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M -SOLID SUBVARIETIES OF SOME VARIETIES OF

COMMUTATIVE SEMIGROUPS

J. Koppitz∗

Communicated by V. Kanev

Abstract. The basic concepts are M -hyperidentities, where M is a monoid
of hypersubstitutions. The set of all M -solid varieties of semigroups forms
a complete sublattice of the lattice of all varieties of semigroups. We fix
some specific varieties V of commutative semigroups and study the set of all
M -solid subvarieties of V , in particular, if V is nilpotent.

1. Introduction. The purpose of this work is to study the lattice L(V ) of

all subvarieties of some varieties V of commutative semigroups and the sublattices

of L(V ). Our basic concepts are M -hyperidentities and the stronger concept of

a hyperidentity ([7]). A mapping σ from the binary operation symbol f into the

set W (X) is called a hypersubstitution, where W (X) denotes the set of all terms

over a fixed alphabet X. For a term t ∈ W (X) let σt be the hypersubstitution

defined by σt(f) := t. For a hypersubstitution σ we define the extension σ∧ of σ

as a mapping from W (X) into W (X) inductively:

(i) σ∧[x] := x for x ∈ X;

1991 Mathematics Subject Classification: 20M07, 08B15
Key words: hypersubstitutions, M -hyperidentity, M -solid subvarieties of semigroups
∗The research of the author was supported by the Alexander v. Humboldt-Stiftung



J. Koppitz 26

(ii) σ∧[f(s, t)] := σ(f)W (X)(σ∧[s], σ∧[t]), where σ(f)W (X) denotes the

term operation generated by the term σ(f).

Hyp denotes the set of all hypersubstitutions. Clearly, for two hypersubstitutions

σ1, σ2 the product σ1 ◦h σ2 defined by (σ1 ◦h σ2)
∧[t] := σ∧

1 [σ∧
2 [t]] for t ∈ W (X)

is again a hypersubstitution. Thus Hyp is a monoid under ◦h and the identity

element σxy (see [3]).

Let M be a submonoid of Hyp and let V be a variety of semigroups. An

identity u ≈ v in V is called an M -hyperidentity in V if σ∧[u] ≈ σ∧[v] is an

identity in V for each σ ∈ M . The variety V is called M -solid if each identity

in V is also an M -hyperidentity in V . By [4] the collection SM of all M -solid

varieties of semigroups forms a complete sublattice of the lattice S of all varieties

of semigroups.

The lattice of all Hyp-solid varieties (or only solid varieties) of semigroups

is studied in [2], [5] and [6]. M -solid varieties for other submonoids M of Hyp

have been studied; see for example [1] and [3]. In this paper we will study lattices

of M -solid varieties of some commutative semigroups for all submonoids M of

Hyp.

2. Basic concepts. We fix a specific variety V of semigroups. The

collection of all subsets of the lattice L(V ) of all subvarieties of V will be denoted

by P (L(V )). The collection of all subsets of Hyp will be denoted by P (Hyp).

We define a relation RV ⊆ Hyp × L(V ) as follows: For σ ∈ Hyp and

Y ∈ L(V ) set (σ, Y ) ∈ RV iff for any identity u ≈ v in Y , Y satisfies σ∧[u] ≈ σ∧[v].

Now we define two mappings α∗
V and β∗

V on P (Hyp) and P (L(V )), respectively,

as follows:

For M ∈ P (Hyp) set α∗
V (M) := {Y : Y ∈ L(V ), (σ, Y ) ∈ RV for all

s ∈ M};

for L ∈ P (L(V )) set β∗
V (L) := {σ : σ ∈ Hyp, (σ, Y ) ∈ RV for all Y ∈ L}.

Obviously, (α∗
V , β∗

V ) forms a GALOIS-connection.

L(L(V )) denotes the collection of all complete sublattices of L(V ). Further

we define a relation ∼V on Hyp as follows: For σ1, σ2 ∈ Hyp we have σ1 ∼V σ2

iff σ∧
1 [xy] ≈ σ∧

2 [xy] is an identity in V . Obviously ∼V is an equivalence relation

and [σ]V denotes the equivalence class of σ ∈ Hyp. For a submonoid M of Hyp

by MV we put MV := {[σ]V : σ ∈ M} and for σ ∈ Hyp we define [σ]V [t] :=

σ∧[t] for t ∈ W (X). SV (Hyp) denotes the collection of all MV where M is a
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submonoid of Hyp. Now define a map αV (a map βV ) on SV (Hyp) (on L(L(V )))

by αV (MV ) := α∗
V (M) (βV (L) := (β∗

V (L))V ).

Clearly, for MV ∈ SV (Hyp), α∗
V (M) is the collection of all M -solid

subvarieties of V , that means, α∗
V (M) = SM ∩ L(V ). As SM is a complete

sublattice of S and L(V ) is a complete lattice, αV (MV ) = a∗V (M) = SM ∩ L(V )

forms a complete sublattice of L(V ).

Let L ∈ L(L(V )) and V ∗ ∈ L. Then for σ1, σ2 ∈ β∗
V (L) we have (σ1, V

∗) ∈

RV and (σ2, V
∗) ∈ RV . From this it follows if u ≈ v an identity in V ∗ then

σ∧
2 [u] ≈ σ∧

2 [v] is an identity in V ∗ and σ∧
1 [σ∧

2 [u]] ≈ σ∧
1 [σ∧

2 [v]] is an identity in V ∗.

Thus (σ1 ◦h σ2, V
∗) ∈ RV . Clearly, (σxy, V

∗) ∈ RV . Altogether β∗
V (L) forms a

submonoid of Hyp, that means, βV (L) ∈ SV (Hyp).

We have now mappings αV : SV (Hyp) → L(L(V )) and βV : L(L(V )) →

SV (Hyp). Since (α∗
V , β∗

V ) forms a GALOIS-connection it is easy to check that

(αV , βV ) has the properties of a GALOIS-connection. For M ∈SV (Hyp) we put

M :=βV (αV (M)) and for L ∈ L(L(V )) we put L := αV (βV (L)). An M ∈ SV (Hyp)

(an L ∈ L(L(V ))) is called closed if M = M (L = L).

Now want to use the kernels of αV and βV (denoted by ker αV and ker βV ,

respectively) to define maps on the closed monoids and on the closed sublat-

tices, respectively. We define a map α
V

on SV (Hyp)/ ker αV
by α

V
([M ]ker αV

) :=

[aV (M)]ker αV
and we define a map β

V
on L(L(V ))/ ker βV

by β
V

([L]ker βV
) :=

[βV (L)]ker βV
. Then α

V
and β

V
are bijections between SV (Hyp)/ ker αV

and

L(L(V ))/ ker βV
. Clearly, all members of each ker αV class (ker βV class) have

the same closure, so we can label an equational class as [M ]ker αV
for any M

(as [L]ker βV
for any L) in the class. We could also think of α

V
(of β

V
) as the

restriction of αV (of βV ) to the closed members of SV (Hyp) (of L(L(V ))).

In this paper we will now determine the closed members of L(L(V )) for

varieties of specific commutative semigroups, in particular, if V is nilpotent. Note

that a variety V of semigroups is called nilpotent if there exists a natural number

k ≥ 2 such that xk ≈ x is satisfied by V .

3. Varieties of commutative nilpotent semigroups. In the next by

σ we mean [σ]V for a variety V .

Theorem 3.1. Let V be a variety of nilpotent commutative semigroups

and M ∈ SV (Hyp) with M ∩ ({σxi : 1 ≤ i ∈ N} ∪ {σyi : 1 ≤ i ∈ N}) = Ø. Then

αV (M) = {V ′ : V ′ ∈ L(V ), V ′ ⊆ ϑV (M)} where ϑV (M) := Mod{xi ≈ x : i ∈
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IV (M)} and IV (M) denotes the set of all natural numbers i ≥ 1 such that there

exists a natural number j ≥ 1 with M ∩ {σxiyj , σxjyi} 6= Ø.

P r o o f. Let V ′ ∈ αV (M) and i ∈ IV (M). Clearly, V ′ ∈ L(V ) and

there exists a natural number j ≥ 1 with M ∩ {σxiyj , σxjyi} 6= Ø. Suppose that

σxiyj ∈ M . Then from xy ≈ yx it follows σxiyj [xy] ≈ σxiyj [yx], that means,

xiyj ≈ yixj ≈ xjyi is an identity in V ′. Since V is nilpotent, there exists a

natural number k ≥ 2 such that xk ≈ x is an identity in V and thus in V ′.

From this it follows that x3k−2 ≈ x and there exists a natural number t with

x3k−2 ≈ (x2)ixjxt. From xiyj ≈ xjyi it follows (x2)ixjxt ≈ (x2)jxixt. Clearly,

(x2)jxixt = x2j+i+t = x2i+j+t+(j−i) = x3k−2+(j−i). Therefore x ≈ x3k−2+(j−i).

From this is follows xi ≈ x3k−3+j. From x3k−2 ≈ x it follows xj ≈ x3k−3+j.

Thus xi ≈ xj is an identity in V ′. From (xy)z ≈ x(yz) it follows σxiyj [(xy)z] ≈

σxiyj [x(yz)] where σxiyj [(xy)z] ≈ (xiyj)izj and σxiyj [x(yz)] ≈ xi(yizj)j . Because

of xi ≈ xj and the commutative law we have (xiyj)izj ≈ xi2yi2zi and xi(yizj)j ≈

xiyi2zi2 , that means, xiyi2zi2 ≈ xi2yi2zi. By substitution (y → x) we obtain

xazi ≈ xbzi2 where a = i2 + i2 and b = i + i2. By substitution (x → zk−1) we

obtain za(k−1)zi ≈ zb(k−1)zi2 . Because of xk ≈ x we have zi ≈ zi2 . Thus xi ≈ xi2

is an identity in V ′. From xk ≈ x it follows σxiyj [x] ≈ σxiyj [xk]. Using xi ≈ xj

and xi ≈ xi2 we obtain σxiyj [xk] ≈ xki and thus xki ≈ x is an identity in V ′.

From xk ≈ x it follows xki+1−i ≈ x and thus xki ≈ x1+i−1, that means, xki ≈ xi.

Using xki ≈ x we obtain that xi ≈ x is an identity in V ′. Suppose that σxjyi ∈ M

then similarly as above we obtain that xi ≈ x is an identity in V ′. Altogether

V ′ ⊆ Mod{xi ≈ x : i ∈ IV (M)} = ϑV (M).

Conversely let V ′ ∈ L(V ) with V ′ ⊆ ϑV (M). Further let σ ∈ M and let

u ≈ v be an identity in V ′. Because of M ∩ ({σxi : 1 ≤ i ∈ N} ∪ {σyi : 1 ≤

i ∈ N}) = Ø and the commutative law σ ∈ {σxiyj : 1 ≤ i, j ∈ N}. Therefore

there are natural numbers i, j ≥ 1 with σ = σxiyj , where i, j ∈ IV (M). Therefore

xi ≈ x and xj ≈ x are identities in V ′. From this it follows σxiyj ∼V σxy.

By [4] then σxiyj [t] ≈ σxy[t] for any t ∈ W (X). Therefore σxiyj [u] ≈ σxy[u] ≈

σxy[v] ≈ σxiyj [v], that means, σ[u] ≈ σ[v] is an identity in V ′. Thus (σ, V ′) ∈ RV .

Altogether (σ′, V ′) ∈ RV for all σ′ ∈ M , that means, V ′ is M -solid and thus

V ′ ∈ αV (M). �

Theorem 3.2. Let V be a variety of nilpotent commutative semigroups

and M ∈ SV (Hyp) such that M ∩ ({σxi : 1 ≤ i ∈ N} ∪ {σyi : 1 ≤ i ∈ N}) 6= Ø.

Then αV (M) = {T} where T denotes the trivial variety.



29 M -solid subvarieties of some varieties of commutative semigroups

P r o o f. Clearly, T ∈ αV (M) and thus {T} ⊆ αV (M).

Conversely, let V ′ ∈ αV (M). There exists a natural number i ≥ 1 with

M ∩ {σxi , σyi} 6= Ø. From xy ≈ yx it follows σxi [xy] ≈ σxi [yx] and σyi [xy] ≈

σyi [yx], respectively. Thus xi ≈ yi is an identity in V ′. Since V is nilpotent there

exists a natural number k ≥ 2 such that xk ≈ x is an identity in V and thus

also in V ′ ∈ αV (M) ⊆ L(V ). Therefore σxi [x] ≈ σxi [xk] and σyi [x] ≈ σyi [xk],

respectively, are identities in V ′. Using the commutative law from this it follows

that xi ≈ x is an identity in V ′. Consequently, x ≈ xi ≈ yi ≈ y. Hence V ′ is the

trivial variety T . Altogether αV (M) ⊆ {T}. �

The following examples illustrate Theorem 3.1 and Theorem 3.2. The

varieties Vk := Mod{(xy)z ≈ x(yz), xy ≈ yx, xk ≈ x} for k ∈ {2, 3, 4, 5} are used.

Obviously, V2 is the variety SL of all semilattices.

Example 3.3. Obviously, HypSL = {σx, σy, σxy} and SSL(Hyp) =

{M1,M2, M3,M4} with M1 = {σx, σxy}, M2 = {σy, σxy}, M3 = {σx, σy, σxy}

and M4 = {σxy}.

By Theorem 3.2 we have αSL(Mi) = {T} for i ∈ {1, 2, 3}.

Because of ϑSL(M4) = Mod{x ≈ x} and L(SL) = {T, SL} we have

αSL(M4) = {V ′ : V ′ ∈ L(SL), V ′ ⊆ ϑSL(M4)} = {T, SL} by Theorem 3.1.

Example 3.4. We have HypV3
= {σx, σy, σx2 , σy2 , σxy, σx2y, σxy2 , σx2y2}.

Let M ∈ SV3
(Hyp).

If M∩{σx, σy, σx2, σy2} 6= Ø then by Theorem 3.2 we have αV3
(M) = {T}.

If M = {σxy} then it is easy to check that αV3
(M) = L(V3).

If {σxy, σx2y, σxy2 , σx2y2} ⊇ M 6= {σxy} then 2 ∈ IV3
(M), that means,

ϑV3
(M) ⊆ Mod{x2 ≈ x}. We have {V ′ : V ′ ∈ L(V3), V

′ ⊆ ϑV3
(M)} ⊆ {V ′ :

V ′ ∈ L(V3), V
′ ⊆ Mod{x2 ≈ x}} ⊆ {T, SL} because of the commutative law.

Obviously T, SL ∈ {V ′ : V ′ ∈ L(V3), V
′ ⊆ ϑV3

(M)}. By Theorem 3.1 we have

αV3
(M) = {T, SL}.

Example 3.5. We have HypV4
={σx, σy, σx2 , σy2 , σx3 , σy3 , σxy, σx2y, σxy2 ,

σx2y2 , σx3y, σx3y2 , σx3y3 , σx2y3 , σxy3}. Let M ∈ SV4
(Hyp).

If M ∩ {σx, σy, σx2 , σy2 , σx3, σy3} 6= Ø then by Theorem 3.2 we have

αV4
(M) = {T}.

If M = {σxy} then it is easy to check that αV4
(M) = L(V4).

If{σxy, σx2y, σxy2 , σx2y2 , σx3y, σx3y2 , σx3y3 , σx2y3 , σxy3} ⊇ M 6= {σxy} then

2 ∈ IV4
(M) or 3 ∈ IV4

(M), that means ϑV4
(M) ⊆ Mod{x2 ≈ x} or ϑV4

(M) ⊆



J. Koppitz 30

Mod{x3 ≈ x}. Suppose that ϑV4
(M) ⊆ Mod{x2 ≈ x} then similarly as in Exam-

ple 3.4 we obtain that αV4
(M) = {T, SL}. Suppose that ϑV4

(M) ⊆ Mod{x3 ≈ x}

then we note that from x3 ≈ x and x4 ≈ x it follows x2 ≈ x (using that from

x3 ≈ x it follows x2 ≈ x4). Thus also αV4
(M) = {T, SL}.

Example 3.6. We have HypV5
= {σx, σy, σx2 , σy2 , σx3 , σy3 , σx4 , σy4, σxy,

σx2y, σxy2 , σx2y2 , σx3y, σx3y2 , σx3y3 , σx2y3 , σxy3 , σx4y, σx4y2 , σx4y3 , σx4y4 , σx3y4 , σx2y4 ,

σxy4}. Let M ∈ SV5
(Hyp).

If M ∩ {σx, σy, σx2 , σy2 , σx3 , σy3 , σx4 , σy4} 6= Ø then by Theorem 3.2 we

have αV5
(M) = {T}.

If M = {σxy} then it is easy to check that αV5
(M) = L(V5).

If M ∩ {σx, σy, σx2 , σy2 , σx3 , σy3 , σx4, σy4} = Ø and M ∩ {σxy, σx2y, σxy2 ,

σx2y2 , σx3y2 , σx2y3 , σx4y, σx4y2 , σx4y3 , σx4y4 , σx3y4 , σx2y4 , σxy4} 6= Ø then 2 ∈ IV5
(M)

or 4 ∈ IV5
(M) and we note that from x5 ≈ x and x4 ≈ x it follows x2 ≈ x (using

that from x4 ≈ x it follows x5 ≈ x2). Similarly as in Example 3.5 we obtain that

αV5
(M) = {T, SL}.

If {σx3y, σx3y3 , σxy3} ⊇ M 6= {σxy} then 3 ∈ IV5
(M) and we have {V ′ :

V ′ ∈ L(V5), V
′ ⊆ ϑV5

(M)} ⊆ {V ′ : V ′ ∈ L(V5), V
′ ⊆ Mod{x3 ≈ x}} ⊆ L(V3). It is

easy to check that L(V3) ⊆ {V ′ : V ′ ∈ L(V5), V
′ ⊆ ϑV5

(M)}. By Theorem 3.1 we

have altogether αV5
(M) = L(V3).

4. Other “closed” lattices. In the following we study varieties V of

commutative semigroups where V satisfies an identity x0 . . . xk ≈ y0 . . . yk for a

natural number k. We will determine all closed sublattices of L(V ). Sf denotes

the collection of all varieties V of commutative semigroups such that there exists

a natural number k with V satisfies x0 . . . xk ≈ y0 . . . yk. Clearly, the variety Z

of all zero-semigroups (Z := Mod{xy ≈ zw}) is a member of Sf . The closed

sublattices of L(Z) and L(Z3) where Z3 denotes the variety Z3 := Mod{(xy)z ≈

x(yz), xy ≈ yx, x0x1x2 ≈ y0y1y2} will be given in two examples shortly. At first

we characterize the lattices αV (M) for any V ∈ Sf and all M ∈ SV (Hyp).

Theorem 4.1. Let V ∈ Sf and let M ∈ SV (Hyp) then αV (M) = {V ′ :

V ′ ∈ L(V ), V ′ ⊆ ModIV (M)} if M ∩ ({σxi : 1 ≤ i ∈ N} ∪ {σyi : 1 ≤ i ∈ N}) =

Ø and αV (M) = {V ′ : V ′ ∈ L(V ), V ′ ⊆ Mod(IV (M) ∪ {xk(M) ≈ xk(M)+1})}

otherwise where k(M) denotes the least natural number i with M ∩{σxi , σyi} 6= Ø

and IV (M) := {xiyj ≈ xjyi : 1 ≤ i, j ∈ N, σxiyj ∈ M} ∪ {xiyi2zi2 ≈ xi2yi2zi : 1 ≤

i ∈ N, σxiyi ∈ M}.
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P r o o f. Since V ∈ Sf there exists a natural number k with V satisfies

x0 . . . xk ≈ y0 . . . yk. Let V ′ ∈ αV (M). Obviously then V ′ ∈ L(V ). Suppose

that M ∩ ({σxi : 1 ≤ i ∈ N} ∪ {σyi : 1 ≤ i ∈ N}) 6= Ø. Then there exists a

least natural number i with σxi ∈ M or σyi ∈ M . From xy ≈ yx it follows

σxi [xy] ≈ σxi [yx] and σyi [xy] ≈ σyi [yx], respectively. Thus xi ≈ yi is an identity

in V ′. From xi ≈ yi it follows xi ≈ xt for a natural number t > k. Then

xi+1 ≈ xt+1. From x0 . . . xk ≈ y0 . . . yk and t > k it follows xt ≈ xt+1 and

xi ≈ xt ≈ xt+1 ≈ xi+1, that means, xi ≈ xi+1 is an identity in V ′. Note

that i = k(M). Let 1 ≤ i, j ∈ N with σxiyj ∈ M . From xy ≈ yx it follows

σxiyj [xy] ≈ σxiyj [yx], that means, xiyj ≈ xjyi is an identity in V ′. Let 1 ≤ i ∈ N

with σxiyi ∈ M . From the associative law it follows σxiyi [(xy)z] ≈ σxiyi [x(yz)],

that means, (xiyi)izi ≈ xi(yizi)i. Using the commutative law we obtain that

xiyi2zi2 ≈ xi2yi2zi is an identity in V ′. Altogether V ′ ⊆ ModIV (M) and V ′ ⊆

Mod(IV (M) ∪ {xk(M) ≈ xk(M)+1}), respectively.

Conversely, let V ′ ∈ L(V ) with V ′ ⊆ ModIV (M) and V ′ ⊆ Mod(IV (M)∪

{xk(M) ≈ xk(M)+1}), respectively. Further let σ ∈ M and let u ≈ v be a nontrivial

identity in V ′. Because of the commutative law σ ∈ {σxi : 1 ≤ i ∈ N} ∪ {σyi :

1 ≤ i ∈ N} ∪ {σxiyj : 1 ≤ i, j ∈ N}. At first we show that if σ ∈ {σxi : 1 ≤ i ∈

N}∪{σyi : 1 ≤ i ∈ N} then σ[u] ≈ σ[v]. Then there exists a natural number i ≥ 1

with σxi = σ or σyi = σ. With loss of generality we assume that σxi = σ. Then

we have σxi [u] ≈ (u0)
a and σxi [v] ≈ (v0)

b with a, b ∈ {in : 1 ≤ n ∈ N} where u0

and v0 denote the first variable in u and v, respectively. From xk(M) ≈ xk(M)+1

it follows xk(M) ≈ xt and xk(M)y ≈ xty for a natural number t ≥ k. Using

x0 . . . xk ≈ y0 . . . yk we have xk(M)y ≈ x0 . . . xk. Clearly, i ≥ k(M). Thus (u0)
a ≈

x0 . . . xk ≈ (v0)
b. Therefore σxi [u] ≈ σxi [v] is an identity in V ′. If σ = σxy then

obviously σ[u] ≈ σ[v] is an identity in V ′. If now σ ∈ {σxiyj : 1 ≤ i, j ∈ N}\{σxy}

then there are natural numbers m, n and i, j ≥ 1 and u0, . . . , um, v0, . . . , vn ∈ X

with u = u0 . . . um, v = v0 . . . vn and σ = σxiyj . Thus xiyj ≈ xjyi is an identity

in V ′. Now we show that σ[u] ≈ σ[v] is an identity in V ′. Here the following

cases are possible:

(a) Suppose that m = n = 0. Obviously then σ[u] ≈ σ[v].

(b) Suppose that m = 0 and n ≥ 1 (or n = 0 and m ≥ 1). By substitution

(w → x for w ∈ X) from u ≈ v it follows x ≈ xt for a natural number t ≥ 2.

From x0 . . . xk ≈ y0 . . . yk it follows xk+2 ≈ xk+1 and using x ≈ xt we obtain

x ≈ x2. Then σ[u] ≈ u0 . . . um ≈ v0 . . . vn ≈ σ[v].
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(c) Suppose that m = n = 1 and {u0, u1} = {v0, v1}. Since u ≈ v is a

nontrivial identity in V ′ it is easy to check that u ≈ v is the commutative law,

that means u0 = v1 and u1 = v0. From xiyj ≈ xjyi it follows σ[u] ≈ ui
0u

j
1 ≈

u
j
0u

i
1 ≈ ui

1u
j
0 ≈ vi

0v
j
1 ≈ σ[v].

(d) Suppose that m = n = 1 and {u0, u1} 6= {v0, v1}. Then there exists

a natural number t ≥ 3 such that x2 ≈ xt is an identity in V ′. From x0 . . . xk ≈

y0 . . . yk and x2 ≈ xt we obtain x2w ≈ x0 . . . xk. Because of σ 6= σxy we have

i ≥ 2 or j ≥ 2. Using x2w ≈ wx2 ≈ x0 . . . xk we have σ[u] ≈ ui
0u

j
1 ≈ x0 . . . xk ≈

vi
0v

j
1 ≈ σ[v].

(e) Suppose that m = 1 and n ≥ 2 (or n = 1 and m ≥ 2). Then there

exists an identity x2 ≈ xt in V ′ for a natural number t ≥ 3. Similarly as in case

(d) we obtain that σ[u] ≈ σ[v] is an identity in V ′.

(f) Suppose that m ≥ 2 and n ≥ 2 and i 6= j. With out loss of generality

we assume that i < j. At first we show that from xiyj ≈ xjyi it follows xi(yi)jz ≈

x0 . . . xk. We have xi(yi)j ≈ xiyjyt with t = (i · j) − j. Using xiyj ≈ xjyi

we have xiyjyt ≈ xjyiyt ≈ xj(yi)iys ≈ xi(yi)jys with s = (i · j) − i2 + i −

j. It is easy to check that from i < j it follows s ≥ 1. Altogether we have

xi(yi)j ≈ xi(yi)jys with s ≥ 1. Hence there exists a natural number r ≥ k

with xi(yi)j ≈ xi(yi)jyr and xi(yi)jz ≈ xi(yi)jyrz. Using x0 . . . xk ≈ y0 . . . yk we

obtain xi(yi)jz ≈ x0 . . . xk. By the commutative law we obtain σ[u] ≈ ui
0(u

i
1)

jwu

and σ[v] ≈ vi
0(v

i
1)

jwv with wu, wv ∈ W (X). Using xi(yi)jz ≈ x0 . . . xk we have

σ[u] ≈ ui
0(u

i
1)

jwu ≈ x0 . . . xk ≈ vi
0(v

i
1)

jwv ≈ σ[v].

In the next cases we have i = j and thus xi2yi2zi ≈ xiyi2zi2 is an identity

in V ′.

(g) Suppose that m = n = 2 and {u0, u1, u2} = {v0, v1, v2}. Since u ≈ v

is a nontrivial identity in V ′ we have |{u0, u1, u2}| ≥ 2. Without loss of generality

let u0 6= u1 and u0 = v0 and u1 = v1. By substitution (w → wi for w ∈ X) from

u ≈ v it follows ui
0u

i
1u

i
2 ≈ vi

0v
i
1v

i
2 and u

i(i−1)
0 u

i(i−1)
1 ui

0u
i
1u

i
2 ≈ u

i(i−1)
0 u

i(i−1)
1 vi

0v
i
1v

i
2

and ui2
0 ui2

1 ui
2 ≈ vi2

0 vi2
1 vi

2. By xi2yi2zi ≈ xiyi2zi2 and the commutative law we

obtain σ[u] ≈ ui2
0 ui2

1 ui
2 ≈ vi2

0 vi2
1 vi

2 ≈ σ[v].

(h) Suppose that m = n = 2 and {u0, u1, u2} 6= {v0, v1, v2}. Similarly

as in case (d) we obtain x3w ≈ x0 . . . xk. From σ 6= σxy it follows i ≥ 2 and

i2 ≥ 3. Using the commutative law and x3w ≈ wx3 ≈ x0 . . . xk we obtain

σ[u] ≈ ui2
0 ui2

1 ui
2 ≈ x0 . . . xk ≈ vi2

0 vi2
1 vi

2 ≈ σ[v].

(i) Suppose that m = 2 and n ≥ 3 (or m ≥ 3 and n = 2). Similarly as in
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case (e) we obtain that σ[u] ≈ σ[v] is an identity in V ′.

(j) Suppose that m ≥ 3 and n ≥ 3. At first we show that from xi2yi2zi ≈

xiyi2zi2 it follows xiyi2zi3w ≈ x0 . . . xk. We have xiyi2zi3 ≈ xiyi2zi2zt with t =

i3−i2. Using xi2yi2zi ≈ xiyi2zi2 we have xiyi2zi2zt ≈ xi2yi2zizt ≈ xi2yi2(zi)izs ≈

xiyi2zi3zs with s = i3 − 2i2 + i. Altogether we have xiyi2zi3 ≈ xiyi2zi3zs with

s ≥ 1 because of i ≥ 2. Then there exists a natural number r ≥ k with xiyi2zi3 ≈

xiyi2zi3zr and xiyi2zi3w ≈ xiyi2zi3zrw. Using x0 . . . xk ≈ y0 . . . yk we obtain

xiyi2zi3w ≈ x0 . . . xk. Using the commutative law and by xi2yi2zi ≈ xiyi2zi2 we

have then σ[u] ≈ ui
0u

i2
1 ui3

2 wu ≈ x0 . . . xk ≈ vi
0v

i2
1 vi3

2 wv ≈ σ[v], for wu, wv ∈ W (X).

Altogether (σ, V ′) ∈ RV . Consequently, (σ′, V ′) ∈ RV for each σ′ ∈ M , that

means, V ′ ∈ αV (M). �

We can illustrate Theorem 4.1 by the following two examples.

Example 4.2. Obviously, HypZ = {σx, sy, σxy} and SZ(Hyp) =

{M1,M2,M3, M4} with M1 = {σx, σxy}, M2 = {σy, σxy}, M3 = {σx, σy, σxy}

and M4 = {σxy}. Then we have ModIZ(M4) = Mod{xy ≈ xy} and Mod(IZ(M)∪

{xk(M) ≈ xk(M)+1}) = Mod{x ≈ x2} for M ∈ {M1,M2,M3}. Then by Theorem

4.1 it is easy to check that αZ(M4) = L(Z) = {T,Z} and αZ(Mi) = {T} for

i ∈ {1, 2, 3}.

Example 4.3. We have HypZ3
= {σx, σy, σx2 , σy2 , σx3 , σxy}. Let M ∈

SZ3
(Hyp). If M ∩ {σx, σy} 6= Ø then k(M) = 1. It is easy to check that {V ′ :

V ′ ∈ L(Z3), V
′ ⊆ Mod{x ≈ x2}} = {T}. Thus αZ3

(M) = {T} by Theorem

4.1. If M ∩ {σx, σy} = Ø and M ∩ {σx2 , σy2} 6= Ø then k(M) = 2 and we

have αZ3
(M) = {V ′ : V ′ ∈ L(Z3), V

′ ⊆ Mod{x2 ≈ x3}} by Theorem 4.1. If

M ∩ {σx, σy, σx2 , σy2} = Ø then M = {σxy} or M = {σx3 , σxy}. If M = {σxy}

then by Theorem 4.1 we have αZ3
(M) = L(Z3). If M = {σx3 , σxy} then k(M) = 3

and by Theorem 4.1 we obtain αZ3
(M) = {V ′ : V ′ ∈ L(Z3), V

′ ⊆ Mod{x3 ≈ x4}}.

Since from x0x1x2 ≈ y0y1y2 it follows x3 ≈ x4 we have αZ3
(M) = L(Z3).
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