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SPECULATING ABOUT MOUNTAINS
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Abstract. The definition of the weak slope of continuous functions introduced by
Degiovanni and Marzocchi (cf. [8]) and its interrelation with the notion “steepness”
of locally Lipschitz functions are discussed. A deformation lemma and a mountain
pass theorem for usco mappings are proved. The relation between these results
and the respective ones for lower semicontinuous functions (cf. [7]) is considered.

0. Introduction. The classical mountain pass theorem of A. Ambrosetti and
P.H.Rabinowitz (cf. [1]) has been extended in various directions, one of them being the
relaxation of the smoothness assumption on the considered functional. These exten-
sions require notions corresponding to the norm of the derivative (and in particular,
to a critical point) in the C1 case. A well known generalization is for locally Lipschitz
functionals (cf. [2, 16, 3]) where the most popular notion of the derivative is the Clarke
subdifferential (cf. [4]). Recently in [8], [7], [12] and [13] the mountain pass result was
extended to the continuous case and a version of this result for lower semicontinuous
functionals was proved there. The principal aim of this paper is to propose an alterna-
tive approach to the lower semicontinuous case using multivalued usco mappings.
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The paper is organized as follows.
In section 1 we discuss some interrelations between the notions generalizing the

norm of the derivative of a C1 functional to the locally Lipschitz and continuous cases.
In section 2 we introduce the notion of steepness of upper semicontinuous

compact-valued mappings. It is shown how it generates a corresponding notion for
lower semicontinuous functionals. Two examples motivate our approach. In section
3 a natural multivalued version of the classical deformation lemma and in section 4 a
mountain-pass theorem for usco mappings are proved.

1. The locally Lipschitz and the continuous cases. We next recall the
definitions of the two notions which substitute the norm of the derivative of a C1-
functional in the locally Lipschitz and in the continuous case, respectively.

Definition 1.1. Let X be a Banach space, S ⊆ X be a neighbourhood of
x ∈ X, f :S → R be Lipschitz continuous and f◦(x, h) be the Clarke derivative of f at
x in direction h ∈ X. The number

− inf{f◦(x, h):h ∈ X, ‖h‖X = 1}

is called steepness of f at x and is denoted by st f(x).
The real number c is said to be a critical value of f if there exists x ∈ X

(called critical point of f) such that c = f(x) and 0 ∈ ∂f(x) where ∂f(x) is the Clarke
subdifferential of f at x.

Remark 1.2. In [16] we have defined the steepness as

inf{f◦(x;h):h ∈ X, ‖h‖X = 1}.

In [2] the respective notion is

λ(x):= min{‖x∗‖X∗ :x∗ ∈ ∂f(x)} (p. 113)

In fact, if st f(x) is defined as in Definition 1.1, we have λ(x) = 0 if st f(x) ≤ 0 and
λ(x) = st f(x) otherwise. In addition st f(x) = λ(x) = ‖f ′(x)‖ if f(x) is C1. That is
why in this paper we prefer to stick to the Definition 1.1 of the steepness rather than
to the one given in [16].

The notion of steepness can be introduced in a natural way for locally Lipschitz
functionals defined on a Finsler manifold (cf. [15, 17]).

Definition 1.3 (cf. [8]). Let X be a metric space endowed with the metric
d, f :X → R be a continuous function, x ∈ X and let B(x, δ) be the closed ball with
centre x and radius δ > 0. The supremum of the numbers σ ∈ [0,+∞) such that there
exist δ > 0 and a continuous map H:B(x, δ)×[0, δ] → X, such that for each y ∈ B(x, δ)
and for each t ∈ [0, δ] we have

d(H(y, t), y) ≤ t and f(H(y, t)) ≤ f(y) − σt,
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is called weak slope of f at x and is denoted by |df |(x).
As in the C1 and in the locally Lipschitz cases, x ∈ X is called critical if

|df |(x) = 0.

Remark 1.4. Independently Ioffe and Schwartzman introduced and studied
a slightly different notion of steepness for nonsmooth functionals (called δ-regularity
and denoted by δ(f, x)) which is in the spirit of Definition 1.3 (cf. [12], [13]).

In the Definition 1.3 existence of local deformations is assumed, whereas it has
to be proved on the basis of different assumptions in the previous versions of the so
called “deformation lemma”.

If f is C1, we have

|df |(x) = st f(x) = ‖f ′(x)‖
(cf. [8, Proposition 2.10 and Theorem 2.11], and [4, §2.2]).

It was proved in [8] (cf. Theorem 2.17) that if f is locally Lipschitz then |df |(x) ≥
st f(x). In particular this means that the set of critical points defined by |df |(x) = 0,
is smaller than the one, defined by st f(x) ≤ 0.

Unfortunately, unlike the C1 case, if f is locally Lipschitz, |df |(x) = st f(x) is
not necessarily true, as the following example shows.

Example 1.4. Let us divide the plane R
2 into four regions:

Ω1 = {(x, y): 0 ≤ x and −1

2
x ≤ y ≤ x}

Ω2 = {(x, y): 0 ≤ x ≤ y or x ≤ min(0, 2y)}

Ω3 = {(x, y): 0 ≤ x and −x ≤ y ≤ −1

2
x}

Ω4 = {(x, y): 0 ≤ x ≤ −y or 2y ≤ x ≤ 0}
The function f : R2 → R, defined by

f(x, y) =



















































−x
2

+
3y

2
if (x, y) ∈ Ω1

3x

2
− y

2
if (x, y) ∈ Ω2

−3x

2
− y

2
if (x, y) ∈ Ω3

x

2
+

3y

2
if (x, y) ∈ Ω4

is clearly locally Lipschitz.
Next we show that st f(0) ≤ 0. Assuming the contrary, let h = (α, β) with

α2 + β2 = 1, be the direction along which we have

0 > f0(0, h) = lim sup
t→0,t>0

(x,y)→(0,0)

1

t
[f(x+ tα, y + tβ) − f(x, y)].



344 N. K. Ribarska, Ts. Y. Tsachev, M. I. Krastanov

Since in every neighbourhood of the origin there are points from the interior
of Ωi, i = 1, 2, 3, 4, this inequality implies the following inconsistent system of linear
inequalities:

−α+ 3β < 0

3α− β < 0

−3α− β < 0

α+ 3β < 0.

Hence st f(0) ≤ 0, i.e. the origin is a critical point according to Definition 1.1. But

|df |(0) ≥ 1√
2

holds true. We show this by defining

H((x, y), t) =



























(x+
t√
2
, y − t√

2
) if (x, y) ∈ Ω3 ∪ Ω4

(x− t√
2
, y − t√

2
) if (x, y) /∈ Ω3 ∪ Ω4 and t ≤ t(x,y)

H(H((x, y), t(x,y)), t− t(x,y)) if (x, y) /∈ Ω3 ∪ Ω4 and t > t(x,y)

where t(x,y) is the greatest positive number t satisfying H((x, y), t) ∈ Ω1 ∪Ω2 for some
(x, y) /∈ Ω3 ∪ Ω4.

This example shows that the set of critical points in the sense of Definition 1.1
of a given locally Lipschitz function may be strictly larger than the respective set in
the sense of Definition 1.3.

2. The weak slope for multivalued usco mappings and for lower semi-
continuous single valued functionals. Let F :X → Y be a multivalued mapping
and A be a subset of Y. We denote

F−1(A) := {x ∈ X:F (x) ∩A 6= Ø}
F−1(A) := {x ∈ X:F (x) ⊂ A}.

Definition 2.1. A multivalued mapping F :X → Y , where X and Y are
topological spaces, is said to be upper semicontinuous at the point x0 ∈ X, if for every
open set V in Y which contains F (x0) there exists a neighbourhood W of x0 such that
W ⊂ F−1(V ). F is said to be upper semicontinuous if it is upper semicontinuous at
every point x ∈ X. The correspondence F is called usco if it is upper semicontinuous
and F (x) is non-empty and compact for every x in its domain.

It is straightforward that the “big preimage” F−1(M) of a closed set M is
closed and the “little preimage” F−1(U) of an open set U is open provided F is upper
semicontinuous.
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We introduce the notion of weak slope of an usco mapping F as a complete
analogue to Definition 1.3 (applied to supF ).

Definition 2.2. Let (X, d) be a metric space and F :X → R be an usco
mapping. We fix a point x ∈ X. The supremum of the reals σ ∈ [0,+∞) such that
there exist δ > 0 and a continuous map H:B(x, δ) × [0, δ] → X such that for each
y ∈ B(x, δ) and for each t ∈ [0, δ] we have

d(H(y, t), y) ≤ t and sup F (H(y, t)) ≤ sup F (y) − σ t

is called weak slope of F at x and is denoted by |dF |(x).
Note that for an usco F the supremum of F (x) is finite and in fact it is a

maximum. The function supF :X → R is upper semicontinuous in the sense that
(supF )(x) ≥ lim sup(supF )(xn) for every sequence {xn}∞n=1 tending to x. It is more
convenient to work with multivalued usco’s than with upper semicontinuous real-valued
functions (see Example 2.4 and Section 3). The mapping |dF | : X → [0,+∞] is again
a lower semicontinuous one as in the continuous case.

In [8, 7] a notion of weak slope for lower semicontinuous real functions is intro-
duced and studied and some results about the existence of critical points (of mountain
pass type) are proved.

Here we propose another approach to lower semicontinuous functions which
follows the classical pattern with the deformation lemma.

Let (X, d) be a metric space and f : X → R be a lower semicontinuous real
functional (i.e. f(x0) ≤ lim inf f(xn) whenever xn → x0). The graph of f, G =
{(x, t) : t = f(x)} is a subset of X × R. Let G be its closure. We define a multivalued
mapping F :X → R corresponding to f by F (x) = {t ∈ R: (x, t) ∈ G}. The proof of
the following proposition is straightforward.

Proposition 2.3. Let X, f and F be as above. Then f(x) ∈ F (x), moreover,
f(x) = minF (x) for every x ∈ X. If, in addition, f is continuous at the point x ∈ X,
then F (x) = {f(x)}. The correspondence F is usco provided f is locally bounded from
above.

Having in mind Proposition 2.3, it is natural instead of a lower semicontinuous
functional f to consider its “extension” F . So we have a “weak slope” for f using
Definition 2.2 for F .

Example 2.4. Let us consider f : R → R defined by

f(x) =

{

x+ 1 if x < 0
−x if x ≥ 0

The function f is lower semicontinuous and it is
natural from a geometrical point of view to consider
the origin as a mountain pass point.
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Indeed, the weak slope of the extension of f

F (x) =











x+ 1, x < 0
−x, x > 0

{0, 1}, x = 0

is zero at the origin i.e. |dF |(0) = 0.

The weak slope of f as introduced in [8, 7] is 1 at 0 although it is obvious that
there is no reasonable deformation in a neighbourhood of the origin.

This example shows that if one wants to prove a deformation lemma for a semi-
continuous real function the assumption that the weak slope is “big” in a neighbourhood
of f−1([1−ε, 1+ε]) (or of (sup F )−1 ([0−ε, 0+ε])) is not sufficient. This motivates the
use of the multivalued “extension” F and our formulation of the deformation lemma
in section 3.

Example 2.5. The lower semicontinuous function in the previous example
had a critical point in our sense which was not critical in the sense of [8, 7], being yet
a reasonable mountain pass point.

Here we see that a point can be critical in the sense of [8, 7], not being critical
in our sense which is due to the fact that we take into account only “essential values
of the lsc function”, i.e. values which are cluster points of the set of the values of f .
Indeed, let

f(x) =

{

x if x 6= 0
−1 if x = 0

Its extension is

F (x) =

{

x if x 6= 0
{−1, 0} if x = 0

and |dF |(x) = 1 for every x ∈ R, although the origin is a local minimum.

Remark 2.6. The definition of critical point given by Ioffe and Schwartzman
applies to any function and gives critical points in both examples (cf. [12],[13]).

3. Deformation lemma for usco mappings. Let X be a metric space with
metric d. By B(x, r) we denote the closed ball with centre x and radius r. For any
subset S of X we set

Sr = {x ∈ X : dist(x, S) ≤ r}

where dist(x, S) = inf{d(x, y) : y ∈ S}.

Theorem 3.1 (deformation lemma). Let X be a complete metric space
with metric d and F : X → R be an usco correspondence. Let ε, δ be two positive reals
and S be a subset of X. If Q is an open neighbourhood of F−1([c− ε, c+ ε]) ∩ Sδ such
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that for every y ∈ Q the weak slope |dF |(y) > 2ε

δ
, then there exists a continuous map

η : X × [0,+∞) → X with the following properties:

(i) η(x, 0) = x for every x ∈ X;

(ii) η(x, t) = x for every x ∈ X \Q and t ∈ [0,+∞);

(iii) if x ∈ S and supF (x) ≤ c+ ε, then

supF (η(x, δ)) ≤ c− ε;

(iv) d(x, η(x, t)) ≤ t whenever x ∈ X and t ∈ [0,+∞).

P r o o f. Let σ = 2ε
δ for short notation. Since |dF |(x) > σ for every x ∈ Q

by definition 2.2 we obtain that for every x ∈ Q there exist a positive real δx and
Hx ∈ C(B(x, δx) × [0, δx],X), such that B(x, δx) ⊂ Q and for every y ∈ B(x, δx) and
every t ∈ [0, δx] the following two inequalities hold true:

(1a) d(Hx(y, t), y) ≤ t

(1b) supF (Hx(y, t)) ≤ supF (y) − σ t.

Let us denote by Ux the open ball with centre x and radius
δx
2

. Then {Ux}x∈Q∪
{X \(Sδ∩F−1([c−ε, c+ε]))} is an open covering of the metric space X. Let {Uγ}γ∈Γ∪
{X \ (Sδ ∩F−1([c− ε, c+ ε]))} be a locally finite refinement of the above covering and
{αγ}γ∈Γ ∪ {α} be a Lipschitz partition of unity subordinate to this refinement. Let
Uγ ⊂ Uxγ , xγ ∈ Q and for short δγ = δxγ , Hγ = Hxγ . Without loss of generality we
can have

Q = ∪{Uγ : γ ∈ Γ} ⊃ Sδ ∩ F−1([c− ε, c+ ε]).

Let Γ = [0, γ0) be well ordered. We set tx = 1
2 min{δγ : x ∈ Uγ} if x ∈ Q and

tx = 0 if x ∈ X \Q. We define inductively the mappings {ξγ(x, t)}γ∈[0,γ0] :

(a) ξ0(x, t) = x for every x ∈ X and 0 ≤ t ≤ tx;

(b) if γ has a predecessor, then for every x ∈ X and t ∈ [0, tx]

(2) ξγ(x, t) =

{

Hγ−1(ξγ−1(x, t), αγ−1(x).t) if x ∈ Uγ−1

ξγ−1(x, t) if x /∈ Uγ−1;

(c) if γ is a limit ordinal, then

ξγ(x, t) = lim
β<γ

ξβ(x, t) for each x ∈ X, t ∈ [0, tx].
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Next we show that for each γ ∈ [0, γ0] and for x ∈ X, t ∈ [0, tx] the mapping
ξγ(x, t) is well defined and continuous and the following properties hold true:

(3a) d(ξγ(x, t), x) ≤ (
∑

β<γ

αβ(x)).t;

(3b) supF (ξγ(x, t)) ≤ supF (x) − σ(
∑

β<γ

αβ(x)).t.

We will proceed by induction on γ.
For γ = 0 the claim is clear.
Let the claim be true for every β < γ.

Case I: γ has a predecessor.
If x /∈ Uγ−1, then ξγ(x, t) is clearly well defined.

If x ∈ Uγ−1, then αγ−1(x).t ≤ tx ≤ 1

2
δγ−1. Using (3a) for γ − 1 we have

d(ξγ−1(x, t), x) ≤ t ≤ tx ≤ 1

2
δγ−1 and therefore ξγ−1(x, t) ∈ B(xγ−1, δγ−1) so ξγ(x, t) =

Hγ−1(ξγ−1(x, t), αγ−1(x).t) is well defined.
Moreover, whenever x ∈ X and t ∈ [0, tx] we have

d(ξγ(x, t), x) ≤ d(ξγ(x, t), ξγ−1(x, t)) + d(ξγ−1(x, t), x) ≤

≤ αγ−1(x).t+





∑

β<γ−1

αβ(x)



 .t =





∑

β<γ

αβ(x)



 .t

according to (1a), (2) and inductive assumption and (3a) is proved. Now

supF (ξγ(x, t)) = supF (ξγ(x, t)) − supF (ξγ−1(x, t)) + supF (ξγ−1(x, t)) ≤
≤ supF (ξγ(x, t)) − supF (ξγ−1(x, t)) + supF (x) − σ(

∑

β<γ−1

αβ(x)).t.

If x ∈ Uγ−1, then by (1b) and (2) we have

supF (ξγ(x, t)) − supF (ξγ−1(x, t)) =

= supF (Hγ−1(ξγ−1(x, t), αγ−1(x).t)) − supF (ξγ−1(x, t)) ≤ −σ.αγ−1(x).t.

If x /∈ Uγ−1, then αγ−1(x) = 0 and supF (ξγ(x, t)) − supF (ξγ−1(x, t)) = 0 =
−σ.αγ−1(x).t.

Hence

supF (ξγ(x, t)) ≤ −σ.αγ−1(x).t+ supF (x) − σ(
∑

β<γ−1

αβ(x).t =

= supF (x) − σ(
∑

β<γ

αβ(x).t,
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thus proving (3b).

Next we establish the continuity of ξγ at (x0, t0), where 0 ≤ t0 ≤ tx0. Let
xn → x0 and tn → t0, where 0 ≤ tn ≤ txn . There are two possibilities: x0 ∈ Uγ−1 or
x0 /∈ Uγ−1.

If x0 ∈ Uγ−1 then xn ∈ Uγ−1 for n sufficiently large. As above d(ξγ−1(xn, tn), xn)
≤ tn ≤ txn ≤ 1

2δγ−1 for every n ≥ n0 and for n = 0, so

ξγ−1(xn, tn) ∈ B(xγ−1, δγ−1), n ≥ n0, ξγ−1(x0, t0) ∈ B(xγ−1, δγ−1).

Now the continuity of ξγ at (x0, t0) follows from (2) and from the continuity of ξγ−1, αγ−1

and Hγ−1 (on the set B(xγ−1, δγ−1) × [0, δγ−1]).
If x0 /∈ Uγ−1, then the sequence {xn}∞n=1 consists of two subsequences:

{xkn
}∞n=1 ⊂ X \ Uγ−1 and {xln}∞n=1 ⊂ Uγ−1.

For the first subsequence we have ξγ(xkn
, tkn

) = ξγ−1(xkn
, tkn

) and the continuity of
ξγ−1 implies

lim
n→∞

ξγ(xkn
, tkn

) = ξγ−1(x0, t0).

The second subsequence may be finite. If not, x0 ∈ Uγ−1 and so t0 ≤ 1

2
δγ−1,

ξγ−1(x0, t0) ∈ B(xγ−1, δγ−1). Therefore

lim
n→∞

ξγ(xln , tln) = lim
n→∞

Hγ−1(ξγ−1(xln , tln), αγ−1(xln).tln) =

= Hγ−1(ξγ−1(x0, t0), αγ−1(x0).t0) = Hγ−1(ξγ−1(x0, t0), 0) =

= ξγ−1(x0, t0).

Thus the continuity of ξγ is proved because ξγ(x0, t0) = ξγ−1(x0, t0) when
x0 /∈ Uγ−1.

Case II: γ has no predecessor.
Let x ∈ X and B(x, rx) ∩ Uβ = Ø for each β /∈ {γ1, γ2, . . . , γs}. Denote γ̃ =

max{γi < γ : i = 1, 2, . . . , s} + 1. Then ξγ(y, t) = ξγ̃(y, t) for every y ∈ B(x, rx) and
t ∈ [0, ty ]. Indeed, a simple induction on β ∈ [γ̃, γ] shows ξβ(y, t) = ξγ̃(y, t) using (2).
Case II is done.

Let us denote ξγ0 by ξ. This mapping has the properties:

(4a) d(ξ(x, t), x) ≤ t for each x ∈ X, t ∈ [0, tx];

(4b) supF (ξ(x, t)) ≤ supF (x) for each x ∈ X and t ∈ [0, tx];

(4c) supF (ξ(x, t)) ≤ supF (x) − σ.t for each x ∈ Sδ ∩ F−1([c− ε, c+ ε])
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and t ∈ [0, tx].
These properties follow from (3a), (3b), because

∑

β<γ0
αβ(x) = 1

on Sδ ∩ F−1([c− ε, c+ ε]).
In the sequel we shall need the lower semicontinuity of the mapping x → tx ∈

[0,+∞) on X. If x /∈ Q we have tx = 0 and the lower semicontinuity follows from
ty ≥ 0 for every y ∈ X. Now let x ∈ Q = ∪γ∈Γ Uγ . Since {Uγ}γ∈Γ is locally finite,
there exists a ball B(x, rx), such that B(x, rx) ∩ Uγ 6= Ø only for finitely many γ.
Without loss of generality

B(x, rx) ∩ Uγ 6= Ø iff γ ∈ {β ∈ Γ : x ∈ Uβ}.

If y ∈ B(x, rx), then {β ∈ Γ : y ∈ Uβ} ⊂ {β ∈ Γ : x ∈ Uβ}, i.e. ty ≥ tx and the lower
semicontinuity of x→ tx ∈ [0,+∞) is proved. It implies the existence of a continuous
function τ : X → [0,+∞) such that τ(x) ≤ tx on X and τ(x) > 0 iff tx > 0, i.e.
τ(x) > 0 iff x ∈ Q.

Next we define inductively

ηk ∈ C(X × [0,+∞),X) and τk ∈ C(X) for k = 0, 1, 2, . . .

as follows:
τ0(x) ≡ 0 on X;
η0(x, t) = x for every x ∈ X and t ≥ 0;
τk+1(x) = τk(x) + τ(ηk(x, τk(x)));

ηk+1(x, t) =















ηk(x, t) for every t ∈ [0, τk(x)]

ξ(ηk(x, τk(x)), t− τk(x)) for every t ∈ [τk(x), τk+1(x)]

ξ(ηk(x, τk(x)), τk+1(x) − τk(x)) for every t ≥ τk+1(x).

The following properties of ηk are corollaries of the properties (4a), (4b) and
(4c) of ξ :

(5a) d(ηk(x, t), x) ≤ t for every x ∈ X and t ≥ 0.

(5b) supF (ηk(x, t)) ≤ supF (x) for every x ∈ X and t ≥ 0.

(5c) supF (ηk(x, t)) ≤ supF (x) − σ.t

for every x satisfying ηi(x, τi(x)) ∈ Sδ∩F−1([c−ε, c+ε]) whenever i ∈ {0, 1, . . . , k−1}
and for every t ∈ [0, τk(x)].
We shall prove only (5c) since (5a) and (5b) are straightforward. Again, we proceed by



Speculating about mountains 351

induction on k. The first step is trivial. Next we estimate from above sup F (ηk+1(x, t)).
If t ∈ [0, τk(x)] we have

sup F (ηk+1(x, t)) = sup F (ηk(x, t)) ≤ sup F (x) − σ.t

by the inductive assumption. If t ∈ [τk(x), τk+1(x)], then

sup F (ηk+1(x, t)) = sup F (ξ(ηk(x, τk(x)), t− τk(x))) ≤

≤ sup F (ηk(x, τk(x))) − σ.(t− τk(x)) ≤

≤ sup F (x) − σ.τk(x) − σ.t+ σ.τk(x) = sup F (x) − σ.t.

The first of the above inequalities is (4c) applied to

ηk(x, τk(x)) ∈ Sδ ∩ F−1([c− ε, c+ ε]) and t− τk(x) ∈ [0, tηk(x,τk(x))]

and the second one is the inductive assumption.

The following claim is the critical step in the proof.

Claim. Let us denote A = cl({x ∈ X : sup F (x) ∈ [c− ε, c + ε]} ∩ S). Then
for every x ∈ A there is a neighbourhood V of x and a positive integer s such that
for every y ∈ S ∩ V satisfying sup F (y) ≤ c+ ε we have sup F (ηs(y, τs(y))) < c− ε.

P r o o f o f t h e c l a im. Let x be fixed in A. There are three cases.

Case I. {ηk(x, τk(x))}∞k=1 6⊂ F−1([c − ε, c + ε]), i.e. there exists a positive
integer s such that ηs(x, τs(x)) /∈ F−1([c− ε, c+ ε]). Since F is upper semicontinuous
and ηs(., τs(.)) is continuous on X, there exists a neighbourhood V of x such that
ηs(y, τs(y)) /∈ F−1([c−ε, c+ε]) for every y ∈ V . Then if y ∈ V and sup F (y) ≤ c+ε,
the property (5b) completes the proof in this case.

Case II. sup {τk(x) : k = 1, 2, . . .} > δ. Then there is s such that τs(x) > δ
and a neighbourhood V of x such that τs(y) > δ for every y ∈ V . Let us fix y ∈ V ∩S
with supF (y) ≤ c+ε. Aiming for contradiction we assume sup F (ηs(y, τs(y))) ≥ c−ε.
Let sy = min {k : τk(y) > δ}. Then y ∈ S and (5a) yield ηi(y, τi(y)) ∈ Sδ for
i = 0, 1, . . . , sy − 1. Moreover, by (4b), we have c− ε ≤ sup F (ηi(y, τi(y))) ≤ c+ ε for
i = 0, 1, . . . , sy − 1, hence ηi(y, τi(y)) ∈ Sδ ∩ F−1([c − ε, c + ε]) for these i. Applying
(4b) and (5c) we obtain

c− ε ≤ sup F (ηs(y, τs(y))) ≤ sup F (ηsy(y, τsy(y))) ≤ sup F (y) − σ.τsy(y) <

< supF (y) − 2ε

δ
.δ ≤ c+ ε− 2ε = c− ε,

which is a contradiction.
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Case III. {ηk(x, τk(x))}∞k=1 ⊂ F−1([c − ε, c + ε]) and sup {τk(x) : k =
1, 2, . . .} ≤ δ. Because of (4a) we have

d(ηk+1(x, τk+1(x)), ηk(x, τk(x))) = d(ξ(ηk(x, τk(x)), τk+1(x) − τk(x)), ηk(x, τk(x))) ≤

τk+1(x) − τk(x). Since {τk(x)}∞k=1 is convergent, the sequence {ηk(x, τk(x))}∞k=1 is a
Cauchy one. Since X is complete, there exists z = lim

k→∞
ηk(x, τk(x)). Moreover

d(x, z) = lim
k→∞

d(x, ηk(x, τk(x))) ≤ lim
k→∞

k
∑

i=1

d(ηi−1(x, τi−1(x)), ηi(x, τi(x))) ≤

≤ lim
k→∞

k
∑

i=1

(τi(x) − τi−1(x)) = lim
k→∞

τk(x) ≤ δ,

i.e. z ∈ Sδ because x ∈ S. Further on, z ∈ F−1([c−ε, c+ε]) because F−1([c−ε, c+ε])
is closed. Hence z ∈ Sδ∩F−1([c−ε, c+ε]) ⊂ Q. Therefore τ(z) > 0 and the continuity

of τ yields that τ(ηk(x, τk(x))) > τ(z)
2 for all k sufficiently large. On the other hand

τ(ηk(x, τk(x))) = τk+1(x) − τk(x) →k→∞ 0.

The contradiction ends the proof of the claim.

So, for every x ∈ A the claim provides a neighbourhood Vx ⊂ Q of x and a
positive integer sx such that for each y ∈ Vx ∩S satisfying supF (y) ∈ [c−ε, c+ε] we
have supF (ηsx(y, τsx(y))) < c− ε. Now {Vx}x∈A ∪ {X \A} is an open covering of X.
Let {Vβ}β∈B∪{X \A} be a locally finite refinement of this covering and {ωβ}β∈B∪{ω}
be a Lipschitz partition of unity subordinate to the refinement. We denote

τ∗(x) =
∑

β∈B

ωβ(x).τsβ
(x).

Since {Vβ}β∈B is locally finite, τ∗(x) : X → [0,+∞) is continuous. Let k(x) =
max{sβ : x ∈ Vβ}. We define η : X × [0,+∞) → X as follows:

η(x, t) =

{

ηk(x)(x, t) if t ≤ τ∗(x)

ηk(x)(x, τ
∗(x)) if t ≥ τ∗(x)

Let x ∈ X. Then there exists r > 0 such that B(x, r) ∩ Vβ = Ø whenever
x /∈ Vβ. If y ∈ B(x, r) we have

τ∗(y) ≤ max {τsβ
(y) : y ∈ Vβ} ≤ max {τsβ

(y) : y ∈ Vβ} =

= τmax{sβ :y∈Vβ}
(y) = τk(y)(y) ≤ τk(x)(y),
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because k(y) ≤ k(x). Therefore η(y, t) = ηk(y)(y, t) = ηk(x)+1(y, t) for every y ∈ B(x, r)
and t ∈ [0, τ∗(y)]. Now the continuity of ηk(x)+1 and τ∗ yields the continuity of η.

It remains only to verify that the so defined mapping η ∈ C(X × [0,+∞),X)
has the properties (i)—(iv) from the statement of the deformation lemma. The property
(i) follows from the definition of ηk, (ii) follows from the fact that τ∗(x) = 0 if x /∈ Q
and (iv) follows from (5a). Let x ∈ S and supF (x) ≤ c+ ε. If supF (x) < c− ε, (iii)
follows from (5b). If supF (x) ≥ c− ε, then x ∈ A and hence there exists β ∈ B with
x ∈ Vβ. Let sβ∗ = min {sβ : x ∈ Vβ}. Then τ∗(x) ≥ τsβ∗

(x) and we have different
possibilities depending on the order of the reals δ, τ∗(x), τsβ∗

(x).
We will denote by l the last index for which τl(x) ≤ min{τ∗(x), δ}. If δ ≥

τ∗(x) ≥ τsβ∗
(x), then using (4b) several times we obtain

sup F (η(x, δ)) ≤ sup F (η(x, τ∗(x))) = sup F (ξ(ηl(x, τl(x)), τ
∗(x) − τl(x))) ≤

≤ sup F (ηl(x, τl(x))) = sup F (ξ(ηl−1(x, τl−1(x)), τl(x) − τl−1(x))) ≤

≤ sup F (ηl−1(x, τl−1(x))) ≤ . . . ≤ sup F (ηsβ∗
(x, τsβ∗

(x))).

If τ∗(x) ≥ δ ≥ τsβ∗
(x), then as above

sup F (η(x, δ)) = sup F (ηl+1(x, δ)) = sup F (ξ(ηl(x, τl(x)), δ − τl(x))) ≤

≤ sup F (ξ(ηl(x, τl(x))) ≤ sup F (ηsβ∗
(x, τsβ∗

(x))).

In both cases x ∈ S∩Vβ∗, sup F (x) ∈ [c−ε, c+ε] and the choice of Vβ∗ yields
sup F (ηsβ∗

(x, τsβ∗
(x))) < c−ε, hence sup F (η(x, δ)) < c−ε. If τ∗(x) ≥ τsβ∗

(x) > δ, we
repeat the argument in the proof in Case II of the claim. If there exists i ∈ {0, 1, . . . , l}
with sup F (ηi(x, τi(x))) < c− ε, then

sup F (η(x, δ)) = sup F (ηl+1(x, δ)) = sup F (ξ(ηl(x, τl(x)), δ − τl(x))) ≤

≤ sup F (ηl(x, τl(x))) ≤ sup F (ηi(x, τi(x))) < c− ε.

If sup F (ηi(x, τi(x))) ≥ c− ε for every i ∈ {0, 1, . . . , l}, then

ηi(x, τi(x)) ∈ Sδ ∩ F−1([c− ε, c+ ε]), i = 0, 1, . . . , l

and applying (5c) we have

sup F (η(x, δ)) = sup F (ηl+1(x, δ)) ≤ sup F (x) − σ.δ ≤ c+ ε− 2ε

δ
.δ = c− ε

thus finishing the proof that η has the property (iii). �

Remark 3.2. A careful examination of the above proof shows that it is
sufficient for Q to be an open set containing Sδ ∩ cl{x ∈ X : supF (x) ∈ [c− ε, c+ ε]}.
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4. A min–max principle. In this section we show how the deformation lemma
can be used to obtain a min-max principle for usco mappings.

Here is the setting (see [9], [10] and [11]): Let X be a complete metric space
with distance d and F : X → R be an usco correspondence. Let M be a family of
subsets of X and M be a subset of X. Throughout this section we shall denote

c(M,F,M) = inf{sup (∪{F (x) : x ∈ A ∩M}) : A ∈ M}.

Definition 4.1 (cf. [9]). Let B ⊂ X. We shall say that a class M of subsets
of X is a homotopy stable family with boundary B if
(a) every set in M contains B;
(b) for any set A in M and any η ∈ C(X × [0, 1],X) verifying η(x, t) = x for all (x, t)
in (X × {0}) ∪ (B × [0, 1]) we have

η(A, 1) = {x ∈ X : x = η(y, 1) for some y ∈ A} ∈ M.

Theorem 4.2. Let X be a complete metric space, F : X → R be an usco
correspondence, M be a homotopy stable family of subsets of X with boundary B and
M be a subset of X verifying

(6a) dist(M,B) = inf {d(x, y) : x ∈M,y ∈ B} > 0,

(6b) M ∩A 6= Ø for all A ∈ M,

and

(6c) inf{sup F (x) : x ∈M} ≥ c = c(X,F,M).

Let ε ∈ (0,dist(M,B)/2). Then for every A ∈ M satisfying

sup (∪{F (x) : x ∈ A ∩Mε/3}) < c+
ε2

12

there exists xε ∈ X with the properties:

(i) xε ∈ F−1([c− ε2

3
, c+

ε2

12
])

(ii) |dF |(xε) ≤ ε
(iii) dist(xε,M) ≤ ε
(iv) dist(xε, A) ≤ ε.

P r o o f. We first note that (6b) and (6c) imply c(M,F,M) = c(X,F,M) = c.
Hence there is A ∈ M (appearing in the formulation of the theorem) satisfying

sup (∪{F (x) : x ∈ A ∩Mε/3}) < c+
ε2

12
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because
c = c(M,F,M) ≤ c(Mε/3, F,M) ≤ c(X,F,M) = c.

We set

ψε(x) = max{0, ε
2

4
− ε

2
· dist (x,M)}

Fε(x) = F (x) + ψε(x)

for x ∈ X, and cε = c+
ε2

4
. It is easy to check that

cε ≤ c(M,Fε,M) ≤ c(X,Fε,M) ≤ cε.

Since 0 ≤ ψε(x) ≤
ε2

4
for each x ∈ X,

(7) sup (∪{Fε(x) : x ∈ A ∩M ε
3
}) < cε +

ε2

12

holds true.
Let us choose S to be the set A ∩Mε/3. Then

Sε/3 = (Mε/3 ∩A)ε/3 ⊂M2ε/3 ∩Aε/3.

Let us assume that for every

x ∈ Dε = cl(M2ε/3 ∩Aε/3 ∩ {x ∈ X : sup Fε(x) ∈ [cε − ε2/12, cε + ε2/12]})

we have |dFε|(x) > ε/2. Let Ux be an open neighbourhood of x such that Ux ⊂ Mε

and |dFε|(y) > ε/2 whenever y ∈ Ux. We set Qε = ∪{Ux : x ∈ Dε}. This set is
open, contains Dε and |dFε|(y) > ε/2 whenever y ∈ Qε. We are ready to apply
the deformation lemma (see Remark 3.2) for the following choice of F, S, c, ε, δ and Q
respectively: Fε, A∩Mε/3, cε, ε

2/12, ε/3 and Qε. We thus obtain η ∈ C(X× [0,∞),X)
satisfying :

(a) η(x, 0) = x for each x ∈ X;
(b) η(x, t) = x for each (x, t) ∈ (X \Qε) × [0,∞);
(c) if x ∈ A ∩Mε/3 and sup Fε(x) ≤ cε + ε2/12, then η(x, ε/3) ∈ Aε/3 ∩M2ε/3

and sup Fε(η(x, ε/3)) ≤ cε − ε2/12;
(d) d(x, η(x, t)) ≤ t for each x ∈ X and t ≥ 0.
Let us consider Â = η(A, ε/3). Since Qε ⊂Mε we have B∩Qε = Ø and, hence,

η(x, t) = x for all (x, t) ∈ (B × [0,∞)). Since M is homotopy stable with boundary
B, we have Â ∈ M. It follows from (d) that Â ∩M ⊂ η(A ∩Mε/3, ε/3). On the other
hand A ∩Mε/3 ⊂ {x ∈ X : sup Fε(x) ≤ cε + ε2/12} because of (7). Applying (c) we
obtain sup Fε(η(A ∩M ε

3
, ε

3)) ≤ cε − ε2/12. Then

cε = c(M,Fε,M) ≤ sup (∪{Fε(x) : x ∈ Â ∩M}) ≤ cε −
ε2

12
,
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which is a contradiction. Hence there is a point xε ∈ Dε with |dFε|(x) ≤
ε

2
. Moreover,

we know that

xε = lim
n→∞

xn where xn ∈ Aε/3 ∩M2ε/3 and sup Fε(xn) ∈ [cε −
ε2

12
, cε +

ε2

12
].

By the compactness of Fε(xn) we get yn ∈ Fε(xn) satisfying yn = sup Fε(xn). The
sequence {yn}∞n=1 of reals is bounded. Let {ynk

}∞k=1 be a convergent subsequence of it

with a limit y0. Then y0 ∈ Fε(xε) and y0 ∈ [cε− ε2

12 , cε+
ε2

12 ] because Fε is usco. Therefore

xε ∈ F−1
ε ([cε − ε2

12 , cε + ε2

12 ]). Since F (xε) = Fε(xε) − ψε(xε) and − ε2

4 ≤ −ψε(xε) ≤ 0,

xε ∈ F−1([c − ε2

3 , c + ε2

12 ]). Thus we checked that xε satisfies (i), (iii) and (iv) from
the statement of the theorem. It remains to prove (ii). Let us assume the contrary,
i.e. |dF |(xε) > ε. Let ε

′

be a positive real with |dF |(xε) > ε
′

> ε. Then there exist
a positive real δ and a deformation H ∈ C(B(xε, δ) × [0, δ],X) such that for every
x ∈ B(xε, δ) and for every t ∈ [0, δ] the following properties hold true:

d(x,H(x, t)) ≤ t

sup F (H(x, t)) ≤ sup F (x) − ε
′

.t.

Since ψε is a globally Lipschitz function with Lipschitz constant ε
2 , we have

sup Fε(H(x, t)) = sup F (H(x, t)) + ψε(H(x, t)) ≤

≤ sup F (x) − ε
′

.t+ ψε(H(x, t)) =

= sup Fε(x) − ψε(x) − ε
′

.t+ ψε(H(x, t)) ≤

≤ sup Fε(x) − ε
′

.t+ (ε/2)d(x,H(x, t)) ≤

≤ sup Fε(x) − ε
′

.t+ (ε/2).t =

= sup Fε(x) − (ε
′ − (ε/2)).t.

Hence |dFε|(xε) ≥ (ε
′ − (ε/2)) > (ε/2). The obtained contradiction completes the

proof. �

Definition 4.3. Let X be a complete metric space, c ∈ R and F : X → R be
an usco correspondence. We say that c is a critical value of F if there exists a point
x0 ∈ X such that c ∈ F (x0) and |dF |(x0) = 0. We say that F satisfies the condition
(PS)c if, whenever a sequence {xn}∞n=1 is such that c = limn→∞ yn, where yn ∈ F (xn)
and lim inf |dF |(xn) = 0, then c is a critical value of F .

Next we introduce the final necessary notation: Let u, v be two distinct points
of the connected metric space X. We denote

Γ = {g ∈ C([0, 1],X) : g(0) = u, g(1) = v}
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(the set of paths connecting u and v).

Corollary 4.4. Let X be a complete metric space, F : X → R be an usco
correspondence, D be a closed subset of X and u, v be two points from X belonging to
disjoint components of X \D. Assume c(X,F,Γ) = c(D,F,Γ) = c. If F verifies (PS)c
then c is a critical value of F .
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(1989), 321-330.



358 N. K. Ribarska, Ts. Y. Tsachev, M. I. Krastanov

[12] A. Ioffe, E. Schwartzman. Metric critical point theory 1. Morse regularity and
homotopic stability of a minimum. Journal de mathematiques pures et appliquées
75, 2 (1996), 125-153.

[13] A. Ioffe, E. Schwartzman. An extension of the Rabinowitz bifurcation theorem
to Lipschitz potential operators in Hilbert spaces, preprint, 1996.

[14] R. E Lucchetti. Walking around mountains. Reported at the Workshop on well-
posedness and stability of optimization problems, Sozopol, 13–18, September 1993.

[15] N. K. Ribarska, Ts. Y. Tsachev, M. I. Krastanov. Mountain pass lemma
for locally Lipschitz functions on smooth Finsler manifolds. Math. and education
in math. 20, (1991), 138-141.

[16] N. K. Ribarska, Ts. Y. Tsachev, M. I. Krastanov. On the general moun-
tain pass principle of Ghoussoub–Preiss. Mathematica Balkanica (new series) 5, 4

(1991), 350-358.

[17] N. K. Ribarska, Ts. Y. Tsachev, M. I. Krastanov. Deformation lemma on
C1–Finsler manifolds. Serdica Math. J. 21 (1995), 1-28.

[18] A. Szulkin. Minimax principles for lower semicontinuous functions and applica-
tion to nonlinear boundary value problems, Ann. Inst. Henry Poincaré, (Analyse
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