Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica
Mathematical Journal

Cepauka

MareMaTuuyecko CIIMCaHUE

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on

Serdica Mathematical Journal
which is the new series of

Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica

or contact: Editorial Office

Serdica Mathematical Journal

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



Serdica Math. J. 21 (1995), 335-344 Serdica
Mathematical Journal

Institute of Mathematics
Bulgarian Academy of Sciences

AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th
ROOT

Slobodan Lakié

Communicated by R. Van Keer

In this paper we give an iterative method to compute the principal n-th root
and the principal inverse n-th root of a given matrix. As we shall show this
method is locally convergent. This method is analyzed and its numerical stability
is investigated.

1. Introduction. Computation methods for the n-th root of some matrices
have been proposed in [1], [2], [3], etc. In Section 2 an iterative method with high
convergence rates is developed. In Section 3 we shall show that this method is locally
stable. In Section 4 we illustrate the performance of the method by numerical examples.

Let a = ret € C, where r,t € Rand r > 0, t € (—m, 7.

Definition 1.1.  The principal n-th root of a is defined as a*/™ = r1/meit/n

where the number /™ is the unique real and non-negative n-th root of r.

Let Ac C™™ o(A) ={a;, i1 =1,...,m}, a; # 0, where a; are the eigenvalues
of A.

Definition 1.2. The principal inverse n-th root of A is defined as X =
A7Vn e ™™ ognd AX™ = I, each eigenvalue of A~Y™ is the principal n-th root of
each 1/a;.
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Definition 1.3. The principal n-th root of A is defined as X = AY"™ e C™™
and X™ = A, each eigenvalue of AY™ is the principal n-th root of each a;.

2. Computation of A'/* and A—1/k,
Theorem 2.1. Let f,(z) = (1 — 2)~Y*, where (1 — 2)V/* is the principal k-th

7j—1 . .

root of 1 —z, ke N, k>2,2€C,jeN, Rj_1(2) = > bi2", b; = fkl)(O)/i!. Then it
i=0

holds

(k=D)(G-1) A
(2.1) 1—(1- z)R?_l(z) =2/ Z Ci k2"
i=0
for some positive constants c; , = ¢; i (k,J),
(k=1)(j-1)
(2.2) i=0,....,(k—=1)(j—1) and Y ar=1
i=0

Proof. By mathematical induction for j = 1
1—(1—Z)R§71(Z):1—(1—2)22’:260

where ¢y = 1.
We assume that (2.1) holds for k£ > 2. Then

- (1= 2)RE(z) = 1= (1 2)(Ry1(2) + ;29"

1_2216:() bkm(km)

m=0
=1—(1—2)RF 1(2) — (1 — 2)bF=M — k(1 — 2)bF 2R, 4 (2)
k=1 7/ (m=1)(G-1) .
+ ( )bk my(k=mi | 1 4 20 Z Cim?'
m=2 \"" i=0
k—1 Jj—1
— _Z] Z < )b? mz(kfmfl)j o ijb?—l Z bmz(k72)j+m
m=1
. (e k k (m=1)(j-1) ‘
b?ZHg(k—l) +k:bj+J( - )Rjil(Z)Jr <m>b§mz(k—m)J Z Cim?
m=2 =0

=2/ [b;?zlﬂ'(“) + b5 DI (kb — by)



An Iterative Method for the Matrix Principal n-th Root 337

he1 % i) L = ke e [ [ F k
13 (0 )2 HIB2) L § phem ilhom _ .
+kb] (b’b—l - bZ)Z J + = b] ZJ << )Co’m <m _ 1) b]>

i=1 m
k(L ' (m=1)(j-1) '
+(co, — kbj) + Z <m> bf_mzj(k*m) Z ci,mz’]
m=2 =1

Now we prove

()
(2.3) Com = m,;i'(o)
From (2.1) it follows that
(2.4) RV, (2) = (hn(2) fin(2)) 9

(m=1)(i-1) ,
where By (2) = gm(T(2)), gm(T) = TY™ and T(2) =1 -2/ Y. ¢ mz'. From

i=0
(2.4) it follows that

=+ 5 (e

=1
Since ‘ .
, il (T ()
B (L) = N O & -\ ’
m (2) mzn ningl g 9 )kl;[l !
Ss=mn1+nNno+...+n,
where n1y,...,n; > 0 are the integer solutions of the equation

n1+2n2—|—---+ini:i,

and since T(i)(O) =0for 1 <i<j—1, we have h%)(O) =0forl1 <¢<j—1, and
. , , i Com
finally A% (0) = ¢, (1)T)(0). Now 0 = £9)(0) — % ie. (2.3).

j—1

(k—=1Dkj+1D) T (—1)k+1)
. i=0
Since kbj_1 — bj; = e >0 for k € N,
—1
bi—1—b; = k'k‘ >0for1<i<j—1land k€N,
1KY

<k>00m_< ; )bj_ " T(&+) T(+9)

il m =1)!(k —m)! m Ck(k—m+1)
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o (kB=Dj
for & > m, and cp — kb = 0 we have 1 — (1 — z)R?(z) = 2L S 2" where
i=0
Co, - - - C(k—1); are the positive constants. Setting z = 1 gives (2.2). O

Theorem 2.2. Let w be a complex number such that w # 0. We define the
sequence {zp} by
Jj—1 )
(2.5) Zn+l = Zn Z bi(1 — wzk)?

1=0

where b;, k are as in Theorem 2.1, j €N, j > 2 and |1 —wzf| < 1. Then

(2.6) |1—wzﬁ\ < \1—wz§|jn
and
(2.7) A Zn = T

where w* is the k-th principal root of w.

Proof. Using Theorem 2.1 we have

(k=D)(G-1) '
1 —wzf = (1 —wzk)’ Z cin(1 —wz)
i=0
and |1 —wz¥| < |1 — w2b|’.
Repeating this argument we have (2.6).
From (2.6) it holds lim |1 — wzl| =01ie (2.7). O

For our analysis we assume that A is diagonalizable, that is there exists a
nonsingular matrix V such that

(2.8) V1AV =D

where D=diag{ai,...,an} and ay,...,a,, are the eigenvalues of A.
We define the sequences {X,,} and {S,} as follows

j—1

Xnt1=Xn > bi(I-8,) Xo € C™™,
=0

k
7—1
Sn-f—l =Sy [Z bi(I - Sn)Z] , So= AX(I)Cy
=0
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where X is a function of A, and j, k, b; are as in Theorem 2.2.

Theorem 2.3. Let A € C™™ be nonsingular and diagonalizable.
Let {X,,}, {Sn} be the sequences defined by (I) and

(2.9) |I —Soll <1

Then lim X, = A~ 1/k lim S, =1, || - AXFE|=0(|I — AXE_|||9), where A=V/% s
n—
the prmczpal inverse k-th root of A.

Proof. Let
(2.10) L,=V~'X,v, H,=V"'S,V.
Now
Jj—1 '
Lpy1 =Ly + Y bi(I—H,)', Ly=V~'XyV
(2.11) =0

k
Hp1 = Zb (I-S,) ] , Hy=DLE.

From the equations (2.11) it follows that L,, and H,, are diagonal matrices. Let
o =diag {1, .. 1My, H, = diag {h{™, ... AW},

Equation (2.11) is equivalent to m sequence of equations.

i—1
s JZ b (1 ym 1 cc
m=0
(2.12) - .
h(n—l—l _ h(n Z by (1 — h(n ’ hZ(O) _ az‘lz(o)-
m=0
From (2.12) one can show that
Jj—1 m
213 0 0 4 (1) 10 e

m=0

Since the matrix I — AX} is diagonalizable, its matrix norm satisfies

|1 — AXE|| = p(I — AXE) = p(I — DLE) = ||I = DLE].
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So we have

(2.14) |I — DLE|| < 1.

From (2.14) it follows that

(2.15) n1—a (Y <1, i=1,....m.
From (2.13) and (2.15) using Theorem 2.2 it follows that

(2.16) nlinéolgn) —a* i=1,...,m.

From (2.12) and (2.16) it follows that

lim A" =1, i=1,...,n.

n—oo

So,

(2.17) lim L, = D~V lim H, = I.

n—oo n—oo

From (2.17), (2.10) and (2.8) it follows

lim X, = A~V/*, lim S, = I.

n—oo n—~o0

From (2.13) using Theorem 2.1 it follows

(G=D(k-1)
L—a()F = (1-a@™)% S et —a ",
m=0
(G-D(k-1)
I-DL}y = (I-DL; Y > cpp(I—DLE )™
m=0

(1) (k-1)
So, I — AXF = (I — AXF_))) > i — AXE_)™. Taking the norm of the
=0

m=
above equation, the bound in the theorem is established. O
Remark. If Sy = A’lX(’f then lim X, = Ak,
n—oo

Theorem 2.4. Let A € C™" be a hermitian positive definite matriz, Xg = s,
s € R,
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then lirréo X, = A_l/k, where A=Y s the principal inverse k-th root of A.
n—
Proof. It is known that each hermitian matrix is diagonalizable. Then the

matrix norm of I — sFA satisfies ||[I — sA| = p(I — sFA) = [oax 11— sFa;| =
SN

max \/1 — 2sFa; + s?ka? < \/1 — 28k i a; + s2kp2(A) < 1. O
Stsn

1<i<n

3. Stability Analysis. Assume that at the n-th step errors P, and @, are
introduced in X,, and S,, respectively, where P, = O(¢) and @, = O(e). Let X,, and
Sn be the computed matrices of this step. Now Xn =X, + Py, Sn =5, + Q.

We define B, = v-ip,V, Qn = V~1Q,V. Using the perturbation result in [4]

(A+B)™'=A"" - AT BAT + O(|BI?),

. . k
- - Jj=1 ~ ~ ~ izl S
from X,,4+1 = X, X bi({ —S,)" and Sp41 = Sy [Z bi(I — Sn)zl direct calculations
i=0 =0
give
_ 7j—1 i—1
Pop1 = =LY b > (I—H)"Qu(I—H,) ™ +P, Zb I —hy) + O(?)
i=1 m=0
) k—1 [j—1 -1 i - ,
Qui1 = —Hp|> Zbl I—H,) > b Y (I = Hp)"Qu(I — Hyp) ™™t
1=0 i=1 m=0
-1 k—1—1 _jfl k
X |:Z bi(I_Hn)i] +Qn Zbi(I_Hn)i +O(52)'
i=0 i=0
Writing the above equations element-wise we have, r,s = 1,...,n,
D = DD, B = o)+ g,
where
1—m—1
o) = sz Z (1=n)" (1)
Jj—1 4
gw = Y obi(1—hM),
i=0

l =0 i=1 m=0

0o o .
= “(Zb(l— )) lebizl(1—h£n>)m(1—hgn>)“m‘l
0



342 Slobodan Lakié

Now we have
et — wme(™ 4 O(?)

]

(n)
rs. 0
W = { ] :

where

(n) (1)

Urs Jrs

Since Jim d™ =1 — kb, =0, Jim g™ =1, Jim o™ = R we can write

1

) as W = Wi, + 0 ()

where (") is sufficiently small for large n.
The matrix W, has eigenvalues 0 and 1, let zy and z; be the corresponding
eigenvectors, so

o) ),

rs, = Uy 20 T Uy C27.

For sufficiently small € and large n we have

e = W) = Vs m=12,...
Consequently ||€1(n2+m)\| = ||€1(n2+1)|| and method (I) is locally stable.

The usual assumption that the multiplication of two n x n matrices requires n®

flops.

For method (I) if the matrix A is general, the cost is approximatelly

(j — 1+ By, + |log, k] )n®
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flops per iteration, where Bp=number of ones in binary representation of k, |log, k|
denotes the largest integer not exceeding log, k, and the number of flops is determined

as follows
Jj—1 '
(1) (j — 2)n? flops to find Z bi(I—S,,)
i=0
(2) (B + |logs k| )n3 flops to find  Sp4+1  [5]
(3) n® flops to find Xnt1-

(j — 1+ By + |logy k) n?

If the matrix A is hermitian, the cost is approximately 5
flops per iteration. If the condition ||/ — Sp|| < 1 in Theorem 2.3 is not satisfied then
the start method (I) must be used until || Iy — 5| < 1.

4. Numerical Examples. In this section we will use the Frobenius matrix

norm ||Al|r = /> |a;;|?, the error e, = || X,, — X,,—1]|# and the following definition.
.3

Definition 4.1. The method (I) converges within n iterations if e,, < 0, where
6 is a given error tollerance.

Example 1.

A=

S N

11
4 1
1 4

It is desired to find AY?. We will use method (I) with 3-rd order convergence rate
(j = 3). The matrix A is not diagonalizable. If Xo = I then ||[I — A~'X§|r = 1.26. If
§ = 1077 then method (I) converges within 6 iterations.

This example illustrates that the conditions in Theorem 2.3 are not necessary
conditions.

Example 2. In this example we compare method (I) with the quadratically
convergent method in [3]. Let A be the 10 x 10 matrix defined by

1 if i=j
aij = -1 if i<y
0 if ¢>9

It is desired to find AY/3,
For the quadratically convergent method in [3] the cost is approximately (2 +
k(3k +1)/2)n? flops per iteration. Let § = 10~°. The method in [3] converges within 5
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iterations and the error e = 8.71E—6. The costs (for 5 iterations) are approximately
85000 flops in total.

We shall use method (I) with 5-th order covergence rate and Xy = I. The
method (I) converges within 3 iterations and the error e3 < 1.0E—8. The costs (for 3
iterations) are approximately 21000 flops in total.

We see that the method (I) converges 4 times faster than the method in [3].

Single precision calculations were used for the two examples.
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