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A PERIODIC LOTKA-VOLTERRA SYSTEM

D. P. Tsvetkov

Communicated by V. Petkov

Abstract. In this paper periodic time-dependent Lotka-Volterra systems are
considered. It is shown that such a system has positive periodic solutions. It is
done without constructive conditions over the period and the parameters.

1. The Periodic Lotka-Volterra System. Consider the Predator-Prey
model (see Volterra [1])

N ′
1 = (ε1 − γ1N2) N1

N ′
2 = (−ε2 + γ2N1)N2.

(1)

The functions N1 and N2 measure the sizes of the Prey and Predator populations
respectively. The coefficients ε1, ε2, γ1, γ2 are assumed as nonnegative ω-periodic
functions of time t. The period ω > 0 is arbitrary chosen and fixed. This periodicity
assumption is natural; one may see for instance the work of J. Cushing [2] in which
is given a satisfactory justification on it. We still recount (due to [2]) some periodic
factors like seasonal effects of weather, food supply, mating habits, hunting or harvesting
seasons, etc. Here one may add any unidirectional ω-periodic influence of another
predator over the prey.

We will look for ω-periodic positive solutions for the conservative system (1)
that corresponds to the nature of N1 and N2.
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This work presents a result of existence. Notice that in the following theorem
there are no conditions on the period and there are no constructive conditions on the
parameters of the system. Our result is obtained under weak assumptions. However,
it is not explicit that makes the solutions difficult to any further examination.

Theorem. Suppose that ε1, ε2, γ1, γ2 are nonnegative continuous ω-periodic
functions and that each of them is not equal to zero identically. Then there exist ω-
periodic solutions with N1(t) > 0 and N2(t) > 0 for t ∈ R. Moreover, these solutions
satisfy the inequalities

min N1 ≥ e−ω max ε1 maxN1, minN2 ≥ e−ω max ε2 maxN2

and

max N1 ≤

∫ ω
0 ε2(s)ds
∫ ω
0 γ2(s)ds

eω max ε1 , maxN2 ≤

∫ ω
0 ε1(s)ds
∫ ω
0 γ1(s)ds

eω max ε2 .

The present work is related to the mentioned paper of J. Cushing [2] who
considered the system

N ′
1 = (b1 − c11N1 − c12N2)N1

N ′
2 = (−b2 + c21N1 − c22N2) N2

and has proved existence theorems. It is done under the constructive condition
c11(t)c12(t) > 0 for all t that makes the addend c11N1 unremovable. Therefore, there
is no intersect between the results of [2] and the above Theorem.

The framework of the present paper is closed to the papers of Z. Amine and
R. Ortega [3] and R. Ortega and A. Tineo [4] in which the authors considered the
Lotka-Volterra system

u′ = (a(t) − b(t)u − c(t)v) u

v′ = (d(t) ± f(t)u − g(t)v) v

under the condition that the coefficients are strictly positive.
In this connection notice the the paper of A. Tineo and C. Alvarez [5] in which

the authors, due to K. Gopalsamy, studied the periodic solutions of competing systems

u′
i = ui

[

bi −
n
∑

j=1

aijuj

]

, 1 ≤ i ≤ n,

(n ≥ 2) under the conditions

min(bi) >
∑

j 6=i

max(aij)

min(ajj)
max(bj), 1 ≤ i ≤ n,
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that implies min(ajj) > 0. So there is no overlap between the approach of the works
[2]–[5] and the approach of the present paper.

Finally, notice the example of J. Kolesov and D. Shvitra in the book [6] (an
actual system which includes delay effects) in which the self-existed oscillations in the
Prey equation force the oscillations in the Predator equation.

2. Examples.

Fig. 1 Fig. 2 Fig. 3

Let us investigate numerically the following system

N
′

1 = (sin 2t − cos 22t N2)N1

N
′

2 = (−cos 2t + sin 23t N1)N2.

A π-periodic solution is found near the initial data N1(0) = 0.9004 and N2(0) = 1.0728.
The calculations give

|N1(0) − N1(π)| < 0.00001, |N2(0) − N2(π)| < 0.00002.

Its form is shown in Fig. 1. Repeat the same for the system

N
′

1 = (sin 23t − 2cos 2t N2)N1

N
′

2 = (−cos 2t + 3sin 2t N1)N2.

A π-periodic solution is found near the initial data N1(0) = 0.2646 and N2(0) = 0.4755.
The calculations give

|N1(0) − N1(π)| < 0.0005, |N2(0) − N2(π)| < 0.0009.

Its form is shown in Fig. 2. Finally consider the system

N
′

1 = (sin 23t − 2N2)N1

N
′

2 = (−cos 27t + 3N1)N2.
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A π-periodic solution is found near the initial data N1(0) = 0.166 and N2(0) = 0.252
for which

|N1(0) − N1(π)| < 0.00006, |N2(0) − N2(π)| < 0.00057.

Its significant form is given in Fig. 3.

3. Proof of the Theorem. Denote

ε1
def
= max

t
ε1(t), ε2

def
= max

t
ε2(t).

In view of our assumptions we have ε1 6= 0 and ε2 6= 0. Denote

u(t)
def
= ε1 − ε1(t), v(t)

def
= ε2 − ε2(t).

Obviously u(t) ≥ 0, v(t) ≥ 0, t ∈ R. Now rewrite equations (1) in the form

−N ′
1(t) + ε1N1(t) = (u(t) + γ1N2(t)) N1(t)

N ′
2(t) + ε2N2(t) = (v(t) + γ2N1(t)) N2(t).

(2)

By the ω-periodic Green functions

G1(t, ω) =
eε1t

eε1ω − 1
, G2(t, ω) =

e−ε2t

1 − e−ε2ω
, t ∈ [0, ω),

the problem for ω-periodic solutions of (2) is reduced to the problem for continuous
ω-periodic solutions of the following operator system

N1 =
∫ ω
0 G1(t − s, ω) (u(s) + γ1N2(s)) N1(s)ds

def
= X (N1, N2)

N2 =
∫ ω
0 G2(t − s, ω) (v(s) + γ2N1(s))N2(s)ds

def
= Y(N1, N2).

Denote by C(ω) the space of the real continuous ω-periodic functions defined on the
whole axis. Let X be the Banach space C(ω) ⊗ C(ω) with the conventional norm

‖(N1, N2)‖X = max
t

|N1(t)| + max
t

|N2(t)|.

It is not difficult to see that the operator

Z
def
= (X ,Y) : X → X

is completely continuous. Moreover Z is positive with respect to the cone

K
def
= {(N1, N2) ∈ X : N1(t) ≥ 0 and N2(t) ≥ 0; t ∈ R}

i.e. Z : K → K. It can be shown that Z is positive with respect to the subcone
K◦ ⊂ K

K◦ def
= {min

t
N1(t) ≥ e−ε1ω max

t
N1(t) and min

t
N2(t) ≥ e−ε2ω max

t
N2(t)}.
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We pay more attention to this phenomenon in view of its importance. In fact
we have Z : K → K◦ since

min
t

X (N1, N2) ≥
minG1

maxG1
max

t
X (N1, N2) = e−ε1ω max

t
X (N1, N2)

and

min
t

Y(N1, N2) ≥
min G2

maxG2
max

t
Y(N1, N2) = e−ε2ω max

t
Y(N1, N2).

whenever (N1, N2) ∈ K. One can find similar estimates in M. Krasnosel’skii, E. Lifshic
and A. Sobolev [7].

The proof is based on the theory of completely continuous vector fields presented
by M. Krasnosel’skii and P. Zabrejko in [8]. The following proposition is extracted from
[8] in a form convenient for us.

Proposition [8]. Let Y be a real Banach space with a cone Q and L : Y → Y

be a completely continuous and positive (L : Q → Q) with respect to Q operator. Then
the following assertions are valid.

i. Let L(0) = 0. Let also L be differentable at zero with a derivative L′(0) and
there is no y ∈ Q, y 6= 0, with

y
◦
≤ L′(0)y.

Then there exists ind(0, L;Q) = 1.
ii. Let, for every sufficiently large R, there is no y ∈ Q with

‖y‖Y = R and L(y)
◦
≤ y.

Then there exists ind(∞, L;Q) = 0.
iii. Let L(0) = 0 and let there exist ind(0, L;Q) 6= ind(∞, L;Q). Then L has a

nontrivial fixed point in Q.

Here ind(·, L;Q) denotes the index of a point with respect to L and Q. The

sign
◦
≤ denotes the semiordering generated by Q.

Of course, Z is differentable at zero with a derivative

Z ′(0)(N1, N2) =

(
∫ ω

0
G1(t − s, ω)u(s)N1(s)ds,

∫ ω

0
G2(t − s, ω)v(s)N2(s)ds

)

.

Let us show that there is no nontrivial (N1, N2) ∈ K◦ such that the coordinate inequal-
ity

(N1(t), N2(t)) ≤ Z ′(0)(N1, N2)(t), t ∈ R,

holds. Otherwise there is (Ñ1, Ñ2), with the mentioned property, for which, without
loss of generality, we assume Ñ1 6≡0. Then integrating at [0, ω] we obtain

(3)

∫ ω

0
Ñ1(s)ds ≤

1

ε1

∫ ω

0
u(s)Ñ1(s)ds,
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which leads to the following contradiction
∫ ω

0
(ε1 − u(s))Ñ1(s)ds ≤ 0

since, under the definition of K◦, we have mint Ñ1(t) > 0 and the nonnegative difference
ε1 − u ≡ ε1 does not equal to zero identically. Thus point i of the cited proposition
yields

ind(0,Z;K◦) = 1.

Therefore, in accordance with point iii, for a proof of our theorem it is enough to show
that

(4) ind(∞,Z;K◦) = 0

which we are going to do.
Let Z∗ be a positive, with respect to the cone K◦, operator defined as follows

Z∗(N1, N2) = (X ∗(N1, N2),Y
∗(N1, N2)) =

=

(

eε1ω

ω

∫ ω

0
N1(s)ds + 1,

eε2ω

ω

∫ ω

0
N2(s)ds + 1

)

.

At first we shall prove that, the completely continuous and positive with respect to K◦

fields, I − Z and I − Z∗ are positive linear homotopic at

DR

def
= {(N1, N2) ∈ K◦ : ‖(N1, N2)‖X = 2R}

where R is chosen arbitrary with

(5) R > ω e(ε1+ε2)ω max

(

ε1
∫ ω
0 γ1(s)ds

,
ε2

∫ ω
0 γ2(s)ds

)

.

Otherwise, within the definitions (see [8]), there exist (Ñ1, Ñ2) ∈ DR and θ̃ ∈ [0, 1] for
which

(6)
θ̃X (Ñ1, Ñ2) + (1 − θ̃)X ∗(Ñ1, Ñ2) = Ñ1

θ̃Y(Ñ1, Ñ2) + (1 − θ̃)Y∗(Ñ1, Ñ2) = Ñ2.

Without loss of generality, we assume maxt Ñ2(t) ≥ R. Then

min
t

Ñ2(t) ≥ Re−ε2ω.

At this point the first equality of (6) implies

max
t

Ñ1(t) e−ε1ωRθ̃e−ε2ω

∫ ω

0
G1(t − s, ω)γ1(s)ds+
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+ max
t

Ñ1(t) (1 − θ̃) + (1 − θ̃) ≤ max
t

Ñ1(t), t ∈ R.

Integrating the last at [0, ω] we obtain

max
t

Ñ1(t) θ̃

(

Re−ε2ωe−ε1ω

ε1

∫ ω

0
γ1(s)ds − ω

)

+ ω(1 − θ̃) ≤ 0

which, in view of (5), may hold if and only if the function Ñ1 is equal to zero identically
and θ̃ = 1. Then substituting the values found for Ñ1 and θ̃ in the second equality of
(6) we get

∫ ω

0
G2(t − s, ω)v(s)Ñ2(s)ds = Ñ2(t), t ∈ R.

This leads to a contradiction in the same way as (3). Thus we prove the aforementioned
homotopy.

At last we are going to show that

ind(∞,Z∗;K◦) = 0

which implies the validity of (4), since the homotopic fields have the same index. Here
we use point ii of our proposition. For this purpose it is enough to observe that there
is no (Ñ1, Ñ2) ∈ K◦ with

X ∗(Ñ1, Ñ2)(t) =
eε1ω

ω

∫ ω

0
Ñ1(s)ds + 1 ≤ Ñ1(t), t ∈ R.

Otherwise, after integrating at [0, ω], the last gives the impossible inequality

eε1ω

∫ ω

0
Ñ1(s)ds + ω ≤

∫ ω

0
Ñ1(s)ds.

Thus we prove that system (1) has nontrivial solutions.
The proof of the second part follows from the definition of K◦ and from the

fact that for every solution it holds

∫ ω

0
ε1(s)ds −

∫ ω

0
γ1(s)N2(s)ds =

∫ ω

0

N ′
1(s)

N1(s)
ds = 0

and
∫ ω

0
ε2(s)ds −

∫ ω

0
γ2(s)N1(s)ds =

∫ ω

0

N ′
2(s)

N2(s)
ds = 0.

4. Notices. The most important detail in the proof was to obtain a proper
growth of Z at infinity (in order to find ind(∞,Z, ·)) that forces the introduction of
the cone K◦.
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It will be of certain interest to investigate the existence of positive almost-
periodic solutions of (1) with positive almost-periodic coefficients. Perhaps this problem
is much more difficult than the periodic one. In this case, together with the compactness
of the solution operator, we (possibly) lose the opportunity to use a convenient cone
like K◦.
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