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0. Introduction. The first motivation for this note is to obtain a general ver-

sion of the following result: let E be a Banach space and f : E → R be a differentiable

function, bounded below and satisfying the Palais-Smale condition; then, f is coercive,

i.e., f(x) goes to infinity as ‖x‖ goes to infinity. In recent years, many variants and

extensions of this result appeared, see [3], [5], [6], [9], [14], [18], [19] and the references

therein.

A general result of this type was given in [3, Theorem 5.1] for a lower semicon-

tinuous function defined on a Banach space, through an approach based on an abstract

notion of subdifferential operator, and taking into account the “smoothness” of the

Banach space. Here, we give (Theorem 1) an extension in a metric setting, based on

the notion of slope from [11] and coercivity is considered in a generalized sense, inspired

by [9]; our result allows to recover, for example, the coercivity result of [19], where a

weakened version of the Palais-Smale condition is used. Our main tool (Proposition 1)

is a consequence of Ekeland’s variational principle extending [12, Corollary 3.4], and

deals with a function f which is, in some sense, the “uniform” Γ-limit of a sequence of

functions.
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Our coercivity result also contains the result of [14], dealing, somewhat, with

the most general class of functions (considering the references given above), see Sec-

tion 3. However, this class of functions is too general from the point of view of critical

point theory (hence, of possible applications to variational problems) for which some

additional continuity property of the function is needed. The second purpose of this

note is to show that, under such a hypothesis, the general nonsmooth critical point the-

ory developed in [12], [8], based on the notion of weak slope of [12], applies to a class

of lower semicontinuous functions containing the ones considered in [2] and [22]. The

proofs follow the lines of corresponding results in [12] and illustrate how the abstract

theory is linked to more “concrete” settings. The main result in this part (Theorem 2)

is of general interest.

1. Preliminaries. Let X be a metric space endowed with the metric d and

let f : X → R ∪ {+∞} be a function. We recall two notions of “slope” of f at a point

u ∈ dom (f) = {u ∈ X : f(u) < +∞}.

According to [11], define

|∇f |(u) =











lim sup
v→u

f(u) − f(v)

d(u, v)
if u is not a local minimum of f

0 if u is a local minimum of f .

The extended real number |∇f |(u) is called the (strong) slope of f at u.

We now recall from [12] the notion of weak slope. In a first step, the definition

is given for f : X → R continuous: the weak slope of f at a point u ∈ X, denoted by

|df |(u), is defined as the supremum of the σ’s in [0,+∞[ such that there exist δ > 0

and η : B(u; δ) × [0, δ] → X continuous with

d(η(v, t), v) ≤ t

f(η(v, t)) ≤ f(v) − σt,

where B(u; δ) denotes the closed ball of radius δ centered at u.

In the case of a lower semicontinuous function f : X → R ∪ {+∞}, the weak

slope of f at u ∈ dom (f) is defined in the following indirect way: let

epi (f) = {(v, ξ) ∈ X × R : f(v) ≤ ξ}

denote the epigraph of f , that we consider as a metric space with the metric

d((v, ξ), (w,µ)) = d(v,w) + |ξ − µ|;
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set ([11]):

Gf : epi (f) → R, Gf (v, ξ) = ξ,

and define

|df |(u) =











|dGf |(u, f(u))

1 − |dGf |(u, f(u))
if |dGf |(u, f(u)) < 1

+∞ if |dGf |(u, f(u)) = 1.

Notice that the function Gf being Lipschitz continuous of constant 1, |dGf |(u, ξ) ≤ 1

for every (u, ξ) ∈ epi (f).

Indeed, the latter definition is not quite the one given in [12] since we chose a

different (equivalent) metric on epi(f); of course, it is still consistent with the former

definition whenever f is continuous: see [12, Proposition 2.3] – just changing metric.

Furthermore, the following lower estimate of |df |(u) still holds. For b ∈ R, we let, as

usual,

f b := {v ∈ X : f(v) ≤ b}.

Proposition 0 (see [12, Proposition 2.5]). Let f : X → R ∪ {+∞} be a lower

semicontinuous function and let u ∈ dom (f). Assume that there exist δ > 0, b > f(u),

σ > 0 and a continuous η : (B(u; δ) ∩ f b) × [0, δ] → X such that

d(η(v, t), v) ≤ t

f(η(v, t)) ≤ f(v) − σt.

Then, |df |(u) ≥ σ.

It readily follows from the definitions that |df |(u) ≤ |∇f |(u) for each u. Equality

holds for many important classes of functions; still, the weak slope seems to be the

suitable notion in order to develop a general critical point theory, see [12], [8] and

Section 3 of this note. We say that u is a critical point of f if |df |(u) = 0.

Let us mention that the notion of weak slope, as defined in the continuous case,

was introduced independently in [17], after a similar definition was given in [16].

Throughout this note we apply the usual convention inf Ø = +∞.

2. A coercivity result. Let (X, d) be a metric space and f, fh : X → R ∪

{+∞}, h ∈ N, be lower semicontinuous functions such that

(1) for all u ∈ dom (f), there exists uh → u with fh(uh) → f(u)
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and

(2) lim inf
h→∞

(

inf
X
fh

)

≥ inf
X
f

(this inequality is indeed an equality, because of (1)).

The following consequence of Ekeland’s variational principle (see, e.g., [2]) ex-

tends [12, Corollary 3.4].

Proposition 1. Let X be a complete metric space and f, fh : X → R∪{+∞},

h ∈ N, be lower semicontinuous functions such that (1) and (2) hold. Let Y be a

nonempty subset of X and ε > 0, λ > 0 be such that

inf
Y
f < inf

X
f + ελ.

Then, for any h0 ∈ N there exist h ≥ h0 and uh ∈ X such that

|fh(uh) − inf
X
f | < ελ,

d(uh, Y ) < λ,

|∇fh|(uh) < ε.

P r o o f. Let 0 < ε′ < ε and u ∈ Y such that f(u) < infX f + ε′λ and ε′′ ∈]ε′, ε[

be fixed. Let n ∈ N, h ≥ h0 and vh ∈ dom(fh) with 0 < nε′′/(n− 1) < ε, and

inf
X
fh ≥ inf

X
f − (ε′′ − ε′)λ/2,

d(vh, u) < λ/n, fh(vh) ≤ f(u) + (ε′′ − ε′)λ/2,

according to (1) and (2). Then,

fh(vh) < inf
X
fh + ε′′λ;

according to Ekeland’s variational principle, there exists uh ∈ X with

fh(uh) ≤ fh(vh) =⇒ |fh(uh) − inf
X
f | < ελ,

d(uh, vh) ≤
n− 1

n
λ =⇒ d(uh, Y ) ≤ d(uh, u) ≤ d(uh, vh) + d(vh, u) < λ,

and

fh(v) ≥ fh(uh) −
n

n− 1
ε′′d(v, uh) for all v ∈ X,
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so that |∇fh|(uh) ≤
n

n− 1
ε′′ < ε. �

Given f and (fh) as above, we say that f satisfies condition (PSB)∗ (resp.,

condition (PS)∗) if whenever (fhk
) is a subsequence of (fh) and (uk) ⊂ X are such

that (fhk
(uk)) is bounded and |∇fhk

|(uk) → 0 then (uk) is bounded (resp., (uk) has a

convergent subsequence).

In the next results we consider the following strengthening of condition (2):

(3) for all closed Y ⊂ X, lim inf
h→∞

(

inf
Y
fh

)

≥ inf
Y
f.

Conditions (1) and (3) are a kind of “uniform Γ-convergence” of (fh) to f (for the

notion of Γ-convergence, see [1], [10]).

We also assume given a function F : X → R, bounded on bounded subsets of

X, and with the property that there exist γ1, γ2 > 0 such that

(4) d(u, v) < γ1 =⇒ |F (u) − F (v)| < γ2;

for example, F could be Lipschitz continuous, or, in the case when X is a Banach

space, uniformly continuous. Following [9], we say that the function f is F -bounded

from below if fa ⊂ F b for some a, b ∈ R (this is obviously the case if f is bounded

below), and that f is F -coercive if f(u) → +∞ as F (u) → +∞.

Theorem 1. Let X be a complete metric space, f, fh : X → R ∪ {+∞},

h ∈ N, be lower semicontinuous functions satisfying (1) and (3), and F : X → R be a

function bounded on bounded subsets of X and satisfying (4). If f is F -bounded from

below and satisfies condition (PSB)∗, then f is F -coercive.

P r o o f. Let a, b ∈ R be such that fa ⊂ F b. Define a nonincreasing sequence of

subsets of X by setting

Xk := X \ F b+(2k+1)γ2 , k = 0, 1, 2, . . . .

Of course, we may assume that F is not bounded above — otherwise there is nothing

to prove — so that the Xk’s are nonempty. Since X0 ⊂ X \ F b, because of (4), the

function f is bounded below on each Xk. We may further assume that infXk
f < +∞

for all k — otherwise we are done. Set:

αk := inf
Xk+1

f − inf
Xk

f ≥ 0

and apply Proposition 1 to f with X := Xk, Y := Xk+1, ε := αk + 1/k and λ := γ1 to

obtain sequences (fhk
), (uk) with hk → ∞ as k → ∞, uk ∈ Xk and

(5) fhk
(uk) < inf

Xk+1

f + γ1/k,
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(6) d(uk,Xk+1) < γ1,

and

(7) |∇(fhk|Xk

)|(uk) < αk + 1/k.

According to (4), F (v) > b + (2k + 2)γ2 for all v ∈ Xk+1; from (6) and (4) again, we

deduce that F (u) > b+ (2k + 1)γ2 for u in a neighborhood of uk, and it follows that

|∇(fhk|X
k

)|(uk) = |∇fhk
|(uk);

also, F (uk) → +∞, which implies that (uk) is unbounded.

Now, assuming that f is not F -coercive, so that (infXk
f) is convergent and

αk → 0, we get from (5) and (7) that

(fhk
(uk)) is bounded and |∇fhk

|(uk) → 0,

contradicting condition (PSB)∗. �

Corollary 1. Let (E, ‖ · ‖) be a Banach space and f, fh : E → R ∪ {+∞},

h ∈ N, be lower bounded, lower semicontinuous functions satisfying (1) and (3). Then,

f is ‖ · ‖-coercive if and only if f satisfies condition (PSB)∗.

P r o o f. The “if” part is a special case of Theorem 1, the “only if” part follows

easily from (3). �

Remarks. (i) Corollary 1 contains the coercivity result of [19] which is stated

for X a Banach space, f is C1, fh is the restriction of f to a linear subspace Xh with

X = ∪Xh and condition (PS)∗ holds; indeed, we have |∇fh|(u) = ‖f ′h(u)‖X∗
h

for all

u ∈ Xh, see e.g. [12] (see also Proposition 2 below) and it is clear that this is still

true if we extend fh to all of X by giving it the value +∞ outside of Xh. Variants of

condition (PS)∗ in such a context have been used by several authors, starting with [4],

[20].

(ii) In the case when fh ≡ f for all h ∈ N, we shall speak of condition (PSB)

instead of (PSB)∗. Let us note that condition (PSB) is equivalent to the condition

that whenever (uk) ⊂ X is such that (f(uk)) is bounded and |∇(f)|(uk) → 0 then

(uk) has a bounded subsequence — this kind of condition is used in [3], [9]. The same

remark is valid for condition (PSB)∗.

(iii) See [9] for various relevant choices of the function F , in relation with

applications to PDE’S. In that respect, let us note that, reasoning in a similar way as in

the proof of Theorem 1, one shows the following result, in the spirit of [9, Proposition

2F].
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Theorem 1′. Let X be a complete metric space, f, fh : X → R ∪ {+∞},

h ∈ N, be lower semicontinuous functions satisfying (1) and (3) and F : X → R be a

continuous function satisfying (4). Assume that for some c ∈ R, it holds:

∀a < c, ∃ r ∈ R, fa ⊂ F r; ∀a > c, ∀ r ∈ R, fa 6⊂ F r.

Then, there exist a subsequence (fhk
) of (fh) and a sequence (uk) ⊂ X such that

fhk
(uk) → c, |∇fhk

|(uk) → 0 and F (uk) → +∞.

As a matter of fact, this result implies Theorem 1, but we preferred to state the

less general result, the meaning of which is easier to grasp.

3. A class of nonsmooth functions. Let E be a Banach space with (topo-

logical) dual E∗ and f : E → R∪{+∞} a function, not identically equal to +∞. Recall

that the Gâteaux subdifferential of f at u ∈ dom (f) is defined by

∂Gf(u) = {α ∈ E∗ : lim inf
t→0+

f(u+ tv) − f(u)

t
≥ 〈α, v〉 for all v ∈ X}.

We shall assume that f is of the form

(F)
f = φ+ ψ with φ : E → R Gâteaux differentiable and
ψ : E → R ∪ {+∞} convex.

In this case, ∂Gf = φ′ + ∂ψ, where ψ′ is the Gâteaux derivative and ∂ψ the Fenchel

subdifferential of Convex Analysis. Setting

ℓ(u) := {inf ‖φ′(u) + α‖ : α ∈ ∂ψ(u)}

we show that |∇f |(u) ≥ ℓ(u) for u ∈ dom (f), so that Corollary 1 contains the coercivity

result of [14], because then, if every sequence (uh) ⊂ E with (f(uh)) bounded and

ℓ(uh) → 0 is bounded, then f satisfies condition (PSB). We appeal to the following

separation lemma, which is essentially [22, Lemma 2.1] (with a simpler proof).

Lemma. Let E be a Banach space, g : E → R ∪ {+∞} be convex and σ > 0

with

g(0) = 0 and g(u) + σ‖u‖ ≥ 0 for all u ∈ E.

Then there exists α ∈ E∗ such that

〈α, u〉 ≤ g(u) for all u ∈ E and ‖α‖ ≤ σ.
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P r o o f. It is an immediate consequence of the Mazur-Orlicz Theorem (see e.g.,

[15, Theorem p. 27]). �

Proposition 2. Let E be a Banach space, f : E → R ∪ {+∞} be a function

of the form (F), and u ∈ dom (f). Then, |∇f |(u) ≥ ℓ(u).

P r o o f. We may assume ℓ(u) > 0 (in particular, u is not a local minimum of

f). Let σ > 0 with ℓ(u) > σ; using the lemma (with g = 〈φ′(u), ·〉 + ψ(· + u) − ψ(u)),

we find w ∈ E such that

(8) 〈φ′(u), w − u〉 + ψ(w) − ψ(u) < −σ‖w − u‖.

Using the definition of Gâteaux derivative and the convexity of ψ, it follows that for

t > 0 small enough
f(u+ t(w − u)) − f(u)

t‖w − u‖
≤ −σ,

and from the definition of slope that |∇f |(u) ≥ σ; hence the conclusion. �

Under the assumption that φ and ψ were lower semicontinuous, the class of

functions of the form (F) was termed “smooth” in [3], for the reason that all results

therein could be obtained through Ekeland’s variational principle instead of using the

smooth variational principle of Borwein and Preiss. From the point of view of critical

point theory, however, some additional regularity seems necessary in order to obtain a

“good” class of functions. In what follows, we shall assume that f is of the form (F)

and satisfies

(H)
the Gâteaux derivative φ′ : E → E∗ of φ is norm-to-weak∗ continuous and
ψ is lower semicontinuous.

Results in critical point theory are established in [22] for functions of the type f = φ+ψ

with φ ∈ C1(E,R), ψ convex lower semicontinuous, and in [2], [13] for continuous φ with

a norm-to-weak∗ continuous Gâteaux derivative, by means of the variational principle.

It is shown in [12] that the general nonsmooth critical point theory developed

in [8], [12] applies to the class of functions considered in [22] (see also [7], [21]). This

theory is based on a general deformation theorem for continuous functions defined on

metric spaces and reduction of the lower semicontinuous case to the continuous one by

means of the function Gf whenever

inf{|dGf |(u, ξ) : ξ > f(u)} > 0.

The next results show that this theory applies to a function f verifying (F) and (H).
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Let us mention first that, if we assume that the Gâteaux derivative of the

function φ is norm-to-weak∗ continuous, then it is locally bounded, which implies that

φ is actually locally Lipschitz.

Proposition 3. Let E be a Banach space, f : E → R ∪ {+∞} a function of

the form (F) satisfying (H), and u ∈ dom (f). Then, |df |(u) ≥ ℓ(u).

P r o o f. As in the proof of Proposition 2, we may assume that ℓ(u) > 0 and,

given σ ∈]0, ℓ(u)[, we find w ∈ E such that (8) above holds. Because of hypothesis

(H), there exists δ > 0 such that w /∈ B(u; 2δ) and

〈φ′(v), w − v〉 + ψ(w) − ψ(v) ≤ −σ‖w − v‖ for all v ∈ B(u; 2δ).

Set:

η(v, t) = v + t
w − v

‖w − v‖
, v ∈ B(u; δ), t ∈ [0, δ].

It is now easy to verify (in particular, using the fact that η is a “flow”) that

f(η(v, t)) ≤ f(v) − σt for v ∈ B(u; δ), t ∈ [0, δ].

By Proposition 0 we have |df |(u) ≥ σ and the conclusion follows. �

Observe that if f : E → R ∪ {+∞} satisfies (F) and (H) and (uh) ⊂ E is

such that ℓ(uh) → 0, f(uh) → c and uh → u, then ℓ(u) = 0 and f(u) = c, which

suggests that f is well-behaved from the point of view of critical point theory. This

fact is expressed, in a different way, by Proposition 3 and Corollary 2 below (thanks to

the theory of [12], [8]).

Theorem 2. Let X be a metric space, f0 : X → R ∪ {+∞} be lower

semicontinuous, f1 : X → R be locally Lipschitz, f := f0 + f1 and (u, ξ) ∈ epi (f).

Then,

|dGf0 |(u, ξ − f1(u)) = 1 =⇒ |dGf |(u, ξ) = 1.

P r o o f. Assume that f1 is Lipschitz of constant k in B(u; δ0) (k, δ0 > 0). Let

ε ∈]0, 1] be fixed and let δ ∈]0, δ0] and η = (η1, η2) : B((u, ξ−f1(u)); δ)×[0, δ] → epi (f0)

continuous with

d(η((v, µ), t), (v, µ)) = d(η1((v, µ), t), v) + |η2(v, µ) − µ| ≤ t,

|dGf0 |(η((v, µ), t) − |dGf0 |(v, µ) = η2((v, µ), t) − µ ≤ −(1 − ε)t.

Then, d(η1((v, µ), t), v) ≤ εt.
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Let δ′ ∈]0, δ] be such that (v, µ− f1(v)) ∈ B((u, ξ− f1(u)); δ) whenever (v, µ) ∈

B((u, ξ); δ′) and define η̃ : B((u, ξ); δ′) × [0, δ′] → epi (f) by

η̃((v, µ), t) =
(

η1((v, µ− f1(v)),
t

1 + kε
), η2((v, µ − f1(v)),

t

1 + kε
) +

+f1(η1((v, µ − f1(v)),
t

1 + kε
))

)

.

Clearly, η̃ is well-defined and continuous, and

d(η̃((v, µ), t), (v, µ)) =

= d(η1((v, µ− f1(v)),
t

1 + kε
), v) + |η2((v, µ− f1(v)),

t

1 + kε
) − µ+

+ f1(η1((v, µ − f1(v)),
t

1 + kε
))|

≤ d(η((v, µ − f1(v)),
t

1 + kε
), (v, µ− f1(v))) +

+ |f1(η1((v, µ − f1(v)),
t

1 + kε
)) − f1(v)|

≤
t

1 + kε
+ kε

t

1 + kε
= t.

Also, it holds:

Gf (η̃((v, µ), t)) =

= η2((v, µ− f1(v)),
t

1 + kε
) + f1(η1((v, µ− f1(v)),

t

1 + kε
))

≤ µ− f1(v) − (1 − ε)
t

1 + kε
+ f1(η1((v, µ− f1(v)),

t

1 + kε
))

≤ µ− (1 − ε)
t

1 + kε
+ kε

t

1 + kε
= Gf (v, µ) −

1 − ε− kε

1 + kε
t.

Hence,

|dGf |(u, ξ) ≥
1 − ε− kε

1 + kε

and the conclusion follows from the arbitrariness of ε > 0. �

Remark. The implication in Theorem 2 is indeed an equivalence, the reverse

implication being obtained from it replacing f0 by f = f0 + f1 and f1 by −f1.

Corollary 2. Let E be a Banach space, f : E → R ∪ {+∞}, f = φ + ψ,

satisfy (F) and (H) and let (u, ξ) ∈ epi (f) with ξ > f(u). Then,

|dGf |(u, ξ) = 1.
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P r o o f. It is shown in [12, Theorem (3.13)] that the result holds for convex

lower semicontinuous functions, so that |dGψ|(u, ξ − φ(u)) = 1. As mentioned before,

φ is locally Lipschitz on E and the conclusion follows from Theorem 2. �
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