Serdica
 Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th ROOT

Slobodan Lakić
Communicated by R. Van Keer

In this paper we give an iterative method to compute the principal n-th root and the principal inverse n-th root of a given matrix. As we shall show this method is locally convergent. This method is analyzed and its numerical stability is investigated.

1. Introduction. Computation methods for the n-th root of some matrices have been proposed in [1], [2], [3], etc. In Section 2 an iterative method with high convergence rates is developed. In Section 3 we shall show that this method is locally stable. In Section 4 we illustrate the performance of the method by numerical examples.

Let $a=r e^{i t} \in \mathbb{C}$, where $r, t \in \mathbb{R}$ and $r \geq 0, t \in(-\pi, \pi]$.
Definition 1.1. The principal n-th root of a is defined as $a^{1 / n}=r^{1 / n} e^{i t / n}$, where the number $r^{1 / n}$ is the unique real and non-negative n-th root of r.

Let $A \in \mathbb{C}^{m, m}, \sigma(A)=\left\{a_{i}, i=1, \ldots, m\right\}, a_{i} \neq 0$, where a_{i} are the eigenvalues of A.

Definition 1.2. The principal inverse n-th root of A is defined as $X=$ $A^{-1 / n} \in \mathbb{C}^{m, m}$ and $A X^{n}=I$, each eigenvalue of $A^{-1 / n}$ is the principal n-th root of each $1 / a_{i}$.

Definition 1.3. The principal n-th root of A is defined as $X=A^{1 / n} \in \mathbb{C}^{m, m}$ and $X^{n}=A$, each eigenvalue of $A^{1 / n}$ is the principal n-th root of each a_{i}.
2. Computation of $A^{1 / k}$ and $A^{-1 / k}$.

Theorem 2.1. Let $f_{k}(z)=(1-z)^{-1 / k}$, where $(1-z)^{1 / k}$ is the principal k-th root of $1-z, k \in \mathbb{N}, k \geq 2, z \in \mathbb{C}, j \in \mathbb{N}, R_{j-1}(z)=\sum_{i=0}^{j-1} b_{i} z^{i}, b_{i}=f_{k}^{(i)}(0) / i$!. Then it holds

$$
\begin{equation*}
1-(1-z) R_{j-1}^{k}(z)=z^{j} \sum_{i=0}^{(k-1)(j-1)} c_{i, k} z^{i} \tag{2.1}
\end{equation*}
$$

for some positive constants $c_{i, k}=c_{i, k}(k, j)$,

$$
\begin{equation*}
i=0, \ldots,(k-1)(j-1) \quad \text { and } \quad \sum_{i=0}^{(k-1)(j-1)} c_{i, k}=1 \tag{2.2}
\end{equation*}
$$

Proof. By mathematical induction for $j=1$

$$
1-(1-z) R_{j-1}^{k}(z)=1-(1-z)=z=z c_{0}
$$

where $c_{0}=1$.
We assume that (2.1) holds for $k \geq 2$. Then

$$
\begin{aligned}
& 1-(1-z) R_{j}^{k}(z)=1-(1-z)\left(R_{j-1}(z)+b_{j} z^{j}\right)^{k} \\
& =1-(1-z) \sum_{m=0}^{k}\binom{k}{m} R_{j-1}^{m}(z) b_{j}^{k-m} z^{(k-m) j} \\
& =1-(1-z) R_{j-1}^{k}(z)-(1-z) b_{j}^{k} z^{k j}-k(1-z) b_{j}^{k-1} z^{(k-1) j} R_{j-1}(z) \\
& +\sum_{m=2}^{k-1}\binom{k}{m} b_{j}^{k-m} z^{(k-m) j}\left(-1+z^{j} \sum_{i=0}^{(m-1)(j-1)} c_{i, m} z^{i}\right) \\
& =-z^{j} \sum_{m=0}^{k-1}\binom{k}{m} b_{j}^{k-m} z^{(k-m-1) j}-z^{j} k b_{j}^{k-1} \sum_{m=1}^{j-1} b_{m} z^{(k-2) j+m} \\
& +z^{j}\left[b_{j}^{k} z^{1+j(k-1)}+k b_{j}^{1+j(k-2)} R_{j-1}(z)+\sum_{m=2}^{k}\binom{k}{m} b_{j}^{k-m} z^{(k-m) j} \sum_{i=0}^{(m-1)(j-1)} c_{i, m} z^{i}\right] \\
& =z^{j}\left[b_{j}^{k} z^{1+j(k-1)}+b_{j}^{k-1} z^{(k-1) j}\left(k b_{j-1}-b_{j}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& +k b_{j}^{k-1} \sum_{i=1}^{j-1}\left(b_{i-1}-b_{i}\right) z^{i+j(k-2)}+\sum_{m=2}^{k-1} b_{j}^{k-m} z^{j(k-m)}\left(\binom{k}{m} c_{0, m}-\binom{k}{m-1} b_{j}\right) \\
& \left.+\left(c_{0, k}-k b_{j}\right)+\sum_{m=2}^{k}\binom{k}{m} b_{j}^{k-m} z^{j(k-m)} \sum_{i=1}^{(m-1)(j-1)} c_{i, m} z^{i}\right]
\end{aligned}
$$

Now we prove

$$
\begin{equation*}
c_{0, m}=\frac{m f_{m}^{(j)}(0)}{j!} \tag{2.3}
\end{equation*}
$$

From (2.1) it follows that

$$
\begin{equation*}
R_{j-1}^{(j)}(z)=\left(h_{m}(z) f_{m}(z)\right)^{(j)} \tag{2.4}
\end{equation*}
$$

where $h_{m}(z)=g_{m}(T(z)), g_{m}(T)=T^{1 / m}$ and $T(z)=1-z^{j} \sum_{i=0}^{(m-1)(j-1)} c_{i, m} z^{i}$. From (2.4) it follows that

$$
0=f_{m}^{(j)}(z)+\sum_{i=1}^{j}\binom{j}{i} h_{m}^{(i)}(z) f_{m}^{(j-i)}(z)
$$

Since

$$
\begin{gathered}
h_{m}^{(i)}(z)=\sum_{n_{1}, \ldots, n_{i}} \frac{i!}{n_{1}!n_{2}!\ldots n_{i}!} g_{m}^{(s)}(T) \prod_{k=1}^{i}\left(\frac{T^{(k)}(z)}{k!}\right)^{n_{k}} \\
s=n_{1}+n_{2}+\ldots+n_{i}
\end{gathered}
$$

where $n_{1}, \ldots, n_{i} \geq 0$ are the integer solutions of the equation

$$
n_{1}+2 n_{2}+\cdots+i n_{i}=i
$$

and since $T^{(i)}(0)=0$ for $1 \leq i \leq j-1$, we have $h_{m}^{(i)}(0)=0$ for $1 \leq i \leq j-1$, and finally $h_{m}^{(j)}(0)=g_{m}^{\prime}(1) T^{(j)}(0)$. Now $0=f_{m}^{(j)}(0)-\frac{j!c_{0, m}}{m}$ i.e. (2.3).

Since $k b_{j-1}-b_{j}=\frac{(k-1)(k j+1) \prod_{i=0}^{j-1}((i-1) k+1)}{j!k^{j}} \geq 0$ for $k \in \mathbb{N}$, $b_{i-1}-b_{i}=\frac{k-1}{i!k^{i}} \geq 0$ for $1 \leq i \leq j-1$ and $k \in \mathbb{N}$,

$$
\binom{k}{m} c_{0, m}-\binom{k}{m-1} b_{j}=\frac{k!}{j!(m-1)!(k-m)!}\left(\frac{\prod_{i=1}^{j-i}\left(\frac{1}{m}+i\right)}{m}-\frac{\prod_{i=1}^{j-i}\left(\frac{1}{k}+i\right)}{k(k-m+1)}\right)>0
$$

for $k>m$, and $c_{0, k}-k b=0$ we have $1-(1-z) R_{j}^{k}(z)=z^{j+1} \sum_{i=0}^{(k-1) j} \bar{c}_{i} z^{i}$ where $\bar{c}_{0}, \ldots \bar{c}_{(k-1) j}$ are the positive constants. Setting $z=1$ gives (2.2).

Theorem 2.2. Let w be a complex number such that $w \neq 0$. We define the sequence $\left\{z_{n}\right\}$ by

$$
\begin{equation*}
z_{n+1}=z_{n} \sum_{i=0}^{j-1} b_{i}\left(1-w z_{n}^{k}\right)^{i} \tag{2.5}
\end{equation*}
$$

where b_{i}, k are as in Theorem 2.1, $j \in \mathbb{N}, j \geq 2$ and $\left|1-w z_{0}^{k}\right|<1$. Then

$$
\begin{equation*}
\left|1-w z_{n}^{k}\right| \leq\left|1-w z_{0}^{k}\right|^{j^{n}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\frac{1}{w^{1 / k}} \tag{2.7}
\end{equation*}
$$

where $w^{1 / k}$ is the k-th principal root of w.
Proof. Using Theorem 2.1 we have

$$
1-w z_{1}^{k}=\left(1-w z_{0}^{k}\right)^{j} \sum_{i=0}^{(k-1)(j-1)} c_{i, k}\left(1-w z_{0}^{k}\right)^{i}
$$

and $\left|1-w z_{1}^{k}\right| \leq\left|1-w z_{0}^{k}\right|^{j}$.
Repeating this argument we have (2.6).
From (2.6) it holds $\lim _{n \rightarrow \infty}\left|1-w z_{n}^{k}\right|=0$ i.e. (2.7).
For our analysis we assume that A is diagonalizable, that is there exists a nonsingular matrix V such that

$$
\begin{equation*}
V^{-1} A V=D \tag{2.8}
\end{equation*}
$$

where $D=\operatorname{diag}\left\{a_{1}, \ldots, a_{m}\right\}$ and a_{1}, \ldots, a_{m} are the eigenvalues of A.
We define the sequences $\left\{X_{n}\right\}$ and $\left\{S_{n}\right\}$ as follows
(I)

$$
\begin{cases}X_{n+1}=X_{n} \sum_{i=0}^{j-1} b_{i}\left(I-S_{n}\right)^{i} & X_{0} \in \mathbb{C}^{n, n} \\ S_{n+1}=S_{n}\left[\sum_{i=0}^{j-1} b_{i}\left(I-S_{n}\right)^{i}\right]^{k}, & S_{0}=A X_{0}^{k}\end{cases}
$$

where X_{0} is a function of A, and j, k, b_{i} are as in Theorem 2.2.
Theorem 2.3. Let $A \in \mathbb{C}^{m, m}$ be nonsingular and diagonalizable.
Let $\left\{X_{n}\right\},\left\{S_{n}\right\}$ be the sequences defined by (I) and

$$
\begin{equation*}
\left\|I-S_{0}\right\|<1 \tag{2.9}
\end{equation*}
$$

Then $\lim _{n \rightarrow \infty} X_{n}=A^{-1 / k}, \lim _{n \rightarrow \infty} S_{n}=I,\left\|I-A X_{n}^{k}\right\|=O\left(\left\|I-A X_{n-1}^{k}\right\|^{j}\right)$, where $A^{-1 / k}$ is the principal inverse k-th root of A.

Proof. Let

$$
\begin{equation*}
L_{n}=V^{-1} X_{n} V, \quad H_{n}=V^{-1} S_{n} V \tag{2.10}
\end{equation*}
$$

Now

$$
\begin{cases}L_{n+1}=L_{n}+\sum_{i=0}^{j-1} b_{i}\left(I-H_{n}\right)^{i}, & L_{0}=V^{-1} X_{0} V \tag{2.11}\\ H_{n+1}=H_{n}\left[\sum_{i=0}^{j-1} b_{i}\left(I-S_{n}\right)^{i}\right]^{k}, & H_{0}=D L_{0}^{k}\end{cases}
$$

From the equations (2.11) it follows that L_{n} and H_{n} are diagonal matrices. Let

$$
L_{n}=\operatorname{diag}\left\{l_{1}^{(n)}, \ldots, l_{m}^{(n)}\right\}, \quad H_{n}=\operatorname{diag}\left\{h_{1}^{(n)}, \ldots, h_{m}^{(n)}\right\}
$$

Equation (2.11) is equivalent to m sequence of equations.

$$
\begin{cases}l_{i}^{(n+1)}=l_{i}^{(n)} \sum_{m=0}^{j-1} b_{m}\left(1-h_{i}^{(n)}\right)^{m}, & l_{i}^{(0)} \in \mathbb{C} \tag{2.12}\\ h_{i}^{(n+1)}=h_{i}^{(n)}\left[\sum_{m=0}^{j-1} b_{m}\left(1-h_{i}^{(n)}\right)^{m}\right]^{k}, & h_{i}^{(0)}=a_{i} l_{i}^{(0)}\end{cases}
$$

From (2.12) one can show that

$$
\begin{equation*}
l_{i}^{(n+1)}=l_{i}^{(n)} \sum_{m=0}^{j-1} b_{m}\left(1-a_{i}\left(l_{i}^{(n)}\right)^{k}\right)^{m}, \quad l_{i}^{(0)} \in \mathbb{C} \tag{2.13}
\end{equation*}
$$

Since the matrix $I-A X_{0}^{k}$ is diagonalizable, its matrix norm satisfies

$$
\left\|I-A X_{0}^{k}\right\|=\rho\left(I-A X_{0}^{k}\right)=\rho\left(I-D L_{0}^{k}\right)=\left\|I-D L_{0}^{k}\right\|
$$

So we have

$$
\begin{equation*}
\left\|I-D L_{0}^{k}\right\|<1 \tag{2.14}
\end{equation*}
$$

From (2.14) it follows that

$$
\begin{equation*}
\left|1-a_{i}\left(l_{i}^{(0)}\right)^{k}\right|<1, \quad i=1, \ldots, m \tag{2.15}
\end{equation*}
$$

From (2.13) and (2.15) using Theorem 2.2 it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} l_{i}^{(n)}=a_{i}^{-1 / k}, \quad i=1, \ldots, m \tag{2.16}
\end{equation*}
$$

From (2.12) and (2.16) it follows that

$$
\lim _{n \rightarrow \infty} h_{i}^{(n)}=1, \quad i=1, \ldots, n
$$

So,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}=D^{-1 / k}, \quad \lim _{n \rightarrow \infty} H_{n}=I \tag{2.17}
\end{equation*}
$$

From (2.17), (2.10) and (2.8) it follows

$$
\lim _{n \rightarrow \infty} X_{n}=A^{-1 / k}, \quad \lim _{n \rightarrow \infty} S_{n}=I
$$

From (2.13) using Theorem 2.1 it follows

$$
\begin{aligned}
1-a_{i}\left(l_{i}^{(n)}\right)^{k} & =\left(1-a_{i}\left(l_{i}^{(n-1)}\right)^{k}\right)^{j} \sum_{m=0}^{(j-1)(k-1)} c_{m, k}\left(1-a_{i}\left(l_{i}^{(n-1)}\right)^{k}\right)^{m} \\
I-D L_{n}^{k} & =\left(I-D L_{n-1}^{k}\right)^{j} \sum_{m=0}^{(j-1)(k-1)} c_{m, k}\left(I-D L_{n-1}^{k}\right)^{m}
\end{aligned}
$$

So, $I-A X_{n}^{k}=\left(I-A X_{n-1}^{k}\right)^{j} \sum_{m=0}^{(j-1)(k-1)} c_{m, k}\left(I-A X_{n-1}^{k}\right)^{m}$. Taking the norm of the above equation, the bound in the theorem is established.

Remark. If $S_{0}=A^{-1} X_{0}^{k}$ then $\lim _{n \rightarrow \infty} X_{n}=A^{1 / k}$.
Theorem 2.4. Let $A \in \mathbb{C}^{n, n}$ be a hermitian positive definite matrix, $X_{0}=s I$, $s \in \mathbb{R}$,

$$
0<s<\left(\frac{2 \min _{1 \leq i \leq n} a_{i}}{\rho^{2}(A)}\right)^{1 / k}
$$

then $\lim _{n \rightarrow \infty} X_{n}=A^{-1 / k}$, where $A^{-1 / k}$ is the principal inverse k-th root of A.
Proof. It is known that each hermitian matrix is diagonalizable. Then the matrix norm of $I-s^{k} A$ satisfies $\left\|I-s^{k} A\right\|=\rho\left(I-s^{k} A\right)=\max _{1 \leq i \leq n}\left|1-s^{k} a_{i}\right|=$ $\max _{1 \leq i \leq n} \sqrt{1-2 s^{k} a_{i}+s^{2 k} a_{i}^{2}} \leq \sqrt{1-2 s^{k} \min _{1 \leq i \leq n} a_{i}+s^{2 k} \rho^{2}(A)}<1$.
3. Stability Analysis. Assume that at the n-th step errors P_{n} and Q_{n} are introduced in X_{n} and S_{n} respectively, where $P_{n}=O(\varepsilon)$ and $Q_{n}=O(\varepsilon)$. Let \tilde{X}_{n} and \tilde{S}_{n} be the computed matrices of this step. Now $\tilde{X}_{n}=X_{n}+P_{n}, \tilde{S}_{n}=S_{n}+Q_{n}$.

We define $\tilde{P}_{n}=V^{-1} P_{n} V, \tilde{Q}_{n}=V^{-1} Q_{n} V$. Using the perturbation result in [4]

$$
(A+B)^{-1}=A^{-1}-A^{-1} B A^{-1}+O\left(\|B\|^{2}\right)
$$

from $\tilde{X}_{n+1}=\tilde{X}_{n} \sum_{i=0}^{j-1} b_{i}\left(I-\tilde{S}_{n}\right)^{i}$ and $\tilde{S}_{n+1}=\tilde{S}_{n}\left[\sum_{i=0}^{j-1} b_{i}\left(I-\tilde{S}_{n}\right)^{i}\right]^{k}$ direct calculations give

$$
\begin{aligned}
\tilde{P}_{n+1}= & -L_{n} \sum_{i=1}^{j-1} b_{i} \sum_{m=0}^{i-1}\left(I-H_{n}\right)^{m} \tilde{Q}_{n}\left(I-H_{n}\right)^{i-m-1}+\tilde{P}_{n} \sum_{i=0}^{j-1} b_{i}\left(I-h_{n}\right)^{i}+O\left(\varepsilon^{2}\right) \\
\tilde{Q}_{n+1}= & -H_{n}\left[\sum_{l=0}^{k-1}\left(\sum_{i=0}^{j-1} b_{i}\left(I-H_{n}\right)^{i}\right)^{l}\right]\left[\sum_{i=1}^{j-1} b_{i} \sum_{m=0}^{i-1}\left(I-H_{n}\right)^{m} \tilde{Q}_{n}\left(I-H_{n}\right)^{i-m-1}\right] \\
& \times\left[\sum_{i=0}^{j-1} b_{i}\left(I-H_{n}\right)^{i}\right]^{k-l-1}+\tilde{Q}_{n}\left[\sum_{i=0}^{j-1} b_{i}\left(I-H_{n}\right)^{i}\right]^{k}+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Writing the above equations element-wise we have, $r, s=1, \ldots, n$,

$$
\tilde{q}_{r s}^{(n+1)}=d_{r s}^{(n)} \tilde{q}_{r s}^{(n)}, \quad \tilde{p}_{r s}^{(n+1)}=v_{r s}^{(n)} \tilde{q}_{r s}^{(n)}+g_{r s}^{(n)} \tilde{p}_{r s}^{(n)},
$$

where

$$
\begin{aligned}
v_{r s}^{(n)} & =-l_{r}^{(n)} \sum_{i=1}^{j-1} b_{i} \sum_{m=0}^{i-1}\left(1-h_{r}^{(n)}\right)^{m}\left(1-h_{s}^{(n)}\right)^{i-m-1} \\
g_{r s}^{(n)} & =\sum_{i=0}^{j-1} b_{i}\left(1-h_{s}^{(n)}\right)^{i} \\
d_{r s}^{(n)} & =-h_{r}^{(n)}\left[\sum_{l=0}^{k-1}\left(\sum_{i=0}^{j-1} b_{i}\left(1-h_{r}^{(n)}\right)^{i}\right)^{l}\right]\left[\sum_{i=1}^{j-1} b_{i} \sum_{m=0}^{i-1}\left(1-h_{r}^{(n)}\right)^{m}\left(1-h_{s}^{(n)}\right)^{i-m-1}\right]
\end{aligned}
$$

$$
\times\left[\sum_{i=0}^{j-1} b_{i}\left(1-h_{s}^{(n)}\right)^{i}\right]^{k-l-1}+\left[\sum_{i=0}^{j-1} b_{i}\left(1-h_{s}^{(n)}\right)^{i}\right]^{k} .
$$

Let

$$
e_{r s}^{(n)}=\left[\begin{array}{c}
\tilde{q}_{r s}^{(n)} \\
\tilde{p}_{r s}^{(n)}
\end{array}\right]
$$

Now we have

$$
e_{r s}^{(n+1)}=W_{r s}^{(n)} e_{r s}^{(n)}+O\left(\varepsilon^{2}\right)
$$

where

$$
W_{r s}^{(n)}=\left[\begin{array}{cc}
d_{r s}^{(n)} & 0 \\
v_{r s}^{(n)} & g_{r s}^{(n)}
\end{array}\right]
$$

Since $\lim _{n \rightarrow \infty} d_{r s}^{(n)}=1-k b_{1}=0, \lim _{n \rightarrow \infty} g_{r s}^{(n)}=1, \lim _{n \rightarrow \infty} v_{r s}^{(n)}=\frac{-1}{k a_{i}^{1 / k}}$, we can write $W_{r s}^{(n)}$ as $W_{r s}^{(n)}=W_{r s}+O\left(\varepsilon^{(n)}\right)$

$$
W_{r s}=\left[\begin{array}{cc}
0 & 0 \\
\frac{-1}{k a_{i}^{1 / k}} & 1
\end{array}\right],
$$

where $\varepsilon^{(n)}$ is sufficiently small for large n.
The matrix $W_{r s}$ has eigenvalues 0 and 1 , let z_{0} and z_{1} be the corresponding eigenvectors, so

$$
e_{r s}^{(n)}=u_{0}^{(n)} z_{0}+u_{1}^{(n)} z_{1}
$$

For sufficiently small ε and large n we have

$$
e_{r s}^{(n+m)} \cong W_{r s}^{m} e_{r s}^{(n)}=u_{1}^{(n)} z_{1} \quad m=1,2, \ldots
$$

Consequently $\left\|e_{r s}^{(n+m)}\right\|=\left\|e_{r s}^{(n+1)}\right\|$ and method (I) is locally stable.
The usual assumption that the multiplication of two $n \times n$ matrices requires n^{3} flops.

For method (I) if the matrix A is general, the cost is approximatelly

$$
\left(j-1+B_{k}+\left\lfloor\log _{2} k\right\rfloor\right) n^{3}
$$

flops per iteration, where $B_{k}=$ number of ones in binary representation of $k,\left\lfloor\log _{2} k\right\rfloor$ denotes the largest integer not exceeding $\log _{2} k$, and the number of flops is determined as follows

$$
\begin{align*}
& (j-2) n^{3} \text { flops to find } \sum_{i=0}^{j-1} b_{i}\left(I-S_{n}\right)^{i} \tag{1}\\
& \left(B_{k}+\left\lfloor\log _{2} k\right\rfloor\right) n^{3} \quad \text { flops to find } \quad S_{n+1} \tag{2}\\
& n^{3} \text { flops to find } X_{n+1} . \tag{3}
\end{align*}
$$

If the matrix A is hermitian, the cost is approximately $\frac{\left(j-1+B_{k}+\left\lfloor\log _{2} k\right\rfloor\right) n^{3}}{2}$ flops per iteration. If the condition $\left\|I-S_{0}\right\|<1$ in Theorem 2.3 is not satisfied then the start method (I) must be used until $\left\|I_{0}-S\right\|<1$.
4. Numerical Examples. In this section we will use the Frobenius matrix $\operatorname{norm}\|A\|_{F}=\sqrt{\sum_{i, j}\left|a_{i, j}\right|^{2}}$, the error $e_{n}=\left\|X_{n}-X_{n-1}\right\|_{F}$ and the following definition.

Definition 4.1. The method (I) converges within n iterations if $e_{n} \leq \delta$, where δ is a given error tollerance.

Example 1.

$$
A=\left[\begin{array}{lll}
4 & 1 & 1 \\
2 & 4 & 1 \\
0 & 1 & 4
\end{array}\right]
$$

It is desired to find $A^{1 / 3}$. We will use method (I) with 3-rd order convergence rate $(j=3)$. The matrix A is not diagonalizable. If $X_{0}=I$ then $\left\|I-A^{-1} X_{0}^{3}\right\|_{F}=1.26$. If $\delta=10^{-7}$ then method (I) converges within 6 iterations.

This example illustrates that the conditions in Theorem 2.3 are not necessary conditions.

Example 2. In this example we compare method (I) with the quadratically convergent method in [3]. Let A be the 10×10 matrix defined by

$$
a_{i j}=\left\{\begin{array}{rll}
1 & \text { if } & i=j \\
-1 & \text { if } & i<j \\
0 & \text { if } & i>j
\end{array}\right.
$$

It is desired to find $A^{1 / 3}$.
For the quadratically convergent method in [3] the cost is approximately $(2+$ $k(3 k+1) / 2) n^{3}$ flops per iteration. Let $\delta=10^{-5}$. The method in [3] converges within 5
iterations and the error $e_{5}=8.71 \mathrm{E}-6$. The costs (for 5 iterations) are approximately 85000 flops in total.

We shall use method (I) with 5 -th order covergence rate and $X_{0}=I$. The method (I) converges within 3 iterations and the error $e_{3}<1.0 \mathrm{E}-8$. The costs (for 3 iterations) are approximately 21000 flops in total.

We see that the method (I) converges 4 times faster than the method in [3]. Single precision calculations were used for the two examples.

REFERENCES

[1] E. D. Denman. Roots of real matrices. Linear Algebra Appl., 36 (1981), 133-139.
[2] W. D. Hoskins, D. J. Walton. A faster more stable method for computing the n-th roots of positive definite matrices. Linear Algebra Appl., 26 (1979), 139-164.
[3] Y. T. Tsay, L. S. Shieh, J. S. H. Tsai. A fast method for computing the principal n-th roots of complex matrices, Linear Algebra Appl., 76 (1986), 205221.
[4] G. W. Stewart. Introduction to matrix computation. New York, Academic Press, 1974.
[5] D. E. Knuth. The Art of Computer Programming, vol. 2. Addison-Wesley, Don Mills, 1969.

University of Novi Sad
Technical Faculty "Mihajlo Pupin"
23000 Zrenjanin
Yugoslavia

Received December 30, 1994
Revised July 7, 1995

