∈ SUm(·,x0
m(·)) and set ym+1(ω) = fm(ω, x0

m(ω), w(ω)). Then via straight-

forward applications of Aumann’s selection theorem as above, we can produce wm+k ∈

SUm+k(·,ym+k(·)) s.t. ym+k(ω) = fm+k−1(ω, ym+k−1(ω), wm+k−1(ω)) and

Lm+k(ω, ym+k(ω), wm+k(ω)) + EΣm+kvm+k+1(ω, fm+k(ω, x0
m+k(ω), wm+k(ω)))

= sup[Lm+k(ω, ym+k(ω, z) + EΣm+kvm+k+1(ω, fm+k(ω, x0
m+k(ω), z)) :

z ∈ Um+k(ω, ym+k(ω))]

for k = 1, 2, . . . , N − m − 1, while

yN(ω) = fN−1(ω, yN−1(ω), wN−1(ω)) and wN ∈ SUN (·,yN (·)) is such that

LN (ω, yN (ω), wN (ω)) = sup [LN (ω, yN (ω), u) : u ∈ UN (ω, yN (ω))] .

Then define the following feasible policy:

zk =

{

x0
k k = 0, 1, . . . ,m

yk k = m + 1, . . . , N
and hk =











uk k = 0, 1, . . . ,m − 1
w k = m

wk k = m + 1, . . . , N.

From the optimality of the policy
(

{(x0
k}

N
k=0, {u

0
k}

N
k=0

)

, we have

N
∑

k=m

Jk(zk, hk) ≤
N

∑

k=m

Jk(x
0
k, u

0
k).

Using the induction hypothesis, we get

∫

Ω

[

Lm(ω, x0
m(ω), w(ω)) + vm+1(ω, zm+1(ω))

]

dµ(ω)

≤

∫

Ω

[

Lm(ω, x0
m(ω), u0

m(ω)) + vm+1(ω, x0
m+1(ω))

]

dµ(ω).

Since w ∈ SUm(·,x0
m(·)) was arbitrarily, using Theorem 2.2 of Hiai-Umegaki [6],

we get

∫

Ω
sup

[

Lm(ω, x0
m(ω), w) + EΣmvm+1(ω, x0

m+1(ω)) : u ∈ Um(ω, x0
m(ω))

]

dµ(ω)

=

∫

Ω

[

Lm(ω, x0
m(ω), u0

m(ω)) + EΣmvm+1(ω, x0
m+1(ω))

]

dµ(ω)
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⇒ sup
[

Lm(ω, x0
m(ω), w) + EΣmvm+1(ω, x0

m+1(ω)) : w ∈ Um(ω, x0
m(ω))

]

= Lm(ω, x0
m(ω), u0

m(ω)) + EΣmvm+1(ω, x0
m+1(ω)) µ-a.e.

So by induction, we have proved the necessity of the optimality equation.

⇑: Let
(

{yk}
N
k=0, {wk}

N
k=0

)

be a feasible policy. Then by definition

Lk(ω, yk(ω), wk(ω)) + EΣkvk+1(ω, yk+1(ω)) ≤ vk(ω, yk(ω)), k = 0, 1, . . . , N − 1.

Successive applications of this inequality give us

N
∑

k=0

Jk(yk, wk) ≤

∫

Ω
v0(ω, γ0(ω))dµ(ω).

On the other hand by hypothesis, we have

Lk(ω, x0
k(ω), u0

k(ω)) + EΣkvk+1(ω, x0
k+1(ω)) = vk(ω, x0

k(ω)), k = 0, 1, . . . , N − 1.

Successive applications of this equality give us

N
∑

k=0

Jk(x
0
k, u

0
k) =

∫

Ω
v0(ω, γ0(ω))dµ(ω)

⇒
N

∑

k=0

Jk(yk, wk) ≤
N

∑

k=0

Jk(x0
k, u

0
k)

⇒
(

{x0
k}

N
k=0, {u

0
k}

N
k=0

)

is indeed an optimal feasible policy.

Q.E.D.

By solving the optimization problems in the necessary and sufficient condition

of Theorem 4.1, we can prodice step-by-step an optimal policy for problem (2).

Theorem 4.2. If hypotheses H(f), H(U), H(L)′ hold and v0 ∈ L0(Σ0,X0),

then there exists an optimal policy
(

{x0
k}

N
k=0, {u

0
k}

N
k=0

)

for problem (2).

P r o o f. Consider the following optimization problem

η0(ω) = sup
[

L0(ω, γ0(ω), u) + EΣ0v1(ω, f0(ω, γ0(ω), u)) : u ∈ U0(ω, γ0(ω))
]

.

Using Proposition 4.1 and Theorem 2.2, we see that (ω, u) → L0(ω, γ0(ω), u) +

EΣ0v1(ω, f0(ω, γ0(ω), u)) is jointly measurable and u.s.c. in u. So by Weierstrass the-

orem and as before via Aumann’s selection theorem, we can find u0
0 ∈ SU0(·,γ0(·)) such

that

L0(ω, γ0(ω), u0
0(ω)) + EΣ0v1(ω, f0(ω, γ0(ω), u0

0(ω))) = η0(ω).
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Set x0
1(ω) = f0(ω, γ0(ω), u0

0(ω)) and consider the next step optimization problem

η1(ω) = sup
[

L1(ω, x0
1(ω), u) + EΣ1v2(ω, f1(ω, x0

1(ω), u)) : u ∈ U1(ω, x0
1(ω))

]

.

With the same technique as above, we can produce u0
1 ∈ SU1(·,x0

1
(·)) such that

η1(ω) = L1(ω, x1
0(ω), u0

1(ω)) + EΣ1v2(ω, f1(ω, x0
1(ω), u0

1(ω))) µ-a.e.

Set x0
2(ω) = f1(ω, x0

1(ω), u0
1(ω)) and continue constructing this way two sepuences

{x0
k}

N
k=0, {u

0
k}

N
k=0. Then from Theorem 4.1., we conclude that

(

{x0
k}

N
k=0, {u

0
k}

N
k=0

)

is

an optimal feasible policy for problem (2).

Q.E.D.

RE FERENC ES

[1] V. Arkin and I. Evstigneev. Stochastic Models of Control and Economic Dy-

namics. Academic Press, London, 1987.

[2] H. Attouch. Variational Convergence for Fanctions and Operators. Pitman,

London, 1984.

[3] E. Balder. Lower semicontinuity of integral functionals with nonconvex inte-

grands by relaxation-compactification. SIAM J. Control Optim., 19 (1981), 533-

541.

[4] C. Berge. Espaces Topologiques et Fonctions Multivoques. Dunod, Paris, 1965.

[5] E. Dynkin and I. Evstigneev. Regular conditional expectations of correspon-

dences. Theory Probab. Appl., 21, (1976), 325-338.

[6] F. Hiai and H. Umegaki. Integrals, conditional expectations and martingales

of multivalued functions. J. Multivariate Anal., 7 (1977), 149-182.
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