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AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th

ROOT

Slobodan Lakić

Communicated by R. Van Keer

In this paper we give an iterative method to compute the principal n-th root
and the principal inverse n-th root of a given matrix. As we shall show this
method is locally convergent. This method is analyzed and its numerical stability
is investigated.

1. Introduction. Computation methods for the n-th root of some matrices

have been proposed in [1], [2], [3], etc. In Section 2 an iterative method with high

convergence rates is developed. In Section 3 we shall show that this method is locally

stable. In Section 4 we illustrate the performance of the method by numerical examples.

Let a = reit ∈ C, where r, t ∈ R and r ≥ 0, t ∈ (−π, π].

Definition 1.1. The principal n-th root of a is defined as a1/n = r1/neit/n,

where the number r1/n is the unique real and non-negative n-th root of r.

Let A ∈ C
m,m, σ(A) = {ai, i = 1, . . . ,m}, ai 6= 0, where ai are the eigenvalues

of A.

Definition 1.2. The principal inverse n-th root of A is defined as X =

A−1/n ∈ C
m,m and AXn = I, each eigenvalue of A−1/n is the principal n-th root of

each 1/ai.
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Definition 1.3. The principal n-th root of A is defined as X = A1/n ∈ C
m,m

and Xn = A, each eigenvalue of A1/n is the principal n-th root of each ai.

2. Computation of A
1/k and A

−1/k.

Theorem 2.1. Let fk(z) = (1− z)−1/k, where (1− z)1/k is the principal k-th

root of 1 − z, k ∈ N, k ≥ 2, z ∈ C, j ∈ N, Rj−1(z) =
j−1
∑

i=0
biz

i, bi = f
(i)
k (0)/i!. Then it

holds

(2.1) 1 − (1 − z)Rk
j−1(z) = zj

(k−1)(j−1)
∑

i=0

ci,kz
i

for some positive constants ci,k = ci,k(k, j),

(2.2) i = 0, . . . , (k − 1)(j − 1) and

(k−1)(j−1)
∑

i=0

ci,k = 1.

P r o o f. By mathematical induction for j = 1

1 − (1 − z)Rk
j−1(z) = 1 − (1 − z) = z = zc0

where c0 = 1.

We assume that (2.1) holds for k ≥ 2. Then

1 − (1 − z)Rk
j (z) = 1 − (1 − z)(Rj−1(z) + bjz

j)k

= 1 − (1 − z)
k
∑

m=0

(

k

m

)

Rm
j−1(z)bk−m

j z(k−m)j

= 1 − (1 − z)Rk
j−1(z) − (1 − z)bk

j z
kj − k(1 − z)bk−1

j z(k−1)jRj−1(z)

+
k−1
∑

m=2

(

k

m

)

bk−m
j z(k−m)j



−1 + zj
(m−1)(j−1)

∑

i=0

ci,mzi





= −zj
k−1
∑

m=0

(

k

m

)

bk−m
j z(k−m−1)j − zjkbk−1

j

j−1
∑

m=1

bmz(k−2)j+m

+zj



bk
j z

1+j(k−1) + kb
1+j(k−2)
j Rj−1(z) +

k
∑

m=2

(

k

m

)

bk−m
j z(k−m)j

(m−1)(j−1)
∑

i=0

ci,mzi





= zj

[

bk
j z

1+j(k−1) + bk−1
j z(k−1)j(kbj−1 − bj)
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+kbk−1
j

j−1
∑

i=1

(bi−1 − bi)z
i+j(k−2) +

k−1
∑

m=2

bk−m
j zj(k−m)

((

k

m

)

c0,m −

(

k

m − 1

)

bj

)

+(c0,k − kbj) +
k
∑

m=2

(

k

m

)

bk−m
j zj(k−m)

(m−1)(j−1)
∑

i=1

ci,mzi

]

Now we prove

(2.3) c0,m =
mf

(j)
m (0)

j!
.

From (2.1) it follows that

(2.4) R
(j)
j−1(z) = (hm(z)fm(z))(j)

where hm(z) = gm(T (z)), gm(T ) = T 1/m and T (z) = 1 − zj
(m−1)(j−1)

∑

i=0
ci,mzi. From

(2.4) it follows that

0 = f (j)
m (z) +

j
∑

i=1

(

j

i

)

h(i)
m (z)f (j−i)

m (z).

Since

h(i)
m (z) =

∑

n1,...,ni

i!

n1!n2! . . . ni!
g(s)
m (T )

i
∏

k=1

(

T (k)(z)

k!

)nk

,

s = n1 + n2 + . . . + ni,

where n1, . . . , ni ≥ 0 are the integer solutions of the equation

n1 + 2n2 + · · · + ini = i,

and since T (i)(0) = 0 for 1 ≤ i ≤ j − 1, we have h
(i)
m (0) = 0 for 1 ≤ i ≤ j − 1, and

finally h
(j)
m (0) = g′m(1)T (j)(0). Now 0 = f (j)

m (0) −
j!c0,m

m
i.e. (2.3).

Since kbj−1 − bj =

(k − 1)(kj + 1)
j−1
∏

i=0
((i − 1)k + 1)

j!kj
≥ 0 for k ∈ N,

bi−1 − bi =
k − 1

i!ki
≥ 0 for 1 ≤ i ≤ j − 1 and k ∈ N,

(

k

m

)

c0,m −

(

k

m − 1

)

bj =
k!

j!(m − 1)!(k − m)!











j−i
∏

i=1

(

1
m + i

)

m
−

j−i
∏

i=1

(

1
k + i

)

k(k − m + 1)











> 0
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for k > m, and c0,k − kb = 0 we have 1 − (1 − z)Rk
j (z) = zj+1

(k−1)j
∑

i=0
ciz

i where

c0, . . . c(k−1)j are the positive constants. Setting z = 1 gives (2.2). �

Theorem 2.2. Let w be a complex number such that w 6= 0. We define the

sequence {zn} by

(2.5) zn+1 = zn

j−1
∑

i=0

bi(1 − wzk
n)i

where bi, k are as in Theorem 2.1, j ∈ N, j ≥ 2 and |1 − wzk
0 | < 1. Then

(2.6) |1 − wzk
n| ≤ |1 − wzk

0 |
jn

and

(2.7) lim
n→∞

zn =
1

w1/k

where w1/k is the k-th principal root of w.

P r o o f. Using Theorem 2.1 we have

1 − wzk
1 = (1 − wzk

0 )j
(k−1)(j−1)
∑

i=0

ci,k(1 − wzk
0 )i

and |1 − wzk
1 | ≤ |1 − wzk

0 |
j .

Repeating this argument we have (2.6).

From (2.6) it holds lim
n→∞

|1 − wzk
n| = 0 i.e. (2.7). �

For our analysis we assume that A is diagonalizable, that is there exists a

nonsingular matrix V such that

(2.8) V −1AV = D

where D=diag{a1, . . . , am} and a1, . . . , am are the eigenvalues of A.

We define the sequences {Xn} and {Sn} as follows

(I)































Xn+1 = Xn

j−1
∑

i=0

bi(I − Sn)i X0 ∈ C
n,n,

Sn+1 = Sn





j−1
∑

i=0

bi(I − Sn)i





k

, S0 = AXk
0 ,
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where X0 is a function of A, and j, k, bi are as in Theorem 2.2.

Theorem 2.3. Let A ∈ C
m,m be nonsingular and diagonalizable.

Let {Xn}, {Sn} be the sequences defined by (I) and

(2.9) ‖I − S0‖ < 1

Then lim
n→∞

Xn = A−1/k, lim
n→∞

Sn = I, ‖I − AXk
n‖ = O(‖I − AXk

n−1‖
j), where A−1/k is

the principal inverse k-th root of A.

P r o o f. Let

(2.10) Ln = V −1XnV, Hn = V −1SnV.

Now

(2.11)































Ln+1 = Ln +
j−1
∑

i=0

bi(I − Hn)i, L0 = V −1X0V

Hn+1 = Hn





j−1
∑

i=0

bi(I − Sn)i





k

, H0 = DLk
0.

From the equations (2.11) it follows that Ln and Hn are diagonal matrices. Let

Ln = diag {l
(n)
1 , . . . , l(n)

m }, Hn = diag {h
(n)
1 , . . . , h(n)

m }.

Equation (2.11) is equivalent to m sequence of equations.

(2.12)































l
(n+1)
i = l

(n)
i

j−1
∑

m=0

bm(1 − h
(n)
i )m, l

(0)
i ∈ C,

h
(n+1)
i = h

(n)
i





j−1
∑

m=0

bm(1 − h
(n)
i )m





k

, h
(0)
i = ail

(0)
i .

From (2.12) one can show that

(2.13) l
(n+1)
i = l

(n)
i

j−1
∑

m=0

bm

(

1 − ai(l
(n)
i )k

)m
, l

(0)
i ∈ C.

Since the matrix I − AXk
0 is diagonalizable, its matrix norm satisfies

‖I − AXk
0 ‖ = ρ(I − AXk

0 ) = ρ(I − DLk
0) = ‖I − DLk

0‖.
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So we have

(2.14) ‖I − DLk
0‖ < 1.

From (2.14) it follows that

(2.15) |1 − ai(l
(0)
i )k| < 1, i = 1, . . . ,m.

From (2.13) and (2.15) using Theorem 2.2 it follows that

(2.16) lim
n→∞

l
(n)
i = a

−1/k
i , i = 1, . . . ,m.

From (2.12) and (2.16) it follows that

lim
n→∞

h
(n)
i = 1, i = 1, . . . , n.

So,

(2.17) lim
n→∞

Ln = D−1/k, lim
n→∞

Hn = I.

From (2.17), (2.10) and (2.8) it follows

lim
n→∞

Xn = A−1/k, lim
n→∞

Sn = I.

From (2.13) using Theorem 2.1 it follows

1 − ai(l
(n)
i )k = (1 − ai(l

(n−1)
i )k)j

(j−1)(k−1)
∑

m=0

cm,k(1 − ai(l
(n−1)
i )k)m,

I − DLk
n = (I − DLk

n−1)
j

(j−1)(k−1)
∑

m=0

cm,k(I − DLk
n−1)

m.

So, I − AXk
n = (I − AXk

n−1)
j

(j−1)(k−1)
∑

m=0
cm,k(I − AXk

n−1)
m. Taking the norm of the

above equation, the bound in the theorem is established. �

Remark. If S0 = A−1Xk
0 then lim

n→∞
Xn = A1/k.

Theorem 2.4. Let A ∈ C
n,n be a hermitian positive definite matrix, X0 = sI,

s ∈ R,

0 < s <





2 min
1≤i≤n

ai

ρ2(A)





1/k

,
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then lim
n→∞

Xn = A−1/k, where A−1/k is the principal inverse k-th root of A.

P r o o f. It is known that each hermitian matrix is diagonalizable. Then the

matrix norm of I − skA satisfies ‖I − skA‖ = ρ(I − skA) = max
1≤i≤n

|1 − skai| =

max
1≤i≤n

√

1 − 2skai + s2ka2
i ≤

√

1 − 2sk min
1≤i≤n

ai + s2kρ2(A) < 1. �

3. Stability Analysis. Assume that at the n-th step errors Pn and Qn are

introduced in Xn and Sn respectively, where Pn = O(ε) and Qn = O(ε). Let X̃n and

S̃n be the computed matrices of this step. Now X̃n = Xn + Pn, S̃n = Sn + Qn.

We define P̃n = V −1PnV , Q̃n = V −1QnV. Using the perturbation result in [4]

(A + B)−1 = A−1 − A−1BA−1 + O(‖B‖2),

from X̃n+1 = X̃n

j−1
∑

i=0
bi(I − S̃n)i and S̃n+1 = S̃n

[

j−1
∑

i=0
bi(I − S̃n)i

]k

direct calculations

give

P̃n+1 = −Ln

j−1
∑

i=1

bi

i−1
∑

m=0

(I − Hn)mQ̃n(I − Hn)i−m−1 + P̃n

j−1
∑

i=0

bi(I − hn)i + O(ε2)

Q̃n+1 = −Hn







k−1
∑

l=0





j−1
∑

i=0

bi(I − Hn)i





l










j−1
∑

i=1

bi

i−1
∑

m=0

(I − Hn)mQ̃n(I − Hn)i−m−1





×





j−1
∑

i=0

bi(I − Hn)i





k−l−1

+ Q̃n





j−1
∑

i=0

bi(I − Hn)i





k

+ O(ε2).

Writing the above equations element-wise we have, r, s = 1, . . . , n,

q̃(n+1)
rs = d(n)

rs q̃(n)
rs , p̃(n+1)

rs = v(n)
rs q̃(n)

rs + g(n)
rs p̃(n)

rs ,

where

v(n)
rs = −l(n)

r

j−1
∑

i=1

bi

i−1
∑

m=0

(

1 − h(n)
r

)m (

1 − h(n)
s

)i−m−1
,

g(n)
rs =

j−1
∑

i=0

bi(1 − h(n)
s )i,

d(n)
rs = −h(n)

r







k−1
∑

l=0





j−1
∑

i=0

bi

(

1 − h(n)
r

)i





l










j−1
∑

i=1

bi

i−1
∑

m=0

(

1 − h(n)
r

)m (

1 − h(n)
s

)i−m−1




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×





j−1
∑

i=0

bi

(

1 − h(n)
s

)i





k−l−1

+





j−1
∑

i=0

bi

(

1 − h(n)
s

)i





k

.

Let

e(n)
rs =





q̃
(n)
rs

p̃
(n)
rs



 .

Now we have

e(n+1)
rs = W (n)

rs e(n)
rs + O(ε2)

where

W (n)
rs =





d
(n)
rs 0

v
(n)
rs g

(n)
rs



 .

Since lim
n→∞

d(n)
rs = 1 − kb1 = 0, lim

n→∞
g(n)
rs = 1, lim

n→∞
v(n)
rs =

−1

ka
1/k
i

, we can write

W
(n)
rs as W

(n)
rs = Wrs + O

(

ε(n)
)

Wrs =









0 0

−1

ka
1/k
i

1









,

where ε(n) is sufficiently small for large n.

The matrix Wrs has eigenvalues 0 and 1, let z0 and z1 be the corresponding

eigenvectors, so

e(n)
rs = u

(n)
0 z0 + u

(n)
1 z1.

For sufficiently small ε and large n we have

e(n+m)
rs

∼= W m
rse(n)

rs = u
(n)
1 z1 m = 1, 2, . . . .

Consequently ‖e
(n+m)
rs ‖ = ‖e

(n+1)
rs ‖ and method (I) is locally stable.

The usual assumption that the multiplication of two n×n matrices requires n3

flops.

For method (I) if the matrix A is general, the cost is approximatelly

(j − 1 + Bk + ⌊log2 k⌋)n3
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flops per iteration, where Bk=number of ones in binary representation of k, ⌊log2 k⌋

denotes the largest integer not exceeding log2 k, and the number of flops is determined

as follows

(j − 2)n3 flops to find
j−1
∑

i=0

bi(I − Sn)i(1)

(Bk + ⌊log2 k⌋)n3 flops to find Sn+1 [5](2)

n3 flops to find Xn+1.(3)

If the matrix A is hermitian, the cost is approximately
(j − 1 + Bk + ⌊log2 k⌋) n3

2
flops per iteration. If the condition ‖I − S0‖ < 1 in Theorem 2.3 is not satisfied then

the start method (I) must be used until ‖I0 − S‖ < 1.

4. Numerical Examples. In this section we will use the Frobenius matrix

norm ‖A‖F =
√

∑

i,j
|ai,j|2, the error en = ‖Xn − Xn−1‖F and the following definition.

Definition 4.1. The method (I) converges within n iterations if en ≤ δ, where

δ is a given error tollerance.

Example 1.

A =







4 1 1
2 4 1
0 1 4






.

It is desired to find A1/3. We will use method (I) with 3-rd order convergence rate

(j = 3). The matrix A is not diagonalizable. If X0 = I then ‖I − A−1X3
0‖F = 1.26. If

δ = 10−7 then method (I) converges within 6 iterations.

This example illustrates that the conditions in Theorem 2.3 are not necessary

conditions.

Example 2. In this example we compare method (I) with the quadratically

convergent method in [3]. Let A be the 10 × 10 matrix defined by

aij =











1 if i = j
−1 if i < j

0 if i > j
.

It is desired to find A1/3.

For the quadratically convergent method in [3] the cost is approximately (2 +

k(3k + 1)/2)n3 flops per iteration. Let δ = 10−5. The method in [3] converges within 5
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iterations and the error e5 = 8.71E−6. The costs (for 5 iterations) are approximately

85000 flops in total.

We shall use method (I) with 5-th order covergence rate and X0 = I. The

method (I) converges within 3 iterations and the error e3 < 1.0E−8. The costs (for 3

iterations) are approximately 21000 flops in total.

We see that the method (I) converges 4 times faster than the method in [3].

Single precision calculations were used for the two examples.
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