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EXISTENCE OF INTEGRAL MANIFOLDS OF IMPULSIVE

DIFFERENTIAL EQUATIONS

G. T. Stamov
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Abstract. The present paper investigates the existence of integral manifolds for
impulsive differential equations with variable perturbations.

By means of piecewise continuous functions which are generalizations of the
classical Lyapunov’s functions, sufficient conditions for the existence of integral
manifolds of such equations are found.

1. Preliminary notes and definitions. In recent years, the impulsive differen-

tial equations have been an object of numerous investigations (Bainov and Simeonov,

1989; Dishliev and Bainov, 1989; Lakshmikantham, Bainov and Simeonov, 1989; Kulev

and Bainov 1990; Simeonov and Bainov, 1991, 1993)

In the present paper, some problems related to the existence of an integral ma-

nifold are considered. The main results are obtained by means of piecewise continuous

functions which are analogous to the classical Lyapunov’s functions.

Let R
n be the n-dimensional Euclidean space with norm ‖·‖ and scalar product

〈·, ·〉, and let I = [0,∞). We denote by PCk(J, Rn), where J ⊂ I, k = 1, 2, . . ., the

space of all piecewise continuous functions x : J → R
n such that:
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1. The set D = {ti ∈ J, i = 1, 2, . . .} of all points of discontinuity of x has no

finite point of accumulation.

2. For any ti ∈ D, x(ti − 0) = x(ti) and the limit x(ti + 0) is finite.

3. x is a Ck-continuous function in J \ D.

Let Ω be a domain in R
n, f : I ×Ω → R

n, Φi : Ω → R
n, i = 1.2 . . ., τi : Ω → R.

Introduce the following assumptions:

H1. f ∈ C1(I × Ω, Rn).

H2. Φi ∈ C1(Ω, Rn), i = 1, 2, . . ..

H3. If x ∈ Ω, then x+Φi(x) ∈ Ω, Li(x) = x+Φi(x) are invertible in Ω, and (Li(x))−1 ∈
Ω for i = 1, 2, . . ..

H4. τi(x) ∈ C1(Ω, I) and 0 < τ1(x) < τ2(x) < · · ·, lim
i→∞

τi(x) = ∞ uniformly on x ∈ Ω.

H5. The following inequalities hold

sup {‖f(t, x)‖ : (t, x) ∈ I × Ω} ≤ A < ∞,

sup

{∥

∥

∥

∥

∂τi(x)

∂x

∥

∥

∥

∥

: x ∈ Ω, i = 1, 2, . . .

}

≤ B < ∞, AB ≤ 1,

sup

{〈

∂τi(x + sΦi(x))

∂x
,Φi(x)

〉

: s ∈ [0, 1], x ∈ Ω, i = 1, 2, . . .

}

≤ 0.

Let the conditions H1 – H5 be satisfied. Consider the system of impulsive

differential equations

(1) ẋ(t) = f(t, x), t 6= τi(x),

(2) ∆x = Φi(x), t = τi(x), i = 1, 2, . . .

We recall (see Bainov and Simeonov, 1989) and (Lakshmikantham, Bainov and

Simeonov, 1989) that for any point (t0, x0) ∈ I × Ω which is not in hypersurfaces

σi = {(t, x) ∈ I × Ω : t = τi(x)}, the function x(t) = x(t; t0, x0) is called a solution of

the system (1), (2) with initial condition x(t0 + 0) = x0, if:

1. x(t; t0, x0) ∈ PC1(J, Rn) and, for any ti ∈ J ,

x(ti + 0; t0, x0) = x(ti; t0, x0) + Φi(x(ti; t0, x0))

2. x(t) satisfies in J \ D equation (1).
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We also note too that from H5 it follows that the phenomenon “beating” is

absent for the system (1), (2) i.e. the integral orbit of any solution of the system (1),

(2) meets each hypersurface σi, i = 1, 2, . . . at most once (Dishliev and Bainov, 1989).

We shall denote by J+ = J+(t0, x0) (resp. J− = J−(t0, x0)) the maximal

forward interval (t0, ω) (resp. backward interval (α, t0)) of existence of x(t; t0, x0).

Next, by θ+(t0, x0), θ−(t0, x0), θ(x0, t0) we shall denote the integral orbit of the

solution x(t; t0, x0) for t ∈ J+, t ∈ J− and t ∈ J respectively.

Definition 1. We call an arbitrary manifold M in the extended phase space:

a) r-integral manifold, if from (t0, x0) ∈ M it follows that θ+(t0, x0) ⊂ M ;

b) l-integral manifold, if from (t0, x0) ∈ M it follows that θ−(t0, x0) ⊂ M ;

c) integral manifold, if M is r-integral manifold and l-integral manifold.

In this paper there are formulated and proved sufficient conditions for the

existence of an integral manifolds of the system (1), (2).

The following is the main assumption in this paper:

H6. J+(t0, x0) = [t0,∞).

Definition 2. The impulsive system (1), (2) is said to be complete if for any

(t0, x0) ∈ I × Ω such that (t0, x0) /∈ σi, i = 1, 2, . . ., it follows J(t0, x0) = I.

It is easily verified that if the system (1), (2) is complete then conditions H5

and H6 hold.

Example 1. We consider the impulsive system (1), (2) with τi(x) = τi i. e. the

functions τi(x), i = 1, 2, . . . are independent from x. If the sequence {τi}, i = 1, 2, . . .

is a strictly increasing sequence, then the system (1), (2) is complete.

In what follows we shall use the class VM of partially continuous auxiliary

functions V : I × Ω → R which are analogue to Lyapunov’s functions.

Let M be an arbitrary manifold on the extended phase space of (1), (2). Put

τ0(x) = 0 for x ∈ Ω. Consider the sets

Gi = {(t, x) ∈ I × Ω : τi−1 < t < τi(x)} , i = 1, 2, . . . .

Definition 3. We shall say that the function V : I × Ω → R belongs to the

class VM which kernel is the manifold M in the extend phase space of (1), (2), if the

following conditions hold:

1. V (t, x) ∈ C1

(

∞∪
i=1

Gi, R

)

.

2. V (t, x) = 0, (t, x) ∈ M ; V (t, x) > 0, (t, x) ∈ (I × Ω) \ M,(3)
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3. For any i = 1, 2, . . . and each point (ξ, η) ∈ σi the following finite

limits exist V (ξ − 0, η)= lim
(t,x)→(ξ,η)
(t,x)∈Gi

V (t, x), V (ξ + 0, η)= lim
(t,x)→(ξ,η)
(t,x)∈Gi+1

V (t, x)

and moreover the equality V (ξ − 0, η) = V (ξ, η) holds.

Note that if x = ϕ(t) is a solution of system (1), (2), then for (t, x) ∈ ∞∪
i=1

Gi

(i.e. t 6= τi(x)), the equality V̇ (t, x) = D+V (t, x) is satisfied, where

D+V (t, x) = lim sup
∆→0+

∆−1 {V (t + ∆, ϕ(t + ∆)) − V (t, ϕ(t))}

is the upper right derivative of Dini of the function V (t, ϕ(t)).

Finally denote by K the class of all continuous and strictly increasing functions

a : I → I such that a(0) = 0.

2. Main results.

Theorem 1. Assume that:

1. The conditions H1 – H6 hold.

2. For the system (1), (2) there exists a function V ∈ VM with kernel the

manifold M , so that the following relations are satisfied

V̇ (t, x) ≤ 0 for (t, x) ∈ ∞∪
i=1

Gi,(4)

(

respectively 0 ≤ V̇ (t, x) for (t, x) ∈ ∞∪
i=1

Gi

)

,

V (t + 0, x + Φi(x)) ≤ V (t, x) for (t, x) ∈ σi, i = 1, 2, . . .(5)

(

respectively V (t, x) ≤ V (t + 0, x + Φi(x)) for (t, x) ∈ σi, i = 1, 2, . . .
)

.

Then M is an r-integral manifold, (respectively an l-integral manifold) of the

system (1), (2).

P r o o f. We shall prove Theorem 1 for the case of an r-integral manifold. For

l-integral manifold the proof is similar. Suppose that M is not an r-integral manifold.

Therefore there exists t′, t′ > t0 such that, if (t0, x0) ∈ M then (t, x(t; t0, x0)) ∈
M for t0 ≤ t ≤ t′ but (t, x(t; t0, x0)) /∈ M for t > t′. Then V (t′, x′) = 0, where

x′ = x(t′; t0, x0). Moreover, x(t) ∈ PC1(J+(t0, x0), R
n). Then for t′ the following two

cases are possible:
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a) If t′ ∈ σi, i = l, l + 1, . . ., then (t′, x(t′ + 0; t0, x0)) /∈ M and from Definition

3 it follows that V (t′ + 0, x(t′ + 0; t0, x0)) > 0.

Consequently 0 = V (t′, x′) < V (t′ + 0, x(t′ + 0; t0, x0)) which contradicts (4).

b) If t′ /∈ σi, i = l, l + 1, . . . then there exists t′′ ∈ J+(t′, x′), t′′ > t′ such that

(t′′, x(t′′; t′, x′)) /∈ M . From (4) and (5) it follows that the function is not increasing in

(t0,∞).

From (3) it follows that V (t′′, x(t′′; t′, x′)) > 0 so V (t′′, x(t′′; t′, x′)) > V (t′, x′)

for t′′ > t′ which contradicts the fact that the function is not increasing in (t0,∞).

From a) and b), it follows that M is an r-manifold. �

Theorem 2. Assume that:

1. The conditions H1 – H6 hold.

2. There exist a function V ∈ VM and a function c ∈ K such that the following

relations are satisfied

V̇ (t, x) ≤ −c(‖x‖) for (t, x) ∈ ∞∪
i=0

Gi

(

resp V̇ (t, x) ≥ c(‖x‖) for (t, x) ∈ ∞∪
i=0

Gi

)

,

V (t + 0, x + Φi(x)) ≤ V (t, x) for (t, x) ∈ σi, i = 1, 2, . . .
(

resp V (t, x) ≤ V (t + 0, x + Φi(x)) for (t, x) ∈ σi, i = 1, 2, . . .
)

.

Then M is an r-integral manifold, (l-integral manifold) of the system (1), (2).

P r o o f. The proof of Theorem 2 is analogous to the proof of Theorem 1. �

Theorem 3. Assume the following:

1. The conditions H1 – H6 hold.

2. There exist functions V ∈ VM and W ∈ VM such that the following relations

are satisfied:

V̇ (t, x) ≤ 0 for (t, x) ∈ ∞∪
i=0

Gi,

Ẇ (t, x) ≥ 0 for (t, x) ∈ ∞∪
i=0

Gi,

V (t + 0, x + Φi(x)) ≤ V (t, x) for (t, x) ∈ σi, i = 1, 2, . . . ,

W (t, x) ≤ W (t + 0, x + Φi(x)) for (t, x) ∈ σi, i = 1, 2, . . . .

Then M is an integral manifold of (1), (2).

P r o o f. The proof of Theorem 3 follows from Theorem 1. �
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Example 2. We consider the following system of impulsive differential equa-

tions

(6)















dy

dt
= −y − t2

√
yz2,

dz

dt
= t2y−2(z − 2), t 6= i,

∆y = −1

2
∆z = 0, t = i, i = 1, 2, . . .

where t ∈ I, y ∈ I, z ∈ I.

Take the manifold

(7) M =
{

(t, y, z) ∈ I3 : z = 2, t > 0, y > 0
}

and the functions

V (t, y, z) =

(

3

4

)i

exp

{

−
(

t

y

)2
}

(z − 2)2

and

W (t, y, z) = (z − 2)2.

Then

(8)

V̇ (t, y, z) =

(

3

4

)i
(

−2ty−2 exp

{

−
(

t

y

)2
}

(z − 2)2
)

+

+2

(

3

4

)i

exp

{

−
(

t

y

)2
}

(z − 2)t2y−2 +

(

3

4

)i

2t2y−3 exp

{

−
(

t

y

)2
}

(z − 2)2×

×(−y − t2
√

yz2) = 2

(

3

4

)i

ty−2 exp

{

−
(

t

y

)2
}

(z − 2)2
(

−1 − t3y−
1
2 z2
)

≤ 0,

i < t < i + 1, i = 1, 2, . . . , y > 0, z > 0.

On the other hand

Ẇ (t, y, z) = 2(z − 2)2t2y−2 ≥ 0, i < t < i + 1, i = 1, 2, . . . , y > 0, z > 0,(9)

V

(

i + 0, y − 1

2
, z

)

≤ V (i, y, z), y > 0, z > 0, i = 1, 2, . . . ,(10)

W

(

i + 0, y − 1

2
, z

)

= W (i, y, z), y > 0, z > 0, i = 1, 2, . . . .(11)

From (8), (9), (10) and (11) it follows that the hypotheses of Theorem 3 are

satisfied. Then (7) is an integral manifold of the system (6).
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Now we consider the function

(12) L(t, s, x) =







































V (t, x), t > s, (t, x) ∈ I × Ω, (s, x) ∈ I × Ω,

W (t, x), t < s, (t, x) ∈ I × Ω, (s, x) ∈ I × Ω,

max{V (t, x),W (t, x)}, (t, x) ∈ I × Ω,

max{V (t + 0, x + Φi(x)),W (t + 0, x + Φ(x))},
(t, x) ∈ σi, i = 1, 2, . . . ,

where V (t, x) and W (t, x) are as in Theorem 3.

Theorem 4. Let the conditions H1 – H6 hold. Then a manifold M from the

extended phase space of (1), (2) is an integral manifold of (1), (2), if and only if there

exists a function L(t, s, x) of form (12) such that:

L̇(t, s, x) ≤ 0 for t > s, (t, x) ∈ ∞∪
i=1

Gi, (s, x) ∈ ∞∪
i=1

Gi,

L(ti + 0, s + 0, x + Φi(x)) ≤ L(ti, s, x) for t > s, (t, x) ∈ σi, i = 1, 2, . . . ,

0 ≤ L̇(t, s, x) for t < s, (t, x) ∈ ∞∪
i=1

Gi, (s, x) ∈ ∞∪
i=1

Gi,

L(ti, s, x) ≤ L(ti + 0, s + 0, x + Φi(x)) for t < s, (t, x) ∈ σi, i = 1, 2, . . . .

P r o o f. The proof of Theorem 4 follows from (12) and Theorem 3. �
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