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ABSTRACT. We prove some multiplicity results concerning quasilinear elliptic
equations with natural growth conditions. Techniques of nonsmooth critical point
theory are employed.

1. Introduction. In this paper, we will be concerned with two problems related
to a quasilinear elliptic equation of the form

n n
— Y Dj(aij(x,u)Dju) + % > Dgajj(z,u)DiuDju = g(z,u) +w in
i,j=1 i,j=1

u=20 on 0f)

where a;j(x,s) = aji(z,s). As we pointed out in [7, 8, 9], the first difficulty is that
classical critical point theory fails in the case of quasilinear equations with natural
growth conditions. In fact, let us consider the associated functional f : Hi(Q) — R
defined by

flu) = %/QZ a;j(z,u)DjuDju dx —/QG(x,u) dr — (w, u),

2,7=1
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where G(z,s) = [; g(z,t)dt. Under reasonable assumptions on a;; and g, it is possible
to prove that f is continuous and that for every u € Hg () and v € C§°(Q)

- fluttv) — fu) -
%E}% " :/Qijz:laij(x,u)DiuDjvdl‘-i-

1 n
+§/ (Z Dsaij(x,u)DiuDju> vdx —/ g(z,u)vdr — (w,v).
al\.= Q
4,j=1
However, we cannot expect f to be of class C! or even locally Lipschitz continuous.
On the other hand, for similar reasons

n 1 n
{u — — Z Dj(a;j(z,u)Diju)+ 3 Z Dsaij(x,u)DiuDju—g(a:,u)}

1,j=1 1,j=1

is not well defined as an operator from H{(Q2) to H~(Q) and the topological methods,
applied so far in the literature, cannot be directly adapted to this setting.

We will use a variational method based on the nonsmooth critical point theory
of [10, 11]. Similar abstract techniques have been developed also in [13, 14]. We will
prove an Ambrosetti-Rabinowitz type result for a symmetric superlinear problem and an
Ambrosetti-Prodi type result for a jumping problem. We will essentially follow [7, 8, 9],
but we will impose a weaker form of assumption (a.4) below. For the convenience of
the reader we repeat the relevant material from [7, 8, 9] without proof, thus making
our exposition self-contained.

Finally, let us mention that different techniques of nonsmooth critical point
theory have been applied to quasilinear equations in [3, 20].

2. Functionals of the calculus of variations. Let {2 be a bounded open
subset of R™. For the sake of simplicity, let us suppose n > 3. Let f : H}(Q) — R be
a functional of the form

(2.1) flu) = / L(z,u, Du)dzx — (w,u).
0
The associated FEuler equation is formally given by the quasilinear problem

n
(2.2) — > Dy (Dg; L(z,u, Du)) + DsL(z,u, Du) = w in
. j=1

u=~0 on 0f)



On a variational approach to some quasilinear problems 401

Assume that w € H~1(Q) and that
L:OxRxR"—>R

is such that:

2:3) V(s,€) e RxR"™ L(x,s,£) is measurable with respect to z,
. for a.e. z € Q) L(x,s,¢) is of class C! with respect to (s, ).

Assume also the following growth conditions:
there exist ag € LY(Q2), by € R, a1 € L}, .(Q), by € L;2.(2) such that

loc

for a.e. x € Q and for all (s,&) € R x R" we have

(2.4) |L(x,5,)| < ao(x) + bolJs|72 +[¢]%),
(2.5) DLz, ,€)| < a1(@) + b () (|s| 2 + &),
(2.6) |De, L(x,5,€)| < ar(x) + ba(2)(|s|72 + [¢[?).

Under these conditions, it is readily seen that f is continuous and for every u € H}(€):

DyL(x,u, Du) € L}, (), De, L(z,u, Du) € Lj,.().

Definition 2.1. We say that u is a weak solution of (2.2), if u € H}(Q) and

n
- Z Dy, (D¢; L(z,u, Du)) + DsL(x,u, Du) = w
i=j
in D'(Q).
In order to apply variational methods, let us introduce a natural adaptation of
the Palais-Smale condition.
Definition 2.2. Let c € R. A sequence (uy,) in H} () is said to be a concrete
Palais-Smale sequence at level ¢ ((C'PS).-sequence, for short) for f, if limy, f(un) = c,

n
- Z Dif]' (D@L(JL‘, Uh, Duh)) + DSL(JL‘, Uh, Duh) € Hﬁl(Q)
j=1

eventually as h — oo and

n
(— > Dy, (D¢, L(x, up, Duy)) + DsL(x, up, Dup) — w) — 0
j=1
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strongly in H=1().
We say that f satisfies the concrete Palais-Smale condition at level ¢ ((C'PS).

for short), if every (CPS).-sequence for f admits a strongly convergent subsequence in
H(Q).

The next results are adaptations to the functional f of some classical theorems
of mountain pass type (see [2, 17, 21]).

Theorem 2.3. Let (D,S) be a compact pair, let 1 : S — HE(Q) be a
continuous map and let

& ={p € C(D, H}(Q)) : p)5 =¥}
Assume that there exists a closed subset A of H}(Q) such that
inf f > max f,
A /2 ¥(S) d
ANY(S) =0 and AN (D) # D for all p € D.
If f satisfies the concrete Palais-Smale condition at level

¢ = inf max f,
pe® (D)

then there exists a weak solution u of (2.2) with f(u) = c¢. Furthermore, if inf5 f > ¢,
then there exists a weak solution u of (2.2) with f(u) = c and u € A.

Proof. The case w = 0 can be found in [9, Theorem 2.1.5]. The extension to
the general case is straightforward. O

Theorem 2.4. Let vo,v; € H} (). Suppose that there exists r > 0 such that
|l — vo|| > r and

inf{f(u) : ue HY(Q), Ju - voll = r} > max{f(vo), f(v1)}.

Let
I ={y:0,1] — HXQ) continuous with ~v(0) = vy, y(1) = v1}

and assume that f satisfies the concrete Palais-Smale condition at the two levels

cp = inf f, c¢o = inf max(f o).
1 B(vw)f 2 = Inf ma (foy)

Then ¢; < ca and there exist a weak solution uy of (2.2), with ||u; — vol| < 7
and f(uy) = c1, and a second weak solution uy with f(ug) = cs.
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Proof. See [8, Theorem 1.3]. O

Theorem 2.5. Suppose that w =0 and that
L($7 —-S, _6) = L($7 S, 6)
for a.e. x € Q and every (s,&) € R x R™. Assume also that

(a) there exist p > 0, a > f(0) and a subspace V. C HE(Q) of finite codimension such
that

VueV: flul =p= fu) = e
(b) for every finite dimensional subspace W C H}(S2), there exists R > 0 such that
Vue W : |lull > R = f(u) < f(0);
(¢) f satisfies (CPS). for any ¢ > a.
Then there exists a sequence (up) of weak solutions of (2.2) with

li}]gn f(up) = +o0.

Proof. See [9, Theorem 2.1.6]. O

3. Homogeneous quadratic functionals of the gradient. In this section,
we restrict our attention to the case:

1 n
L(l‘,S,f) = 5 Z aZj(xvs)gzgj
ij=1
Let a;j : @ x R — R (1 <14, j < n) be such that
Vs e R a;j(-, s) is measurable,

(a.1) for a.e. x € Q aij(x,-) is of class C1,

forae z€Q,VseR, 1<4,j<n ajx,s)=aj(z,s);

there exists C' > 0 such that for a.e. £ € Q, Vs e R, 1 <14, j <mn,

(a.2) laij(z,s)| < C, |Dsaij(z,s)| <C,
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there exists v > 0 such that for a.e. x € Q, Vs € R, V¢ € R™,

n

(a.3) > ag(@,9)&& > Vg

i,j=1
there exists R > 0 such that for a.e. z € Q, Vs € R, V¢ € R",
n
(a.4) |s| > R = Z sDsaj(x,8)E& > 0.
i,j=1

Because of (a.1) and (a.2), conditions (2.3), (2.4), (2.5) and (2.6) are clearly satisfied.
Moreover, because of (a.2) and (a.3), there exists M > 0 such that

<MD ai(w,8)&&;

,j=1

> Dsaij(w,5)&&;

,j=1

(3.1) %

for a.e. x € Q, Vs € R, V& € R”.
Let us begin with a consequence of the Brezis-Browder Theorem.

Theorem 3.1. Let w € H Y(Q) and let u € HF(Q) be a weak solution of

n 1 n
- Z Dy, (aij(z,u) Dy, u) + 3 Z Dsagj(w,u) Dy, uDyu = w.
i,j=1 i,j=1

Let v € HY(Q) be such that

4,j=1

|:(§n: Dsaij($7u)Dx¢UijU> Uj| € LI(Q).

Then we have

(Z Dsaij(m,u)D;Biqu].u) ve LY(Q)

ij=1

n

/ { Z aij(z,u) Dy, uDy v +
Q

1 n
3 Z Dsaij(z,u) Dy, uDyu

i,j=1 i,j=1

v} dx = (w,v).
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Proof. The assertion follows by the result of [6]. O
Now, we will state some regularity results.

Lemma 3.2. Given A;; € L>(Q) (1 <i,j < n) with

D Aij(@)&85 > viEl

1,j=1

let we W=19(Q), u€ L (Q) and let u € HE(Q) be such that

loc
/ Z AijDyuDy;vde = / pvdr + (w,v) VYo e C5°(Q).
Q.57 Q
Assume that there exist « € L"(Q),¢ > 0 such that

p(r)u(z) < a(z)(u(z))?  ae in Q when |u(x)| > c.

Then the following facts hold:

ng

(@) if2<qg<nandr>7%, we have u € L~ (Q);

(b) if ¢ >n and r > %5, we have u € L>(Q).
Proof. Take v; = (u—p)™ and v2 = —(u+ p)~ with p > c¢. Then vy € H}()

and we have
p(x)vg(z) < a(z)u(@)v(z) € L1(9Q).

By the Brezis-Browder Theorem [6], it follows that (uvy) € L'(£2) and

n
/ Z AijDyuDy;vp dx = / ok de + (w, vg) < / auvy dr + (w, vg).
2,52 Q Q

Now, by well known techniques of regularity theory (see e.g. [15, 19]) the assertion
follows. O

Theorem 3.3. Leta € L"(Q), w e W H4(Q) and let u € H}(Q) be a weak

solution of

n 1 n
— Z Dy (aij(w,u)Dy,u) + 3 Z Dsaij(z,u) Dy, uDyju + au = w.
i,j=1 i,j=1

Then the following facts hold:
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ng

(@) if2<qg<nandr>7%, we have u € L"~4(Q);

(b) if g >n and r > 5, we have u € L*>(2).

Proof. Set
Aij = aij($7u)a

1 n
u= ) Z Dsaij(%U)DmUij“ - Qu.
ij=1

By (a.4), we have

!

n
5 Z uDsaij(w, u)DyuDyu — au® < —au?  ae. in Q when |u(z)| > R.

ij=1

pu =

By the previous lemma the assertion follows. O

We point out that, if a weak solution u belongs to Hg(Q2) N L*>(Q2), one can
apply the regularity results contained in [15].
Now we come to some compactness properties.

Lemma 3.4. Let (uy,) be a bounded sequence in H}(Q)) such that

n 1 n
_ Z ij (aij(x,uh)Dxiuh) + 5 Z Dsaij(x,uh)Dxiuthjuh
i,j=1 hj=1
belongs to H=(Q)) and is strongly convergent in H—1(£2).
Then it is possible to extract a subsequence (up, ) strongly convergent in H}(S2).

Proof. Let

n 1 n
wh = — Y Dq,(aij(z,up)Dyyup) + 3 > Dsaij(x,up) Dy, Dy, up.
i,j=1 i,j=1

Up to a subsequence, uy, is convergent to some u weakly in H{ (), strongly in L?(€)
and a.e. in ). Moreover, by [4, Theorem 2.1] we have, up to a further subsequence,
Dup, — Du a.e. in ().

At first, let us prove that

n 1 n
(3.2) /Q Z i (2, u) Dy, uDy v dr + 5/@ (Z Dsaij(x,u)DggiuD%.u) udr = (w,u)

i,j=1 i,j=1
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where w € H~1(€) is the limit of wy.
We will use the same device of [5]. We consider the test functions

vp = p exp{—M (up +R)"}

where ¢ € H}(2) N L®(Q), ¢ >0, UZ is the positive part of up, and M > 0 is defined
in (3.1). By Theorem 3.1 vy, is an admissible test function, so that

n
/Q Z aij(z,up) exp {—M (up + R)Jr}Dxiuthjgodx—i—
ij—=1

1 n n
+/Q 2 AZI Dsaij (@, un) Do un D jup, — M .Zl aij (2, up) Do, up Dy, (up, + R)*
1,]= L)=
pexp{—M (up + R)"}dx — (wp, pexp {—M (up, + R)"}) = 0.
From (a.4) and (3.1), we deduce that

1 n n
[5 > Dsaij(w,up) DayupDayup — M Y aij(x,up) Dyyup Dy, (uy, + R)T
i,j=1 i,j=1

pexp {=M (u, + R)*} <0,
and, by Fatou’s lemma, we get

/ E aij(z,u) exp {—M (u+ R)Jr}Dxiqujgodx—i—
(9
t,j=1

1 n n
5 Z Dgaij(x,u) Dy, uDy v — M Z i (2, u) Dy, uDy  (u + R)*
i,j=1 hj=1

wexp{—M (u+ R)"}dx >

*

(3-3) > (w,pexp {~M (u+ R)"}) Vo€ Hy(Q)NL*(Q), ¢ >0.

Now, we consider the test functions
1
o = pH(zu) exp{M (u+ R)"}
with ¢ € C§°(Q2), ¢ > 0 and

H:R—R, HeC'R), 0<H <1,
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H=1on[-1/2,1/2], H=0o0n]|—o00,—1] UL, 00l
Putting them in (3.3), we obtain

/ E aij(x,u)Dxiquj(QOH(l/ku))d:1:+
Q.“
t,j=1

1 n
—1—5/9 (Z Dsaij(m,u)DxiuD%.u) eH(1/ku)dz >

ij=1
(3.4) > (w,pH(1/kw)) Yo € C0(Q), ¢ > 0.

Passing to the limit as £ — oo in (3.4), we obtain

n 1 n
/Q Z aij (2, u) Dy, uDy p dz + 5/9 (Z Dsaij(a:,u)Dxiquju> pdr >

i,j=1 i,j=1
> (w,p) Yo e G5 (), ¢ 2 0.

In a similar way, by considering the test functions v, = ¢ exp {—M (up, — R)™}, it is
possible to prove the opposite inequality. It follows:

n 1 n
/9”2231 aij (2, u) Dy, uDy p dz + 5/9 (”2221 Dsaij(x,u)Dxiquju> pdr =
(3.5) = (w,p) Vo € Cy°(Q).

By (3.5), (a.4) and Theorem 3.1, we deduce (3.2).
Now, let us consider the function ¢ : R — R defined in the following way

Ms 0<s<R
¢(s) MR s> R
S) =

—Ms —-R<s<0

MR s<—R

and let us prove that

n
li]rnhsup/Q Z aij(z, un) exp {¢(un) } Do;un Do jup, <
ij=1
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(3.6) / Z aij(z,u) exp {(u)} Dy, uDy;u.

1,j=1

By (a.4) and Theorem 3.1, the test functions up, exp {C(up,)} are also admissible, so that

/ Z a;j(x,up) exp {C(uh)}DnguhD up, dr+
1,5=1

n

Z Dsaij(x,up) Da;un Dayun + ¢ (un) Y aij (@, un)Da,up Dy up,
1] 1 i,7=1

wn exp {C(un)} dz — {won, wn exp {C(un)}) = 0.

Ak

By (a.4) and (3.1)

n
[2 Z Dgaij(x, up) Dy;un Dy up + ¢’ (up) Z aij (2, up) Dy up Dy jup
7.7 1 Z,jil

up exp{¢(un)} = 0,
and, by Fatou’s lemma, we get
hmsup/ Z aij(z, up) exp {¢(up) } Doyup Dy jup dz =
i,j=1
n

= limhsup/Q [—— Z Dsaij(z,up) Dy, up Dy up — Z aij(z, up) Dy, up Dy jup
1,j=1 Jj=1

up, exp {¢(up)} dz + (wp, up exp {¢(un)}) <

n

S/ [—— Z Dsaij(z,u) Dy, uDyu — ¢’ (u) Z aij (2, u) Dy, uDy u
Q

i,j=1 ,j=1

wexp {¢(u)} dr + (w,uexp {((u)}) =

= [ e w) o (C)) DuuD

i,7=1

Thus, (3.6) is proved.
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Finally, let us show that u; converges to u in the strong topology of H{ ().
Let us observe that

/Q Z aij(z, up) exp {¢(up) } Do, (up — 1) Dy (up, — u) do =

1,j=1

:/Q Z aij(a:,uh)exp{{(uh)}DgciuhD;Bjuhdx—l-
ij=1

—2/Q Z aij(z, un) exp {¢(un) } Dy uDy  up dr+

2,=1
n
(3.7) + Z aij(z,un) exp {¢(up) } Dy;uDy udz.
Q=1
For every j =1,...,n, we have:

li}IZn Z aij(z,up) exp {{(up) } Dy,u = Z aij(z,u) exp {{(u) } Dg,u
i=1 1=1

in the strong topology of L?(2). Then, by (3.6) we get:

limhsup/Q Z a;j(z,up) exp {C(un) } Dy, (up, — u)ij (up, —u)de =

1,j=1

n
= limhsup/Q Z aij(z,un) exp {¢(un) } Dy, up Dy up do+
ij=1

(3.8) —/ z”: aij(z,u) exp {{(u)} Dy;uDy udr < 0.
Q=1

Using (3.8) and hypothesis (a.3), we conclude that:

vlimsup || Duy, — DUH%Q <
h
< Z/Iimsup/ exp {C(un) YD (up — w)|? da <
h Q

< lim Sup/ En: aij(z, up) exp {¢(un)} Dy, (up, — 1) Dy, (up, — u) da < 0.
ro Jo

1,j=1

Then the assertion is proved. O
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In the last part of this section, we add the following assumption:
there exists a uniformly Lipschitz continuous bounded function ¥ : R — [0, +o00[ such
that

n

(a.5) % Z sDsa;j(w, 8)&& < sU'(s) Z aij(z, 8)&&;

i,j=1 hj=1

for a.e. z € Q, a.e. s € R and all £ € R". Without loss of generality, we can assume
that

lim J(s) = lim 9(s)

8§——00 s§——+00

and denote by 9 the common value. Let us also set

Aiij(a:): lirin aij(z, s)

S§— 100

(these limits exist by (a.4)).

Lemma 3.5. Let (vy,) be a sequence weakly convergent to v in Hi(Q) and ()
a sequence weakly convergent to y in L2 (Q) with |y, (x)| < ¢(x) for some ¢ € L% (Q).
Then (o) is strongly convergent to yv in H 1 ().

Proof. See [8, Lemma 3.1]. O

Lemma 3.6. Let (uy) be a sequence in H} () and (py) a sequence in |0, +o0]

with pp, — 400 such that (vy) = (%) is weakly convergent to v in H}(Q). Let () be
Ph

a sequence weakly convergent to y in L2 (Q) with |y,(x)] < c(z) for some ¢ € L% (Q).
2n

Let (up) be a sequence strongly convergent to p in Ln+2 () and (0p,) a sequence strongly

convergent in H=1(Q) such that

n 1 n
/Q Z aij (2, up) Dy un Dy o dz + 5/9 (Z Dsaij(x,uh)Dggiuthjuh) pdr =

i,j=1 i,j=1

(3.9) = /Q%uhsod:rﬂh/guwd:ﬂr {On: ) Vo € Cg ().
Then, it holds:

(a) (vy) is strongly convergent to v in HE(Q);

(b) (ynvn) is strongly convergent to yv in H~1(2);
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(c) there exist n™, n~ € L*>®(Q) such that

o) — exp{—9} wv(z)>0
n*(x) {exp{MR} v(z) <0

and exp{—9} < n*(z) < exp {MR} if v(z) =0,

— v [exp{=9} wv(x)<0
) = {eXII; {MR} v(z)>0

and exp{—9} < n~(z) < exp {MR} if v(z) =0,
and such that for every p € HE(Q), ¢ > 0:

n
/ > Aij77+D$ivD$j90de/777+v90dx+/ " de,
Q . Q Q

i,j=1

/ > Aijn_D$ivD$j90dx§/777_v90dx+/ i~ d,
Q57 Q Q

Jr
Al (x) v(z) >0

where Ajj(x) = {A”(l‘) o(z) <0 °

Proof. Up to a subsequence, v, is convergent to v a.e. in 2. From the
previous lemma, it follows that ~j,vy, is strongly convergent to yv in H—(Q). Let ((s)
be the function defined in Lemma 3.4. By (a.4), the result in [6] allows us to put

¢ = vpexp{((up)} in (3.9), yielding

/Q Z aij(z, up) exp {¢(up) } Doy up Dy vy do+

i,j=1
n

1 n
/Q [5 > Diaij(x, up)DayunDojun + ¢ (up) Y aij(@, up) Dy up Dojup

i,j=1 i,j=1
vpexp {C(up)} dx =
:=1A;vhuhvhexp{<<uh>}dx-+;ml4;uhvhexp{<<uh>}dx—+<6h,vhexp{<<uh>}>

By (a.4) and (3.1) we have

n
o [ 32 ais(a,un) exp {C(un)} D, Dy o <

1,j=1
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< o /Q v exp {C(un)} d + py /Q uon exp {C(un)} da + (8, vp exp {C(un)}).

After division by pp and using hypotheses on vy, i, and dy, we obtain

lim (/Q YV}, eXp {C(Uh)}dl‘Jr/Qthh exp {¢(un)} dz + (dp, vy exp {C(Uh)}>> =

=exp{MR} </Q'yv2dx+/ﬂ/,wdx>

and
hmsup/ Z aij(z, up) exp {¢(up) } Do vp Doy v dv <
i,j=1
(3.10) < exp{MR} </ yv? da +/ 1%y dac) .
Q Q

Now, let us define

ds) s>0
Y1(s) = Ms —R<s5<0
—-MR s<-—-R
and consider as test functions (vt A k) exp{—91(up)} (k € N). Putting them in (3.9),
we get:

/ Z aij(x, up) exp{ =01 (up) } Dy, vp Dy, (v A k) da+
i,7=1

1 n

+— Z Dsagj(z,up) DyupDyjup — Z (2, up) Dy;up Dy up,

Ph JQ ” 1 =1
(vt A k) exp{—11(up)} dz =

= [ won(w* AR exp{=dn(un)bdz -+ [ (ot AR) exp{—v1(un)} do+
Q Q

(3.11) —i—i(éh, (vt A k) exp{—11(up)}).
Ph

By (a.4), (3.1) and (a.5), we have:

1 n n
3 Z Dsaj(z,up) Dy, up Dy up — 9 (up) Z aij(z, up)Dyyup Dy jup, < 0.
i,j=1 i,j=1

On the other hand, we have:

hmaw(:v up) exp{—91 (up)} Dz, (v N k) = eXp{ I} Dy, (vt A k)
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strongly in L?(Q2),

li}ILn(v+ A k) exp{—v1(up)} = (v A k) exp{—0}
strongly in each LP(Q) with p < oo,

lim o (v A k) exp{ =01 (un)} = v(v* A K) exp{~T}
strongly in L7 (©) and

lim - (ot A &) exp{—1 ()} = 0
h™ pn

weakly in H}(Q).
Letting h — 400 in (3.11), we get

/ZA exp{—0} Dy, vDy, (v A k) dx >

i,7=1

> /Q’)/’U(’UJF A k) exp{—9} dz + /Q p(v™ Ak)exp{—19} dx.

Letting now k — o0, after division by exp{—19}, we have
(3.12) / Z A$ Dyt Dy ot do > / (w2 de +/ ot
,j=1
Analogously, let us define the function
d(s) s<0
Ya(s) =¢ —Ms 0<s<R
—-MR s>R
and consider as test functions (v A k) exp{—92(uz)} (k € N). We obtain
(3.13) / Z A;;Dy v Dyjv™ da:>/ ~y(v da:—/ uo~ dx.
i,7=1 Q
Thus, (3.12) and (3.13) give

(3.14) / Z AijDyvD, vdac>/’yv da:—l—//wdx

2,7=1
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It follows from (3.10) and (3.14):

n
limhsup/Q Z aij(z, un) exp {¢(un) } Dg;vp Doy vp do <
i,5=1

n
(3.15) < exp {MR}/Q > AijDyvDy v da.

i,j=1

415

Now, let us show that v, converges to v in the strong topology of H{ (). Let

us observe that

/Q Z aij(z, un) exp {¢(un) } Dy, (vn — v) Dy, (v — v) dx =

i,7=1

:/Q Z aij(x,uh)exp{{(uh)}DgCith;ijhdx—l-

1,j=1

—2/Q Z aij(z,un) exp {¢(un) } Dy, v Dy, vp do+

1,7=1

(3.16) —l—/ﬂ z”: aij(z,un) exp {¢(up) } De;v Dy ;v dx

i,j=1

and

li}]gn ; agj(z, up) exp {¢(up)} Do,v = exp {MR} > AyjDyv Vj=1,...

i=1

strongly in L?(12).
Then, passing to the limsup in (3.16), we have by (3.15)

limhsup/Q Z aij(x, up) exp {¢(un) } Dg; (vn — v) Dy, (v — v) dx =
ij=1

n
= limhsup/Q Z aij(z, up exp {C(un)}) De;vn Dy vp da+
i5=1

n
(3.17) — exp {MR}/Q Z AijDyvDy v dr < 0.

1,7=1
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By (3.17) and (a.3), we conclude that:

vlimsup || Dvp, — _D/UH%Q <
h

< hmsup/ Z aij(x, up) exp {¢(up) } Doy (vn — v) Dy, (v, — v) dz < 0.
b,j=1

So vy, converges strongly to v in H}(Q).
Up to a subsequence, exp{—v;(up)} is weakly* convergent in L*°(€2) to some
nt. Of course, we have:

o) = exp{—9} w(z)>0
" () {exp{MR} v(z) <0

and exp{—9} < nT(z) < exp {MR} if v(x) = 0. Then, let us consider as test functions
pexp{—"01(up)} with ¢ € C5°(22), ¢ > 0. Let us observe that we have

li}rln aij(w, up) exp{—01(up)} Dx,vn = AijnT Dy,v  strongly in L2(12),

li}rln vppexp{—1(up)} = vn™ strongly in L2 (Q),
li}rln Uh = strongly in L(£2),
1
li}rln —pexp{—"01(up)} =0 weakly in H—1(Q).
Ph

Therefore, putting the test functions in (3.9), we get like in the previous argument,

/ Z AijnT DyvDy god:z:>/’y77 vcpda:—l—/un pdx.
,j=1

Then, this inequality holds for any ¢ € H (), ¢ > 0.
In a similar way, by means of the test functions ¢ exp{—v2(up)}, we get

/ Z Aijn~ Da,vDy, wdm</’m wdw+/w7 pdu,
i,7=1

where 777 is the weak® limit of some subsequence of exp{—v2(up)}. O

4. Quadratic functionals of the gradient. This section contains the main
tools we need, in order to improve the results of [7, 8, 9]. We consider the case

n

Z 1‘85153 (7 )7

[\’)lH

L(x,s,§) =
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where a;; : @ x R — R (1 <4, j < n) satisfy the conditions (a.1), (a.2), (a.3) and
(a.4) of the previous section, g : 2 x R — R is a Carathéodory function and G(z,s) =

Jo 9(z,t) dt. We assume that there exist a € L"(2), r > nQ—J_‘Q, and b € R such that for

a.e. z € Q and all s € R we have
n+2
(4.1) l9(z, s)| < afz) +bls|[==2.
Because of (a.1), (a.2) and (4.1), conditions (2.3), (2.4), (2.5) and (2.6) are satisfied.
Theorem 4.1. Let w € W=19(Q) and let u € H} (Q) be a weak solution of

n 1 n
- Z Dy, (aij(w,u)Dy,u) + 3 Z Dgaij(x,u) Dy, uDyu = g(x,u) + w.
i,j=1 4y=1

Then the following facts hold:

(a) ifnZ—_’é§T<% and ¢ > = we haveuEL%(Q);

n—r
(b) if r > % and ¢ > n, we have u € L*>(2).
Proof. It is sufficient to follow the argument of [9, Theorem 2.2.5], with [9,
Theorem 2.2.3] substituted by Theorem 3.3. O

Definition 4.2. We say that g is a nonlinearity with subcritical growth, if
2n
for every € > 0 there exists a. € L"+2(Q) such that

n+2

(4.2) l9(z, 5)| < ac(@) +s| "2

for a.e. x € Q) and all s € R.

Of course, (4.2) implies (4.1) with r = 2.

Now let w € H~1(2) and let us consider the functional f : H}(Q2) — R defined
by

flu) = %/Q Xn: aij(x, ) Dy;uDy v dz —/QG(:L‘,U) dr — (w, u).
ij=1

Let us provide some results we will use dealing with (C'PS). condition.

Theorem 4.3. Assume that g has subcritical growth. Then for any ¢ € R the
following facts are equivalent:

(a) f satisfies (CPS)¢;

(b) every (CPS).-sequence for f is bounded in Hg ().
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Proof. It is sufficient to follow the argument of [9, Theorem 2.2.8], with [9,
Theorem 2.2.4] substituted by Lemma 3.4. O

Theorem 4.4. Let c € R and let (up,) be a (CPS).-sequence for f. Then for
every p >0 and € > 0 there exists K(p,e) > 0 such that for all h € N,

n

{lunl<p} i,j=1

n

< E/ Z aij(x, up) Dyup Dy up do + K (p, €).
{lun|>p} ij=1

Proof. Let

n 1 n
wh = — Y Da;(aij(z,un)De,un) + 3 > Dsaij(x,up) Dy up Dy, up do — g(x,up),
i,j=1 i,j=1
let ¢ > 0 and let
s if |[s| <o
—s+4+20 ifo<s<20
191(8) = . .
—s—20 if “20<s< -0
0 if |s| > 20

Then we have

/ Z aij (@, up) Dyup Dy, (01 (up)) de+ 5 / Z Dsaij(z, up) Dy up Dy up 01 (up) do <
7.7 1 ,] 1

< [ e un) s (wn) de + 172193 un) .

Taking into account (4.1), it follows

n

n
/ Z (2, up) Dg;up Dy up, d —/ Z aij(z, up) Dy, up Dy jup, dz+
{lunl<o} ;52 {

o<|up|<20} =1

1

—1—2 Z Dgaij(x, up) Dy, un Dy up 91 (up) da+-
{|Uh‘<0'}l

,j=1

1 n
—+— Z Dsaij (.1‘, uh)DxiuhDnguh ﬂl(uh) dr <

{o<|up|<L20} ig=1
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n+2 1 2 v 9
< [ (a(e) + b0 ) o do + flwn -1 + 51191 ).
There exists Ky > 0 such that ||wp| g-1 < K. Then, observing that
19 (un) |22 < / \Duy|? dar + Dup? di <
0 {lun|<o} {o<|u|<20}

n

1
< —/ Z aij (2, up) Dy up Dy jup, dz+
V H{Jup|<a} i,5=1

1 n
-l-—/ aij(z, up) Dy, un Dy up dz,
y {U<|uh<za}g:1 (41 D4 Doy
from (3.1) we deduce that

1 n
<1 —oM — —> / Z aij(, up) Dy up Dy jup dz <
4) Njunl <o} 524

1 n
< (1 + oM + —)/ E (z,up DggzuhD up, dr+
4 {cr<\uh|<2cr} =1

K2
—I—/ +b|20\n2)ad9€+—

1
If we set 0 = o Ve easily find an inequality of the form

n
/ Z (z,up, DxluhD up dr <
{lunl<a} ;i2q

n

< K; / Z aij(m,uh)Dg;iuhDggjuh dx + K.
{o<|up|<20} i=1

If we reapply the same argument, taking J2(s) defined in such a way

0 if [s| <o
s—o ifo<s<20
s+o if 20 <s< —0o

—s+30c if20<s< 30
—s—30 if 3o<s< 20
0 if |s| > 30

419
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we get
n
{o<|up|<20} ig=1
n
S Kl,/ Z aij(l‘, uh)D$iuhD:1:juh daj + K2,7
{20<|un|<30} ;5774
hence

n

/ > aij(@,up) DyyupDyyup d <
{lun|<20} i,j=1

n

< K" Z aij(z, up) Dy, up Dy jup dx + Ky".
{20<up|<30} ig=1
Iterating this argument, we get for any k > 1

n

/ > aij(@,up) DyyupDyyup dx <
{lun|<ko} i,j=1

n

(4.3) < Kl(k‘) Z Qjj (l‘, uh)D$iuhD$juh dr + Kg(k‘)

{ko<|up|<(k+1)c} ig=1

Now, let £ > 1 be such that ko > p and ko > R. Take ¢ €]0,1[ and let

0 if |s| < ko
s —ko ifko<s<(k+1)o
s+ ko if —(k+1)o<s<—ko

Us(s) =
a(s) —ds+o+dk+1)o if(k+1)o<s<(k+1)o+ 5

—ds—oc—6k+1)o if —(k+1)0—-§<s<—(k+1)o
0 if [s| > (k+1)o + 5

As before, we get

n 1 n
/Q Z aij(x,uh)DxiuhD%. (ﬂg(uh))daz—i—i/g Z Dsaij(a:,uh)Dxiuthjuh Is(up) de <

2,7=1 1,7=1

< [ o un)dstun) da -+ lonll s 195(un)] my <

1
< [ asun)ds(un) do + 5 llonllf + 815 (un) 3.
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Now, by (a.4) we deduce that

/ Z Dsaij(z,up) Dy, up Dy up 95 (up) dz > 0.
1,j=1

Moreover

953y < [

Vup|? d +/ V| d <
fho<lun (1)}

{lun|>(k+1)0}

n
Z aij(z, up) Dy up Dy jup, dz+
J=1

<[
V Jko<lup|<(k+1)0} ;

n

Z aij($7 uh)DIiuthjuh dzx.
J=1

1

v /{Iuh>(k+1)0}i

Then, by (4.1) it follows

5) “
1—— / a;j(z,up)Dg,up Dy up de <
( 14 {ko<|up|<(k+1)o} ijz:l J J

5 n
< 5+—)/ aij(x, up) Dy, up Dy up, dx+
( v ) Jjunl> k1) }ZZ 3 ) Dt D o

9 i,j=1
n+2
= K2
) odr + —=

+/< ‘k+1)a+5

46°
hence .
/ Z aij(x,up Dg;luhD up dr <
{ko<|up|<(k+1)o —
vd+9 "
< Z aij (@, up) Dyup Dy up do + K3(k, 6).
V=0 Junl>(k+1)0} 52
Combining this inequality with (4.3), we get
n
/ Z aij(z, up) Dy, up Dy jup dz <
{lunl<p} i,j=1

n

S\/ Z aij(m’uh)D$iuhDa:juh dl’ S
{lunl<ko} 524

421
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n

< K1 (k) Z al-j(a:,uh)Dmuthjuh dx + Kg(k) <

{ho<lun|<(k+1)0} ;52

5+ n
< K ()22t " i (@, up) Doyt Do up di + Ko (k) K (k, 8) + Ko (k) <
V=0 Junl>(+1)0} 52
vd+9 L
< K, (k) > aij(@, up) Dy,up Dy up do + Ky (k) K3 (k, 6) + Ka(k).

V=0 Nunl>p} 52

If we take ¢ such that
Vo +0 <

€
v—§ —

K1 (k)

the assertion follows. O

5. The superlinear case. Let € be a bounded open subset of R” with n > 3,
let a;; : QxR — R (1 <4, j < n) satisfy the conditions (a.1), (a.2), (a.3) and (a.4), let
g: 2 xR — R be a Carathéodory function with subcritical growth as in Definition 4.2
and let G(z,s) = [ g(x,t) dt.

We shall consider the functional f : H}(2) — R defined by

1 n
flu) = 5/Q Z aij(a:,u)Dxiqujuda:—/QG(JJ,U) dx
ij=1

and the associated Euler equation

1=

n n
(5.1) { — 21 Dy (aij(x,u) Dy u) + % 21 Dsa; j(x,u)Dy,uDyu = g(z,u) in Q
. 1=

u=20 on 0f)

Let us make the following further assumptions:
there exist ¢ > 2, v €]0,¢—2[ and R’ > 0 such that for a.e. x € Qandall s € R, £ € R"
we have

(5.2) |s| > R = 0 < ¢G(z,s) < sg(x, s),
n n

(5.3) |s| > R = Z sDsa; j(x,5)€& < vzai,j(x, 5)&&;.
i=1 i=1

Assumption (5.2) means that ¢ is superlinear at infinity in the sense of [2, 17, 21].
Because of (a.2) and (a.3), condition (5.3) seems not to be particularly restrictive.

We can now formulate the main result of this section, which is an extension
to the quasilinear case of a well-known theorem of Ambrosetti and Rabinowitz (see
2, 17, 21)).
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Theorem 5.1. Assume that

a; j(x,—s) = a;;(z,s), g(xz,—s)=—g(x,s)
forae xeQandallseR,1,j=1,... ,n.
Then there exists a sequence (up) of weak solutions of (5.1) with

li}Ill’l f(up) = +o0.

Moreover, if g satisfies (4.1) with r > %, all these solutions are in H{(2) N L*(€2).

Proof. It is sufficient to follow the argument of [9], with [9, Theorems 2.2.5,
2.2.8 and 2.2.9] substituted by Theorems 4.1, 4.3 and 4.4, respectively. O

6. A jumping problem. Let 2 be a connected bounded open subset of R"”
with n > 3, let a;; : @ x R — R (1 <4, j < n) satisfy the conditions (a.1), (a.2), (a.3),
(a.4) and (a.5), let g : Q x R — R be a Carathéodory function and let w € H~1().
Let us make the following further assumptions:
there exist a € Ln2_:2(Q) and b € Lz (Q) such that for a.e. z € Q and all s € R

(6.1) l9(z, s)| < alz) +b(z)]s];

there exist «, 0 € R such that for a.e. x €

(6.2) lim
§——00 S s§——400 S
Finally, setting
+ .
Azg(dj) = skgknoo aij($7 s),
let Aj, [resp. Ai] denote the eigenvalues of the linear operator — Y Dy, (A:;szu) [resp.
— > Dy;(A;;Dy;u)] with homogeneous Dirichlet condition. Let @1 [resp. @1] be a
nonnegative eigenfunction corresponding to Aj [resp. A1].
We are interested in a jumping problem of Ambrosetti-Prodi type [1]. For
further results in the semilinear case, see [12, 16, 18] and references therein.

Theorem 6.1. Assume that o > 5\1 and B < Ai. Then there exists teR
such that for every t > t the equation

n 1 n
_ Z Dy, (@ij(x,u)Dyu) + 3 Z Dsaij(x,u)Dxiquju =
i,j=1 hj=1
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= g(z,u) + to; +w

has at least two weak solutions in HZ ().
Moreover, if w € W=LP(Q) for some p > n and a,b € L"(Q) with r > 5, such
solutions belong to H(2) N L*°(Q).

Theorem 6.2. Let o and B be as in the previous theorem. Then there exists
t € R such that for every t <t the equation

n 1 n
- Z Dy (aij(z,u)Dy,u) + 2 Z Dsaij(z,u) Dy uDyu =
i,j=1 i,j=1
=g(z,u) +t¢1 +w

has no weak solutions in HE(Q).

Corollary 6.3. Let o and (8 be as in the previous theorem. Let us suppose
that A;;(x) = A;;(x) for a.e. x € Q.
Then there exist t € R and t € R such that the equation

n 1 n
— Z Dy (aij(w,u)Dy,u) + 3 Z Dsaij(z,u) Dy, uDyju =
i,j=1 i,j=1

=g(z,u) +to1 +w
has at least two weak solutions in H} (L) for everyt >t and no weak solutions in Hg ()

for every t < t.

There results can be proved as in [8]. We have only to substitute [8, Proposition
1.4] with Theorem 4.3 and [8, Lemma 3.2] with Lemma 3.6. The L*°-regularity of u
follows from Theorem 4.1.
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