Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

M-SOLID SUBVARIETIES OF SOME VARIETIES OF COMMUTATIVE SEMIGROUPS

J. Koppitz*
Communicated by V. Kanev

Abstract

The basic concepts are M-hyperidentities, where M is a monoid of hypersubstitutions. The set of all M-solid varieties of semigroups forms a complete sublattice of the lattice of all varieties of semigroups. We fix some specific varieties V of commutative semigroups and study the set of all M-solid subvarieties of V, in particular, if V is nilpotent.

1. Introduction. The purpose of this work is to study the lattice $\mathrm{L}(V)$ of all subvarieties of some varieties V of commutative semigroups and the sublattices of $\mathrm{L}(V)$. Our basic concepts are M-hyperidentities and the stronger concept of a hyperidentity $([7])$. A mapping σ from the binary operation symbol f into the set $W(X)$ is called a hypersubstitution, where $W(X)$ denotes the set of all terms over a fixed alphabet X. For a term $t \in W(X)$ let σ_{t} be the hypersubstitution defined by $\sigma_{t}(f):=t$. For a hypersubstitution σ we define the extension σ^{\wedge} of σ as a mapping from $W(X)$ into $W(X)$ inductively:
(i) $\sigma^{\wedge}[x]:=x$ for $x \in X$;

[^0](ii) $\sigma^{\wedge}[f(s, t)]:=\sigma(f)^{W(X)}\left(\sigma^{\wedge}[s], \sigma^{\wedge}[t]\right)$, where $\sigma(f)^{W(X)}$ denotes the term operation generated by the term $\sigma(f)$.
Hyp denotes the set of all hypersubstitutions. Clearly, for two hypersubstitutions σ_{1}, σ_{2} the product $\sigma_{1} \circ_{h} \sigma_{2}$ defined by $\left(\sigma_{1} \circ_{h} \sigma_{2}\right)^{\wedge}[t]:=\sigma_{1}^{\wedge}\left[\sigma_{2}^{\wedge}[t]\right]$ for $t \in W(X)$ is again a hypersubstitution. Thus Hyp is a monoid under \circ_{h} and the identity element $\sigma_{x y}$ (see [3]).

Let M be a submonoid of Hyp and let V be a variety of semigroups. An identity $u \approx v$ in V is called an M-hyperidentity in V if $\sigma^{\wedge}[u] \approx \sigma^{\wedge}[v]$ is an identity in V for each $\sigma \in M$. The variety V is called M-solid if each identity in V is also an M-hyperidentity in V. By [4] the collection S_{M} of all M-solid varieties of semigroups forms a complete sublattice of the lattice S of all varieties of semigroups.

The lattice of all Hyp-solid varieties (or only solid varieties) of semigroups is studied in [2], [5] and [6]. M-solid varieties for other submonoids M of Hyp have been studied; see for example [1] and [3]. In this paper we will study lattices of M-solid varieties of some commutative semigroups for all submonoids M of Hyp.
2. Basic concepts. We fix a specific variety V of semigroups. The collection of all subsets of the lattice $\mathrm{L}(V)$ of all subvarieties of V will be denoted by $P(\mathrm{~L}(V))$. The collection of all subsets of Hyp will be denoted by $P(H y p)$.

We define a relation $R_{V} \subseteq H y p \times \mathrm{L}(V)$ as follows: For $\sigma \in H y p$ and $Y \in \mathrm{~L}(V)$ set $(\sigma, Y) \in R_{V}$ iff for any identity $u \approx v$ in Y, Y satisfies $\sigma^{\wedge}[u] \approx \sigma^{\wedge}[v]$. Now we define two mappings α_{V}^{*} and β_{V}^{*} on $P(H y p)$ and $P(\mathrm{~L}(V))$, respectively, as follows:

For $M \in P(H y p)$ set $\alpha_{V}^{*}(M):=\left\{Y: Y \in \mathrm{~L}(V),(\sigma, Y) \in R_{V}\right.$ for all $s \in M\} ;$
for $L \in P(\mathrm{~L}(V))$ set $\beta_{V}^{*}(L):=\left\{\sigma: \sigma \in H y p,(\sigma, Y) \in R_{V}\right.$ for all $\left.Y \in L\right\}$. Obviously, $\left(\alpha_{V}^{*}, \beta_{V}^{*}\right)$ forms a GALOIS-connection.
$L(\mathrm{~L}(V))$ denotes the collection of all complete sublattices of $\mathrm{L}(V)$. Further we define a relation \sim_{V} on Hyp as follows: For $\sigma_{1}, \sigma_{2} \in H y p$ we have $\sigma_{1} \sim_{V} \sigma_{2}$ iff $\sigma_{1}^{\wedge}[x y] \approx \sigma_{2}^{\wedge}[x y]$ is an identity in V. Obviously \sim_{V} is an equivalence relation and $[\sigma]_{V}$ denotes the equivalence class of $\sigma \in H y p$. For a submonoid M of Hyp by M_{V} we put $M_{V}:=\left\{[\sigma]_{V}: \sigma \in M\right\}$ and for $\sigma \in$ Hyp we define $[\sigma]_{V}[t]:=$ $\sigma^{\wedge}[t]$ for $t \in W(X)$. $S_{V}(H y p)$ denotes the collection of all M_{V} where M is a
submonoid of Hyp. Now define a map $\alpha_{V}\left(\operatorname{a~map} \beta_{V}\right)$ on $S_{V}(H y p)($ on $L(L(V)))$ by $\alpha_{V}\left(M_{V}\right):=\alpha_{V}^{*}(M)\left(\beta_{V}(L):=\left(\beta_{V}^{*}(L)\right)_{V}\right)$.

Clearly, for $M_{V} \in S_{V}(H y p), \alpha_{V}^{*}(M)$ is the collection of all M-solid subvarieties of V, that means, $\alpha_{V}^{*}(M)=S_{M} \cap \mathrm{~L}(V)$. As S_{M} is a complete sublattice of S and $\mathrm{L}(V)$ is a complete lattice, $\alpha_{V}\left(M_{V}\right)=a_{V}^{*}(M)=S_{M} \cap \mathrm{~L}(V)$ forms a complete sublattice of $\mathrm{L}(V)$.

Let $L \in L(\mathrm{~L}(V))$ and $V^{*} \in L$. Then for $\sigma_{1}, \sigma_{2} \in \beta_{V}^{*}(L)$ we have $\left(\sigma_{1}, V^{*}\right) \in$ R_{V} and $\left(\sigma_{2}, V^{*}\right) \in R_{V}$. From this it follows if $u \approx v$ an identity in V^{*} then $\sigma_{2}^{\wedge}[u] \approx \sigma_{2}^{\wedge}[v]$ is an identity in V^{*} and $\sigma_{1}^{\wedge}\left[\sigma_{2}^{\wedge}[u]\right] \approx \sigma_{1}^{\wedge}\left[\sigma_{2}^{\wedge}[v]\right]$ is an identity in V^{*}. Thus $\left(\sigma_{1} \circ_{h} \sigma_{2}, V^{*}\right) \in R_{V}$. Clearly, $\left(\sigma_{x y}, V^{*}\right) \in R_{V}$. Altogether $\beta_{V}^{*}(L)$ forms a submonoid of Hyp, that means, $\beta_{V}(L) \in S_{V}(H y p)$.

We have now mappings $\alpha_{V}: S_{V}(H y p) \rightarrow L(\mathrm{~L}(V))$ and $\beta_{V}: L(\mathrm{~L}(V)) \rightarrow$ $S_{V}(H y p)$. Since $\left(\alpha_{V}^{*}, \beta_{V}^{*}\right)$ forms a GALOIS-connection it is easy to check that $\left(\alpha_{V}, \beta_{V}\right)$ has the properties of a GALOIS-connection. For $M \in S_{V}(H y p)$ we put $\underline{\underline{M}}:=\beta_{V}\left(\alpha_{V}(M)\right)$ and for $L \in L(\mathrm{~L}(V))$ we put $\underline{\underline{L}}:=\alpha_{V}\left(\beta_{V}(L)\right)$. An $M \in S_{V}(H y p)$ $($ an $L \in L(\mathrm{~L}(V)))$ is called closed if $\underline{\underline{M}}=M(\underline{\underline{L}}=L)$.

Now want to use the kernels of α_{V} and β_{V} (denoted by ker α_{V} and ker β_{V}, respectively) to define maps on the closed monoids and on the closed sublattices, respectively. We define a map $\underline{\underline{\alpha}}_{V}$ on $S_{V}(H y p)_{/ \operatorname{ker} \alpha_{V}}$ by $\underline{\underline{\alpha}}_{V}\left([M]_{\operatorname{ker} \alpha_{V}}\right):=$ $\left[a_{V}(M)\right]_{\operatorname{ker} \alpha_{V}}$ and we define a map $\underline{\underline{\beta}}_{V}$ on $L(\mathrm{~L}(V))_{/ \operatorname{ker} \beta_{V}}$ by $\underline{\bar{H}}_{V}\left([L]_{\operatorname{ker} \beta_{V}}\right):=$ $\left[\beta_{V}(L)\right]_{\text {ker } \beta_{V}}$. Then $\underline{\underline{\alpha}}_{V}$ and $\underline{\underline{\beta}}_{V}$ are bijections between $S_{V}(\overline{\bar{H}} y p) / \operatorname{ker} \alpha_{V}$ and $L(\mathrm{~L}(V))_{/ \operatorname{ker} \beta_{V}}$. Clearly, all members of each $\operatorname{ker} \alpha_{V}$ class (ker β_{V} class) have the same closure, so we can label an equational class as $[\underline{\underline{M}}]_{\operatorname{ker} \alpha_{V}}$ for any M (as $[\underline{\underline{L}}]_{\operatorname{ker} \beta_{V}}$ for any L) in the class. We could also think of $\underline{\underline{\alpha}}_{V}\left(\right.$ of $\underline{\bar{\beta}}_{V}$) as the restriction of $\alpha_{V}\left(\right.$ of $\left.\beta_{V}\right)$ to the closed members of $S_{V}(H y p)(\operatorname{of} L(\mathrm{~L}(\overline{\bar{V}}))$).

In this paper we will now determine the closed members of $L(\mathrm{~L}(V))$ for varieties of specific commutative semigroups, in particular, if V is nilpotent. Note that a variety V of semigroups is called nilpotent if there exists a natural number $k \geq 2$ such that $x^{k} \approx x$ is satisfied by V.
3. Varieties of commutative nilpotent semigroups. In the next by σ we mean $[\sigma]_{V}$ for a variety V.

Theorem 3.1. Let V be a variety of nilpotent commutative semigroups and $M \in S_{V}(H y p)$ with $M \cap\left(\left\{\sigma_{x^{i}}: 1 \leq i \in \mathbb{N}\right\} \cup\left\{\sigma_{y^{i}}: 1 \leq i \in \mathbb{N}\right\}\right)=$ Ø. Then $\alpha_{V}(M)=\left\{V^{\prime}: V^{\prime} \in \mathrm{L}(V), V^{\prime} \subseteq \vartheta_{V}(M)\right\}$ where $\vartheta_{V}(M):=\operatorname{Mod}\left\{x^{i} \approx x: i \in\right.$
$\left.I_{V}(M)\right\}$ and $I_{V}(M)$ denotes the set of all natural numbers $i \geq 1$ such that there exists a natural number $j \geq 1$ with $M \cap\left\{\sigma_{x^{i} y^{j}}, \sigma_{x^{j} y^{i}}\right\} \neq \varnothing$.

Proof. Let $V^{\prime} \in \alpha_{V}(M)$ and $i \in I_{V}(M)$. Clearly, $V^{\prime} \in \mathrm{L}(V)$ and there exists a natural number $j \geq 1$ with $M \cap\left\{\sigma_{x^{i} y^{j}}, \sigma_{x^{j} y^{i}}\right\} \neq \varnothing$. Suppose that $\sigma_{x^{i} y^{j}} \in M$. Then from $x y \approx y x$ it follows $\sigma_{x^{i} y^{j}}[x y] \approx \sigma_{x^{i} y^{j}}[y x]$, that means, $x^{i} y^{j} \approx y^{i} x^{j} \approx x^{j} y^{i}$ is an identity in V^{\prime}. Since V is nilpotent, there exists a natural number $k \geq 2$ such that $x^{k} \approx x$ is an identity in V and thus in V^{\prime}. From this it follows that $x^{3 k-2} \approx x$ and there exists a natural number t with $x^{3 k-2} \approx\left(x^{2}\right)^{i} x^{j} x^{t}$. From $x^{i} y^{j} \approx x^{j} y^{i}$ it follows $\left(x^{2}\right)^{i} x^{j} x^{t} \approx\left(x^{2}\right)^{j} x^{i} x^{t}$. Clearly, $\left(x^{2}\right)^{j} x^{i} x^{t}=x^{2 j+i+t}=x^{2 i+j+t+(j-i)}=x^{3 k-2+(j-i)}$. Therefore $x \approx x^{3 k-2+(j-i)}$. From this is follows $x^{i} \approx x^{3 k-3+j}$. From $x^{3 k-2} \approx x$ it follows $x^{j} \approx x^{3 k-3+j}$. Thus $x^{i} \approx x^{j}$ is an identity in V^{\prime}. From $(x y) z \approx x(y z)$ it follows $\sigma_{x^{i} y^{j}}[(x y) z] \approx$ $\sigma_{x^{i} y^{j}}[x(y z)]$ where $\sigma_{x^{i} y^{j}}[(x y) z] \approx\left(x^{i} y^{j}\right)^{i} z^{j}$ and $\sigma_{x^{i} y^{j}}[x(y z)] \approx x^{i}\left(y^{i} z^{j}\right)^{j}$. Because of $x^{i} \approx x^{j}$ and the commutative law we have $\left(x^{i} y^{j}\right)^{i} z^{j} \approx x^{i^{2}} y^{i^{2}} z^{i}$ and $x^{i}\left(y^{i} z^{j}\right)^{j} \approx$ $x^{i} y^{i^{2}} z^{i^{2}}$, that means, $x^{i} y^{i^{2}} z^{i^{2}} \approx x^{i^{2}} y^{i^{2}} z^{i}$. By substitution $(y \rightarrow x)$ we obtain $x^{a} z^{i} \approx x^{b} z^{i^{2}}$ where $a=i^{2}+i^{2}$ and $b=i+i^{2}$. By substitution $\left(x \rightarrow z^{k-1}\right)$ we obtain $z^{a(k-1)} z^{i} \approx z^{b(k-1)} z^{i^{2}}$. Because of $x^{k} \approx x$ we have $z^{i} \approx z^{i^{2}}$. Thus $x^{i} \approx x^{i^{2}}$ is an identity in V^{\prime}. From $x^{k} \approx x$ it follows $\sigma_{x^{i} y^{j}}[x] \approx \sigma_{x^{i} y^{j}}\left[x^{k}\right]$. Using $x^{i} \approx x^{j}$ and $x^{i} \approx x^{i^{2}}$ we obtain $\sigma_{x^{i} y^{j}}\left[x^{k}\right] \approx x^{k i}$ and thus $x^{k i} \approx x$ is an identity in V^{\prime}. From $x^{k} \approx x$ it follows $x^{k i+1-i} \approx x$ and thus $x^{k i} \approx x^{1+i-1}$, that means, $x^{k i} \approx x^{i}$. Using $x^{k i} \approx x$ we obtain that $x^{i} \approx x$ is an identity in V^{\prime}. Suppose that $\sigma_{x^{j} y^{i}} \in M$ then similarly as above we obtain that $x^{i} \approx x$ is an identity in V^{\prime}. Altogether $V^{\prime} \subseteq \operatorname{Mod}\left\{x^{i} \approx x: i \in I_{V}(M)\right\}=\vartheta_{V}(M)$.

Conversely let $V^{\prime} \in \mathrm{L}(V)$ with $V^{\prime} \subseteq \vartheta_{V}(M)$. Further let $\sigma \in M$ and let $u \approx v$ be an identity in V^{\prime}. Because of $M \cap\left(\left\{\sigma_{x^{i}}: 1 \leq i \in \mathbb{N}\right\} \cup\left\{\sigma_{y^{i}}: 1 \leq\right.\right.$ $i \in \mathbb{N}\})=\varnothing$ and the commutative law $\sigma \in\left\{\sigma_{x^{i} y^{j}}: 1 \leq i, j \in \mathbb{N}\right\}$. Therefore there are natural numbers $i, j \geq 1$ with $\sigma=\sigma_{x^{i} y^{j}}$, where $i, j \in I_{V}(M)$. Therefore $x^{i} \approx x$ and $x^{j} \approx x$ are identities in V^{\prime}. From this it follows $\sigma_{x^{i} y^{j}} \sim_{V} \sigma_{x y}$. By [4] then $\sigma_{x^{i} y^{j}}[t] \approx \sigma_{x y}[t]$ for any $t \in W(X)$. Therefore $\sigma_{x^{i} y^{j}}[u] \approx \sigma_{x y}[u] \approx$ $\sigma_{x y}[v] \approx \sigma_{x^{i} y^{j}}[v]$, that means, $\sigma[u] \approx \sigma[v]$ is an identity in V^{\prime}. Thus $\left(\sigma, V^{\prime}\right) \in R_{V}$. Altogether $\left(\sigma^{\prime}, V^{\prime}\right) \in R_{V}$ for all $\sigma^{\prime} \in M$, that means, V^{\prime} is M-solid and thus $V^{\prime} \in \alpha_{V}(M)$.

Theorem 3.2. Let V be a variety of nilpotent commutative semigroups and $M \in S_{V}(H y p)$ such that $M \cap\left(\left\{\sigma_{x^{i}}: 1 \leq i \in \mathbb{N}\right\} \cup\left\{\sigma_{y^{i}}: 1 \leq i \in \mathbb{N}\right\}\right) \neq \varnothing$. Then $\alpha_{V}(M)=\{T\}$ where T denotes the trivial variety.

Proof. Clearly, $T \in \alpha_{V}(M)$ and thus $\{T\} \subseteq \alpha_{V}(M)$.
Conversely, let $V^{\prime} \in \alpha_{V}(M)$. There exists a natural number $i \geq 1$ with $M \cap\left\{\sigma_{x^{i}}, \sigma_{y^{i}}\right\} \neq \varnothing$. From $x y \approx y x$ it follows $\sigma_{x^{i}}[x y] \approx \sigma_{x^{i}}[y x]$ and $\sigma_{y^{i}}[x y] \approx$ $\sigma_{y^{i}}[y x]$, respectively. Thus $x^{i} \approx y^{i}$ is an identity in V^{\prime}. Since V is nilpotent there exists a natural number $k \geq 2$ such that $x^{k} \approx x$ is an identity in V and thus also in $V^{\prime} \in \alpha_{V}(M) \subseteq \mathrm{L}(V)$. Therefore $\sigma_{x^{i}}[x] \approx \sigma_{x^{i}}\left[x^{k}\right]$ and $\sigma_{y^{i}}[x] \approx \sigma_{y^{i}}\left[x^{k}\right]$, respectively, are identities in V^{\prime}. Using the commutative law from this it follows that $x^{i} \approx x$ is an identity in V^{\prime}. Consequently, $x \approx x^{i} \approx y^{i} \approx y$. Hence V^{\prime} is the trivial variety T. Altogether $\alpha_{V}(M) \subseteq\{T\}$.

The following examples illustrate Theorem 3.1 and Theorem 3.2. The varieties $V_{k}:=\operatorname{Mod}\left\{(x y) z \approx x(y z), x y \approx y x, x^{k} \approx x\right\}$ for $k \in\{2,3,4,5\}$ are used. Obviously, V_{2} is the variety $S L$ of all semilattices.

Example 3.3. Obviously, $H y p_{S L}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{x y}\right\}$ and $S_{S L}(H y p)=$ $\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ with $M_{1}=\left\{\sigma_{x}, \sigma_{x y}\right\}, M_{2}=\left\{\sigma_{y}, \sigma_{x y}\right\}, M_{3}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{x y}\right\}$ and $M_{4}=\left\{\sigma_{x y}\right\}$.

By Theorem 3.2 we have $\alpha_{S L}\left(M_{i}\right)=\{T\}$ for $i \in\{1,2,3\}$.
Because of $\vartheta_{S L}\left(M_{4}\right)=\operatorname{Mod}\{x \approx x\}$ and $\mathrm{L}(S L)=\{T, S L\}$ we have $\alpha_{S L}\left(M_{4}\right)=\left\{V^{\prime}: V^{\prime} \in \mathrm{L}(S L), V^{\prime} \subseteq \vartheta_{S L}\left(M_{4}\right)\right\}=\{T, S L\}$ by Theorem 3.1.

Example 3.4. We have $H y p_{V_{3}}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{x^{2}}, \sigma_{y^{2}}, \sigma_{x y}, \sigma_{x^{2} y}, \sigma_{x y^{2}}, \sigma_{x^{2} y^{2}}\right\}$. Let $M \in S_{V_{3}}(H y p)$.

If $M \cap\left\{\sigma_{x}, \sigma_{y}, \sigma_{x^{2}}, \sigma_{y^{2}}\right\} \neq \varnothing$ then by Theorem 3.2 we have $\alpha_{V_{3}}(M)=\{T\}$.
If $M=\left\{\sigma_{x y}\right\}$ then it is easy to check that $\alpha_{V_{3}}(M)=\mathrm{L}\left(V_{3}\right)$.
If $\left\{\sigma_{x y}, \sigma_{x^{2} y}, \sigma_{x y^{2}}, \sigma_{x^{2} y^{2}}\right\} \supseteq M \neq\left\{\sigma_{x y}\right\}$ then $2 \in I_{V_{3}}(M)$, that means, $\vartheta_{V_{3}}(M) \subseteq \operatorname{Mod}\left\{x^{2} \approx x\right\}$. We have $\left\{V^{\prime}: V^{\prime} \in \mathrm{L}\left(V_{3}\right), V^{\prime} \subseteq \vartheta_{V_{3}}(M)\right\} \subseteq\left\{V^{\prime}:\right.$ $\left.V^{\prime} \in \mathrm{L}\left(V_{3}\right), V^{\prime} \subseteq \operatorname{Mod}\left\{x^{2} \approx x\right\}\right\} \subseteq\{T, S L\}$ because of the commutative law. Obviously $T, S L \in\left\{V^{\prime}: V^{\prime} \in \mathrm{L}\left(V_{3}\right), V^{\prime} \subseteq \vartheta_{V_{3}}(M)\right\}$. By Theorem 3.1 we have $\alpha_{V_{3}}(M)=\{T, S L\}$.

Example 3.5. We have $H y p_{V_{4}}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{x^{2}}, \sigma_{y^{2}}, \sigma_{x^{3}}, \sigma_{y^{3}}, \sigma_{x y}, \sigma_{x^{2} y}, \sigma_{x y^{2}}\right.$, $\left.\sigma_{x^{2} y^{2}}, \sigma_{x^{3} y}, \sigma_{x^{3} y^{2}}, \sigma_{x^{3} y^{3}}, \sigma_{x^{2} y^{3}}, \sigma_{x y^{3}}\right\}$. Let $M \in S_{V_{4}}(H y p)$.

If $M \cap\left\{\sigma_{x}, \sigma_{y}, \sigma_{x^{2}}, \sigma_{y^{2}}, \sigma_{x^{3}}, \sigma_{y^{3}}\right\} \neq \varnothing$ then by Theorem 3.2 we have $\alpha_{V_{4}}(M)=\{T\}$.

If $M=\left\{\sigma_{x y}\right\}$ then it is easy to check that $\alpha_{V_{4}}(M)=\mathrm{L}\left(V_{4}\right)$.
$\operatorname{If}\left\{\sigma_{x y}, \sigma_{x^{2} y}, \sigma_{x y^{2}}, \sigma_{x^{2} y^{2}}, \sigma_{x^{3} y}, \sigma_{x^{3} y^{2}}, \sigma_{x^{3} y^{3}}, \sigma_{x^{2} y^{3}}, \sigma_{x y^{3}}\right\} \supseteq M \neq\left\{\sigma_{x y}\right\}$ then $2 \in I_{V_{4}}(M)$ or $3 \in I_{V_{4}}(M)$, that means $\vartheta_{V_{4}}(M) \subseteq \operatorname{Mod}\left\{x^{2} \approx x\right\}$ or $\vartheta_{V_{4}}(M) \subseteq$
$\operatorname{Mod}\left\{x^{3} \approx x\right\}$. Suppose that $\vartheta_{V_{4}}(M) \subseteq \operatorname{Mod}\left\{x^{2} \approx x\right\}$ then similarly as in Example 3.4 we obtain that $\alpha_{V_{4}}(M)=\{T, S L\}$. Suppose that $\vartheta_{V_{4}}(M) \subseteq \operatorname{Mod}\left\{x^{3} \approx x\right\}$ then we note that from $x^{3} \approx x$ and $x^{4} \approx x$ it follows $x^{2} \approx x$ (using that from $x^{3} \approx x$ it follows $x^{2} \approx x^{4}$. Thus also $\alpha_{V_{4}}(M)=\{T, S L\}$.

Example 3.6. We have $\operatorname{Hyp}_{V_{5}}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{x^{2}}, \sigma_{y^{2}}, \sigma_{x^{3}}, \sigma_{y^{3}}, \sigma_{x^{4}}, \sigma_{y^{4}}, \sigma_{x y}\right.$, $\sigma_{x^{2} y}, \sigma_{x y^{2}}, \sigma_{x^{2} y^{2}}, \sigma_{x^{3} y}, \sigma_{x^{3} y^{2}}, \sigma_{x^{3} y^{3}}, \sigma_{x^{2} y^{3}}, \sigma_{x y^{3}}, \sigma_{x^{4} y}, \sigma_{x^{4} y^{2}}, \sigma_{x^{4} y^{3}}, \sigma_{x^{4} y^{4}}, \sigma_{x^{3} y^{4}}, \sigma_{x^{2} y^{4}}$, $\left.\sigma_{x y^{4}}\right\}$. Let $M \in S_{V_{5}}(H y p)$.

If $M \cap\left\{\sigma_{x}, \sigma_{y}, \sigma_{x^{2}}, \sigma_{y^{2}}, \sigma_{x^{3}}, \sigma_{y^{3}}, \sigma_{x^{4}}, \sigma_{y^{4}}\right\} \neq \varnothing$ then by Theorem 3.2 we have $\alpha_{V_{5}}(M)=\{T\}$.

If $M=\left\{\sigma_{x y}\right\}$ then it is easy to check that $\alpha_{V_{5}}(M)=\mathrm{L}\left(V_{5}\right)$.
If $M \cap\left\{\sigma_{x}, \sigma_{y}, \sigma_{x^{2}}, \sigma_{y^{2}}, \sigma_{x^{3}}, \sigma_{y^{3}}, \sigma_{x^{4}}, \sigma_{y^{4}}\right\}=\varnothing$ and $M \cap\left\{\sigma_{x y}, \sigma_{x^{2} y}, \sigma_{x y^{2}}\right.$, $\left.\sigma_{x^{2} y^{2}}, \sigma_{x^{3} y^{2}}, \sigma_{x^{2} y^{3}}, \sigma_{x^{4} y}, \sigma_{x^{4} y^{2}}, \sigma_{x^{4} y^{3}}, \sigma_{x^{4} y^{4}}, \sigma_{x^{3} y^{4}}, \sigma_{x^{2} y^{4}}, \sigma_{x y^{4}}\right\} \neq \varnothing$ then $2 \in I_{V_{5}}(M)$ or $4 \in I_{V_{5}}(M)$ and we note that from $x^{5} \approx x$ and $x^{4} \approx x$ it follows $x^{2} \approx x$ (using that from $x^{4} \approx x$ it follows $x^{5} \approx x^{2}$). Similarly as in Example 3.5 we obtain that $\alpha_{V_{5}}(M)=\{T, S L\}$.

If $\left\{\sigma_{x^{3} y}, \sigma_{x^{3} y^{3}}, \sigma_{x y^{3}}\right\} \supseteq M \neq\left\{\sigma_{x y}\right\}$ then $3 \in I_{V_{5}}(M)$ and we have $\left\{V^{\prime}:\right.$ $\left.V^{\prime} \in \mathrm{L}\left(V_{5}\right), V^{\prime} \subseteq \vartheta_{V_{5}}(M)\right\} \subseteq\left\{V^{\prime}: V^{\prime} \in \mathrm{L}\left(V_{5}\right), V^{\prime} \subseteq \operatorname{Mod}\left\{x^{3} \approx x\right\}\right\} \subseteq \mathrm{L}\left(V_{3}\right)$. It is easy to check that $\mathrm{L}\left(V_{3}\right) \subseteq\left\{V^{\prime}: V^{\prime} \in \mathrm{L}\left(V_{5}\right), V^{\prime} \subseteq \vartheta_{V_{5}}(M)\right\}$. By Theorem 3.1 we have altogether $\alpha_{V_{5}}(M)=\mathrm{L}\left(V_{3}\right)$.
4. Other "closed" lattices. In the following we study varieties V of commutative semigroups where V satisfies an identity $x_{0} \ldots x_{k} \approx y_{0} \ldots y_{k}$ for a natural number k. We will determine all closed sublattices of $\mathrm{L}(V)$. S_{f} denotes the collection of all varieties V of commutative semigroups such that there exists a natural number k with V satisfies $x_{0} \ldots x_{k} \approx y_{0} \ldots y_{k}$. Clearly, the variety Z of all zero-semigroups $(Z:=\operatorname{Mod}\{x y \approx z w\})$ is a member of S_{f}. The closed sublattices of $\mathrm{L}(Z)$ and $\mathrm{L}\left(Z_{3}\right)$ where Z_{3} denotes the variety $Z_{3}:=\operatorname{Mod}\{(x y) z \approx$ $\left.x(y z), x y \approx y x, x_{0} x_{1} x_{2} \approx y_{0} y_{1} y_{2}\right\}$ will be given in two examples shortly. At first we characterize the lattices $\alpha_{V}(M)$ for any $V \in S_{f}$ and all $M \in S_{V}(H y p)$.

Theorem 4.1. Let $V \in S_{f}$ and let $M \in S_{V}(H y p)$ then $\alpha_{V}(M)=\left\{V^{\prime}\right.$: $\left.V^{\prime} \in \mathrm{L}(V), V^{\prime} \subseteq \operatorname{Mod} I_{V}(M)\right\}$ if $M \cap\left(\left\{\sigma_{x^{i}}: 1 \leq i \in \mathbb{N}\right\} \cup\left\{\sigma_{y^{i}}: 1 \leq i \in \mathbb{N}\right\}\right)=$ \emptyset and $\alpha_{V}(M)=\left\{V^{\prime}: V^{\prime} \in \mathrm{L}(V), V^{\prime} \subseteq \operatorname{Mod}\left(I_{V}(M) \cup\left\{x^{k(M)} \approx x^{k(M)+1}\right\}\right)\right\}$ otherwise where $k(M)$ denotes the least natural number i with $M \cap\left\{\sigma_{x^{i}}, \sigma_{y^{i}}\right\} \neq \varnothing$ and $I_{V}(M):=\left\{x^{i} y^{j} \approx x^{j} y^{i}: 1 \leq i, j \in \mathbb{N}, \sigma_{x^{i} y^{j}} \in M\right\} \cup\left\{x^{i} y^{i^{2}} z^{i^{2}} \approx x^{i^{2}} y^{i^{2}} z^{i}: 1 \leq\right.$ $\left.i \in \mathbb{N}, \sigma_{x^{i} y^{i}} \in M\right\}$.

Proof. Since $V \in S_{f}$ there exists a natural number k with V satisfies $x_{0} \ldots x_{k} \approx y_{0} \ldots y_{k}$. Let $V^{\prime} \in \alpha_{V}(M)$. Obviously then $V^{\prime} \in \mathrm{L}(V)$. Suppose that $M \cap\left(\left\{\sigma_{x^{i}}: 1 \leq i \in \mathbb{N}\right\} \cup\left\{\sigma_{y^{i}}: 1 \leq i \in \mathbb{N}\right\}\right) \neq \varnothing$. Then there exists a least natural number i with $\sigma_{x^{i}} \in M$ or $\sigma_{y^{i}} \in M$. From $x y \approx y x$ it follows $\sigma_{x^{i}}[x y] \approx \sigma_{x^{i}}[y x]$ and $\sigma_{y^{i}}[x y] \approx \sigma_{y^{i}}[y x]$, respectively. Thus $x^{i} \approx y^{i}$ is an identity in V^{\prime}. From $x^{i} \approx y^{i}$ it follows $x^{i} \approx x^{t}$ for a natural number $t>k$. Then $x^{i+1} \approx x^{t+1}$. From $x_{0} \ldots x_{k} \approx y_{0} \ldots y_{k}$ and $t>k$ it follows $x^{t} \approx x^{t+1}$ and $x^{i} \approx x^{t} \approx x^{t+1} \approx x^{i+1}$, that means, $x^{i} \approx x^{i+1}$ is an identity in V^{\prime}. Note that $i=k(M)$. Let $1 \leq i, j \in \mathbb{N}$ with $\sigma_{x^{i} y^{j}} \in M$. From $x y \approx y x$ it follows $\sigma_{x^{i} y^{j}}[x y] \approx \sigma_{x^{i} y^{j}}[y x]$, that means, $x^{i} y^{j} \approx x^{j} y^{i}$ is an identity in V^{\prime}. Let $1 \leq i \in \mathbb{N}$ with $\sigma_{x^{i} y^{i}} \in M$. From the associative law it follows $\sigma_{x^{i} y^{i}}[(x y) z] \approx \sigma_{x^{i} y^{i}}[x(y z)]$, that means, $\left(x^{i} y^{i}\right)^{i} z^{i} \approx x^{i}\left(y^{i} z^{i}\right)^{i}$. Using the commutative law we obtain that $x^{i} y^{i^{2}} z^{i^{2}} \approx x^{i^{2}} y^{i^{2}} z^{i}$ is an identity in V^{\prime}. Altogether $V^{\prime} \subseteq \operatorname{Mod} I_{V}(M)$ and $V^{\prime} \subseteq$ $\operatorname{Mod}\left(I_{V}(M) \cup\left\{x^{k(M)} \approx x^{k(M)+1}\right\}\right)$, respectively.

Conversely, let $V^{\prime} \in \mathrm{L}(V)$ with $V^{\prime} \subseteq \operatorname{Mod} I_{V}(M)$ and $V^{\prime} \subseteq \operatorname{Mod}\left(I_{V}(M) \cup\right.$ $\left.\left\{x^{k(M)} \approx x^{k(M)+1}\right\}\right)$, respectively. Further let $\sigma \in M$ and let $u \approx \bar{v}$ be a nontrivial identity in V^{\prime}. Because of the commutative law $\sigma \in\left\{\sigma_{x^{i}}: 1 \leq i \in \mathbb{N}\right\} \cup\left\{\sigma_{y^{i}}\right.$: $1 \leq i \in \mathbb{N}\} \cup\left\{\sigma_{x^{i} y^{j}}: 1 \leq i, j \in \mathbb{N}\right\}$. At first we show that if $\sigma \in\left\{\sigma_{x^{i}}: 1 \leq i \in\right.$ $\mathbb{N}\} \cup\left\{\sigma_{y^{i}}: 1 \leq i \in \mathbb{N}\right\}$ then $\sigma[u] \approx \sigma[v]$. Then there exists a natural number $i \geq 1$ with $\sigma_{x^{i}}=\sigma$ or $\sigma_{y^{i}}=\sigma$. With loss of generality we assume that $\sigma_{x^{i}}=\sigma$. Then we have $\sigma_{x^{i}}[u] \approx\left(u_{0}\right)^{a}$ and $\sigma_{x^{i}}[v] \approx\left(v_{0}\right)^{b}$ with $a, b \in\left\{i^{n}: 1 \leq n \in \mathbb{N}\right\}$ where u_{0} and v_{0} denote the first variable in u and v, respectively. From $x^{k(M)} \approx x^{k(M)+1}$ it follows $x^{k(M)} \approx x^{t}$ and $x^{k(M)} y \approx x^{t} y$ for a natural number $t \geq k$. Using $x_{0} \ldots x_{k} \approx y_{0} \ldots y_{k}$ we have $x^{k(M)} y \approx x_{0} \ldots x_{k}$. Clearly, $i \geq k(M)$. Thus $\left(u_{0}\right)^{a} \approx$ $x_{0} \ldots x_{k} \approx\left(v_{0}\right)^{b}$. Therefore $\sigma_{x^{i}}[u] \approx \sigma_{x^{i}}[v]$ is an identity in V^{\prime}. If $\sigma=\sigma_{x y}$ then obviously $\sigma[u] \approx \sigma[v]$ is an identity in V^{\prime}. If now $\sigma \in\left\{\sigma_{x^{i} y^{j}}: 1 \leq i, j \in \mathbb{N}\right\} \backslash\left\{\sigma_{x y}\right\}$ then there are natural numbers m, n and $i, j \geq 1$ and $u_{0}, \ldots, u_{m}, v_{0}, \ldots, v_{n} \in X$ with $u=u_{0} \ldots u_{m}, v=v_{0} \ldots v_{n}$ and $\sigma=\sigma_{x^{i} y^{j}}$. Thus $x^{i} y^{j} \approx x^{j} y^{i}$ is an identity in V^{\prime}. Now we show that $\sigma[u] \approx \sigma[v]$ is an identity in V^{\prime}. Here the following cases are possible:
(a) Suppose that $m=n=0$. Obviously then $\sigma[u] \approx \sigma[v]$.
(b) Suppose that $m=0$ and $n \geq 1$ (or $n=0$ and $m \geq 1$). By substitution $(w \rightarrow x$ for $w \in X)$ from $u \approx v$ it follows $x \approx x^{t}$ for a natural number $t \geq 2$. From $x_{0} \ldots x_{k} \approx y_{0} \ldots y_{k}$ it follows $x^{k+2} \approx x^{k+1}$ and using $x \approx x^{t}$ we obtain $x \approx x^{2}$. Then $\sigma[u] \approx u_{0} \ldots u_{m} \approx v_{0} \ldots v_{n} \approx \sigma[v]$.
(c) Suppose that $m=n=1$ and $\left\{u_{0}, u_{1}\right\}=\left\{v_{0}, v_{1}\right\}$. Since $u \approx v$ is a nontrivial identity in V^{\prime} it is easy to check that $u \approx v$ is the commutative law, that means $u_{0}=v_{1}$ and $u_{1}=v_{0}$. From $x^{i} y^{j} \approx x^{j} y^{i}$ it follows $\sigma[u] \approx u_{0}^{i} u_{1}^{j} \approx$ $u_{0}^{j} u_{1}^{i} \approx u_{1}^{i} u_{0}^{j} \approx v_{0}^{i} v_{1}^{j} \approx \sigma[v]$.
(d) Suppose that $m=n=1$ and $\left\{u_{0}, u_{1}\right\} \neq\left\{v_{0}, v_{1}\right\}$. Then there exists a natural number $t \geq 3$ such that $x^{2} \approx x^{t}$ is an identity in V^{\prime}. From $x_{0} \ldots x_{k} \approx$ $y_{0} \ldots y_{k}$ and $x^{2} \approx x^{t}$ we obtain $x^{2} w \approx x_{0} \ldots x_{k}$. Because of $\sigma \neq \sigma_{x y}$ we have $i \geq 2$ or $j \geq 2$. Using $x^{2} w \approx w x^{2} \approx x_{0} \ldots x_{k}$ we have $\sigma[u] \approx u_{0}^{i} u_{1}^{j} \approx x_{0} \ldots x_{k} \approx$ $v_{0}^{i} v_{1}^{j} \approx \sigma[v]$.
(e) Suppose that $m=1$ and $n \geq 2$ (or $n=1$ and $m \geq 2$). Then there exists an identity $x^{2} \approx x^{t}$ in V^{\prime} for a natural number $t \geq 3$. Similarly as in case (d) we obtain that $\sigma[u] \approx \sigma[v]$ is an identity in V^{\prime}.
(f) Suppose that $m \geq 2$ and $n \geq 2$ and $i \neq j$. With out loss of generality we assume that $i<j$. At first we show that from $x^{i} y^{j} \approx x^{j} y^{i}$ it follows $x^{i}\left(y^{i}\right)^{j} z \approx$ $x_{0} \ldots x_{k}$. We have $x^{i}\left(y^{i}\right)^{j} \approx x^{i} y^{j} y^{t}$ with $t=(i \cdot j)-j$. Using $x^{i} y^{j} \approx x^{j} y^{i}$ we have $x^{i} y^{j} y^{t} \approx x^{j} y^{i} y^{t} \approx x^{j}\left(y^{i}\right)^{i} y^{s} \approx x^{i}\left(y^{i}\right)^{j} y^{s}$ with $s=(i \cdot j)-i^{2}+i-$ j. It is easy to check that from $i<j$ it follows $s \geq 1$. Altogether we have $x^{i}\left(y^{i}\right)^{j} \approx x^{i}\left(y^{i}\right)^{j} y^{s}$ with $s \geq 1$. Hence there exists a natural number $r \geq k$ with $x^{i}\left(y^{i}\right)^{j} \approx x^{i}\left(y^{i}\right)^{j} y^{r}$ and $x^{i}\left(y^{i}\right)^{j} z \approx x^{i}\left(y^{i}\right)^{j} y^{r} z$. Using $x_{0} \ldots x_{k} \approx y_{0} \ldots y_{k}$ we obtain $x^{i}\left(y^{i}\right)^{j} z \approx x_{0} \ldots x_{k}$. By the commutative law we obtain $\sigma[u] \approx u_{0}^{i}\left(u_{1}^{i}\right)^{j} w_{u}$ and $\sigma[v] \approx v_{0}^{i}\left(v_{1}^{i}\right)^{j} w_{v}$ with $w_{u}, w_{v} \in W(X)$. Using $x^{i}\left(y^{i}\right)^{j} z \approx x_{0} \ldots x_{k}$ we have $\sigma[u] \approx u_{0}^{i}\left(u_{1}^{i}\right)^{j} w_{u} \approx x_{0} \ldots x_{k} \approx v_{0}^{i}\left(v_{1}^{i}\right)^{j} w_{v} \approx \sigma[v]$.

In the next cases we have $i=j$ and thus $x^{i^{2}} y^{i^{2}} z^{i} \approx x^{i} y^{i^{2}} z^{i^{2}}$ is an identity in V^{\prime}.
(g) Suppose that $m=n=2$ and $\left\{u_{0}, u_{1}, u_{2}\right\}=\left\{v_{0}, v_{1}, v_{2}\right\}$. Since $u \approx v$ is a nontrivial identity in V^{\prime} we have $\left|\left\{u_{0}, u_{1}, u_{2}\right\}\right| \geq 2$. Without loss of generality let $u_{0} \neq u_{1}$ and $u_{0}=v_{0}$ and $u_{1}=v_{1}$. By substitution $\left(w \rightarrow w^{i}\right.$ for $\left.w \in X\right)$ from $u \approx v$ it follows $u_{0}^{i} u_{1}^{i} u_{2}^{i} \approx v_{0}^{i} v_{1}^{i} v_{2}^{i}$ and $u_{0}^{i(i-1)} u_{1}^{i(i-1)} u_{0}^{i} u_{1}^{i} u_{2}^{i} \approx u_{0}^{i(i-1)} u_{1}^{i(i-1)} v_{0}^{i} v_{1}^{i} v_{2}^{i}$ and $u_{0}^{i^{2}} u_{1}^{i^{2}} u_{2}^{i} \approx v_{0}^{i^{2}} v_{1}^{i^{2}} v_{2}^{i}$. By $x^{i^{2}} y^{i^{2}} z^{i} \approx x^{i} y^{i^{2}} z^{i^{2}}$ and the commutative law we obtain $\sigma[u] \approx u_{0}^{i^{2}} u_{1}^{i^{2}} u_{2}^{i} \approx v_{0}^{i^{2}} v_{1}^{i^{2}} v_{2}^{i} \approx \sigma[v]$.
(h) Suppose that $m=n=2$ and $\left\{u_{0}, u_{1}, u_{2}\right\} \neq\left\{v_{0}, v_{1}, v_{2}\right\}$. Similarly as in case (d) we obtain $x^{3} w \approx x_{0} \ldots x_{k}$. From $\sigma \neq \sigma_{x y}$ it follows $i \geq 2$ and $i^{2} \geq 3$. Using the commutative law and $x^{3} w \approx w x^{3} \approx x_{0} \ldots x_{k}$ we obtain $\sigma[u] \approx u_{0}^{i^{2}} u_{1}^{i^{2}} u_{2}^{i} \approx x_{0} \ldots x_{k} \approx v_{0}^{i^{2}} v_{1}^{i^{2}} v_{2}^{i} \approx \sigma[v]$.
(i) Suppose that $m=2$ and $n \geq 3$ (or $m \geq 3$ and $n=2$). Similarly as in
case (e) we obtain that $\sigma[u] \approx \sigma[v]$ is an identity in V^{\prime}.
(j) Suppose that $m \geq 3$ and $n \geq 3$. At first we show that from $x^{i^{2}} y^{i^{2}} z^{i} \approx$ $x^{i} y^{i^{2}} z^{i^{2}}$ it follows $x^{i} y^{i^{2}} z^{i^{3}} w \approx x_{0} \ldots x_{k}$. We have $x^{i} y^{i^{2}} z^{i^{3}} \approx x^{i} y^{i^{2}} z^{i^{2}} z^{t}$ with $t=$ $i^{3}-i^{2}$. Using $x^{i^{2}} y^{i^{2}} z^{i} \approx x^{i} y^{i^{2}} z^{i^{2}}$ we have $x^{i} y^{i^{2}} z^{i^{2}} z^{t} \approx x^{i^{2}} y^{i^{2}} z^{i} z^{t} \approx x^{i^{2}} y^{i^{2}}\left(z^{i}\right)^{i} z^{s} \approx$ $x^{i} y^{i^{2}} z^{i^{3}} z^{s}$ with $s=i^{3}-2 i^{2}+i$. Altogether we have $x^{i} y^{i^{2}} z^{i^{3}} \approx x^{i} y^{i^{2}} z^{i^{3}} z^{s}$ with $s \geq 1$ because of $i \geq 2$. Then there exists a natural number $r \geq k$ with $x^{i} y^{i^{2}} z^{i^{3}} \approx$ $x^{i} y^{i^{2}} z^{i^{3}} z^{r}$ and $x^{i} y^{i^{2}} z^{i^{3}} w \approx x^{i} y^{i^{2}} z^{i^{3}} z^{r} w$. Using $x_{0} \ldots x_{k} \approx y_{0} \ldots y_{k}$ we obtain $x^{i} y^{i^{2}} z^{i^{3}} w \approx x_{0} \ldots x_{k}$. Using the commutative law and by $x^{i^{2}} y^{i^{2}} z^{i} \approx x^{i} y^{i^{2}} z^{i^{2}}$ we have then $\sigma[u] \approx u_{0}^{i} u_{1}^{i^{2}} u_{2}^{i^{3}} w_{u} \approx x_{0} \ldots x_{k} \approx v_{0}^{i} v_{1}^{i^{2}} v_{2}^{i^{3}} w_{v} \approx \sigma[v]$, for $w_{u}, w_{v} \in W(X)$. Altogether $\left(\sigma, V^{\prime}\right) \in R_{V}$. Consequently, $\left(\sigma^{\prime}, V^{\prime}\right) \in R_{V}$ for each $\sigma^{\prime} \in M$, that means, $V^{\prime} \in \alpha_{V}(M)$.

We can illustrate Theorem 4.1 by the following two examples.
Example 4.2. Obviously, $H y p_{Z}=\left\{\sigma_{x}, s_{y}, \sigma_{x y}\right\}$ and $S_{Z}(H y p)=$ $\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ with $M_{1}=\left\{\sigma_{x}, \sigma_{x y}\right\}, M_{2}=\left\{\sigma_{y}, \sigma_{x y}\right\}, M_{3}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{x y}\right\}$ and $M_{4}=\left\{\sigma_{x y}\right\}$. Then we have $\operatorname{Mod} I_{Z}\left(M_{4}\right)=\operatorname{Mod}\{x y \approx x y\}$ and $\operatorname{Mod}\left(I_{Z}(M) \cup\right.$ $\left.\left\{x^{k(M)} \approx x^{k(M)+1}\right\}\right)=\operatorname{Mod}\left\{x \approx x^{2}\right\}$ for $M \in\left\{M_{1}, M_{2}, M_{3}\right\}$. Then by Theorem 4.1 it is easy to check that $\alpha_{Z}\left(M_{4}\right)=\mathrm{L}(Z)=\{T, Z\}$ and $\alpha_{Z}\left(M_{i}\right)=\{T\}$ for $i \in\{1,2,3\}$.

Example 4.3. We have $\operatorname{Hyp}_{Z_{3}}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{x^{2}}, \sigma_{y^{2}}, \sigma_{x^{3}}, \sigma_{x y}\right\}$. Let $M \in$ $S_{Z_{3}}(H y p)$. If $M \cap\left\{\sigma_{x}, \sigma_{y}\right\} \neq \varnothing$ then $k(M)=1$. It is easy to check that $\left\{V^{\prime}\right.$: $\left.V^{\prime} \in \mathrm{L}\left(Z_{3}\right), V^{\prime} \subseteq \operatorname{Mod}\left\{x \approx x^{2}\right\}\right\}=\{T\}$. Thus $\alpha_{Z_{3}}(M)=\{T\}$ by Theorem 4.1. If $M \cap\left\{\sigma_{x}, \sigma_{y}\right\}=\varnothing$ and $M \cap\left\{\sigma_{x^{2}}, \sigma_{y^{2}}\right\} \neq \varnothing$ then $k(M)=2$ and we have $\alpha_{Z_{3}}(M)=\left\{V^{\prime}: V^{\prime} \in \mathrm{L}\left(Z_{3}\right), V^{\prime} \subseteq \operatorname{Mod}\left\{x^{2} \approx x^{3}\right\}\right\}$ by Theorem 4.1. If $M \cap\left\{\sigma_{x}, \sigma_{y}, \sigma_{x^{2}}, \sigma_{y^{2}}\right\}=\emptyset$ then $M=\left\{\sigma_{x y}\right\}$ or $M=\left\{\sigma_{x^{3}}, \sigma_{x y}\right\}$. If $M=\left\{\sigma_{x y}\right\}$ then by Theorem 4.1 we have $\alpha_{Z_{3}}(M)=\mathrm{L}\left(Z_{3}\right)$. If $M=\left\{\sigma_{x^{3}}, \sigma_{x y}\right\}$ then $k(M)=3$ and by Theorem 4.1 we obtain $\alpha_{Z_{3}}(M)=\left\{V^{\prime}: V^{\prime} \in \mathrm{L}\left(Z_{3}\right), V^{\prime} \subseteq \operatorname{Mod}\left\{x^{3} \approx x^{4}\right\}\right\}$. Since from $x_{0} x_{1} x_{2} \approx y_{0} y_{1} y_{2}$ it follows $x^{3} \approx x^{4}$ we have $\alpha_{Z_{3}}(M)=\mathrm{L}\left(Z_{3}\right)$.

REFERENCES

[1] K. Denecke. Pre-solid varieties. Demonstratio Math. XXVII, 3-4 (1994), 741-750.
[2] K. Denecke, J. Koppitz. Hyperassociative semigroups. Semigroup Forum 49 (1994), 41-48.
[3] K. Denecke, J. Koppitz. M-solid varieties of semigroups. Discuss. Math. Algebra and Stochastic 15 (1995), 23-41.
[4] K. Denecke, M. Reichel. Monoids of hypersubstitutions and M-solid varieties. Contrib. General Algebra 9 (1995), 117-126.
[5] K. Denecke, S. L. Wismath. Solid varieties of semigroups. Semigroup Forum 48 (1994), 219-234.
[6] L. Polák. All solid varieties of semigroups. Abstract, 1994.
[7] W. Taylor. Hyperidentities and hypervarieties. Aequationes Math. 23 (1981), 30-49.

Rennbahnring 1
06124 Halle
Received January 29, 1996
Germany
Revised August 12, 1996

[^0]: 1991 Mathematics Subject Classification: 20M07, 08B15
 Key words: hypersubstitutions, M-hyperidentity, M-solid subvarieties of semigroups
 ${ }^{*}$ The research of the author was supported by the Alexander v. Humboldt-Stiftung

