Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

Serdica

ON THE DIFFERENCE OF 4-GONAL LINEAR SYSTEMS ON SOME CURVES

Akira Ohbuchi

Communicated by V. Kanev

Abstract. Let $C=\left(C, g_{4}^{1}\right)$ be a tetragonal curve. We consider the scrollar invariants e_{1}, e_{2}, e_{3} of g_{4}^{1}. We prove that if $W_{4}^{1}(C)$ is a non-singular variety, then every $g_{4}^{1} \in W_{4}^{1}(C)$ has the same scrollar invariants.
0. Introduction. Let C be a complete non-singular curve defined over an algebraically closed filed k with $\operatorname{char}(k) \neq 2$. Let $g=g(C)$ be the genus of C and let g_{d}^{1} be a base-point-free linear system on C of degree d and projective dimension 1. A pair $C=\left(C, \mathcal{O}\left(g_{d}^{1}\right)\right)$ is called a d-gonal curve if C does not admit a linear system of degree $e<d$. If a $C=\left(C, \mathcal{O}\left(g_{d}^{1}\right)\right)$ is a d-gonal curve, then g_{d}^{1} is a (base-point-free) complete linear system. Now we consider a pair $C=\left(C, \mathcal{O}\left(g_{d}^{1}\right)\right)$ such that g_{d}^{1} is a complete base-point-free of degree d. Let ω_{C} be a canonical sheaf on C, let $\mathcal{L}=\mathcal{O}\left(g_{d}^{1}\right)$ and let $F_{i}=\Gamma\left(C, \omega_{C} \otimes \mathcal{L}^{\otimes-i}\right)$. If $p: C \longrightarrow \mathbf{P}^{1}$ is the map which corresponds to g_{d}^{1} then $p_{*} \omega_{C} \cong \mathcal{O}_{\mathbb{P}^{1}}\left(e_{1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(e_{d-1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-2)$ and $F_{i} \cong \Gamma\left(\mathbb{P}^{1}, p_{*} \omega_{C} \otimes \mathcal{O}_{\mathbb{P}^{1}}(-i)\right)$. The modules $F_{i}(i=1,2, \cdots)$ give a filtration,

$$
F_{0} \supset F_{1} \supset \cdots \supset F_{n} \supset \cdots
$$

and by the definition of $\left\{F_{i}\right\}_{i=0}^{\infty}$ we have injective maps

$$
F_{0} / F_{1} \hookleftarrow F_{1} / F_{2} \hookleftarrow \cdots \hookleftarrow F_{n} / F_{n+1} \hookleftarrow \cdots .
$$

[^0]By Riemann-Roch's Theorem, $\operatorname{dim} F_{0} / F_{1}=d-1$. Now we define the scrollar invariants $e_{i}=e_{i}(\mathcal{L})(i=1, \cdots d-1)$ by

$$
e_{i}=e_{i}(\mathcal{L})=\#\left\{j \in \mathbb{N} ; \operatorname{dim}\left(F_{j-1} / F_{j}\right) \geq i\right\}-1(i=1,2, \cdots, d-1)
$$

and we put $e_{0}=e_{0}(\mathcal{L})=0$. Let $W_{d}^{r}(C)$ be a subscheme of a Picard variety $\operatorname{Pic}^{d}(C)$ roughly defined as follows:

$$
W_{d}^{r}(C) \stackrel{\text { as }}{\stackrel{\text { a }}{=}}{ }^{\text {set }}\left\{\mathcal{L} \in P i c^{d}(C) \mid \operatorname{dim} \Gamma(C, \mathcal{L}) \geq r+1\right\}
$$

The precise definition is found in Arbarello, Cornalba, Griffiths, Harris [1] p. 176. If $C=\left(C, g_{d}^{1}\right)$ is a hyperelliptic curve or a trigonal curve, then the scrollar invariants of any $g_{d}^{1} \in W_{d}^{1}(C)$ depend only on the curve C. We now assume that $C=\left(C, g_{d}^{1}\right)$ is a tetragonal curve. If $C=\left(C, g_{d}^{1}\right)$ is an elliptic-hyperelliptic curve, then there is a $\pi: C \rightarrow E$ where E is an elliptic curve and $\operatorname{deg} \pi=2$. Then $W_{4}^{1}(C)=\pi^{*} W_{2}^{1}(E)$. Hence the scrollar invariants of any $g_{4}^{1} \in W_{4}^{1}(C)$ depend only on the curve C. If $g \leq 4$, then C is a trigonal curve. So we assume $5 \leq g$ and C is not an elliptic-hyperelliptic curve.

Definition A. Let $C_{1} \subset \mathbb{P}^{2}$ be a plane curve and let $P \in C_{1}$ be a double point. We call that P is an r-fold node if P is analytically isomorphic to the singularity at $(0,0)$ of the curve $y^{2}=x^{2 r}$ in \mathbb{A}^{2} and we call that P is an r-fold cusp if P is analytically isomorphic to the singularity at $(0,0)$ of the curve $y^{2}=x^{2 r+1}$ in \mathbb{A}^{2} (see Hartshorne [9] p. 38 Exercise 5.14(d)).

Theorem A (Main Theorem). Let C be a tetragonal curve of genus g, where $6 \leq g \leq 8$. Assume that C is not elliptic-hyperelliptic and $\#\left(W_{4}^{1}(C)\right) \geq 2$. For any $g_{4}^{1} \in W_{4}^{1}(C)$, there is a divisor $D=D_{g_{4}^{1}}$ such that $\left|K_{C}-g_{4}^{1}-D\right|$ gives a birational morphism $\rho=\rho_{g_{4}^{1}}: C \rightarrow C_{1} \subset \mathbb{P}^{2}, \operatorname{deg}\left(C_{1}\right)=6$ and every singular point of C_{1} has multiplicity 2. Let $k_{4}^{1} \in W_{4}^{1}(C)$. Then there is a $g_{4}^{1} \in W_{4}^{1}(C)$ and a $P \in \operatorname{Sing}\left(C_{1}\right)=\operatorname{Sing}\left(\rho_{g_{4}^{1}}(C)\right)$ such that k_{4}^{1} is given by a cut out of lines which pass through P. And we have the following:
I) The following statements are equivalent:

1) $k_{4}^{1} \in W_{4}^{1}(C)$ is a reduced point
2) P is an ordinary node or an ordinary cusp
3) k_{4}^{1} is of type $(1,1,1)$ if $g=6,(2,1,1)$ if $g=7$ and $(2,2,1)$ if $g=8$.
II) The following statements are equivalent:
4) P is a 2-fold node or a 2-fold cusp
5) k_{4}^{1} is of type $(2,1,0)$ if $g=6,(2,2,0)$ if $g=7$ and $(3,1,1)$ if $g=8$.
III) The following statements are equivalent:
6) P is a 3-fold node or a 3-fold cusp
7) k_{4}^{1} is of type $(3,1,0)$ if $g=7$.

As a corollary of Theorem A, we have the following:
Corollary A. Assume that C is a tetragonal curve and C is not an elliptic-hyperelliptic curve. If $g \geq 10$, then C has only one g_{4}^{1}. If $5 \leq g \leq 9$ and $W_{4}^{1}(C)$ is reduced, then there exist integers $e_{1} \geq e_{2} \geq e_{3} \geq 0$ such that any $g_{4}^{1} \in W_{4}^{1}(C)$ has e_{1}, e_{2}, e_{3} for its scrollar invariants.

I would like to express my sincere gratitude to the referee for his helpful and kind advice.

Notations

$\operatorname{char}(k)$: The characteristic of a field k
\mathcal{O}_{A} : The structure sheaf of a variety A
f^{*} : The pull back defined by a morphism f
f_{*} : The direct image defined by a morphism f
$\operatorname{deg}(f)$: The degree of a finite morphism f
$|\mathcal{L}|:$ The complete linear system defined by an invertible sheaf \mathcal{L}
ϕ_{V} : The rational map defined by a linear system V
$\mathcal{O}_{A}(D)$: The invertible sheaf associated with a divisor D
$\Gamma(A, \mathcal{F})$: The global sections of a sheaf \mathcal{F}
K_{A} : A canonical divisor on a non-singular variety A
ω_{A} : The canonical invertible sheaf on a non-singular variety A
$\mathbb{P}(\mathcal{E})$: The projective bundle $\operatorname{Proj}\left(\bigoplus_{n=0}^{\infty} \operatorname{Sym}^{n} \mathcal{E}\right)$ defined by a locally free sheaf \mathcal{E} on a variety Y

1. Preliminary and Known Facts. Let C be a non-singular curve of genus g defined over an algebraically closed field k. Let g_{d}^{1} be one of a base-pointfree linear system on C of degree d and projective dimension 1 . We assume that C is a tetragonal curve, i.e. C admits a g_{4}^{1} but does not admit a g_{e}^{1} for every $e<4$. We know that if $g \leq 4$, then C is a hyperelliptic curve or a trigonal curve. So we assume that $g \geq 5$. The following results are proved in [10].

Theorem 1. If $\left|\left(e_{d-1}+2\right) g_{d}^{1}\right|$ is birationally very ample, then

$$
e_{i-1} \leq e_{i}+e_{d-1}+2
$$

for any $i \in \mathbb{Z} / d \mathbb{Z}$.
Theorem 2. Let e_{1}, e_{2}, e_{3} and $g \geq 5$ be integers such that

$$
e_{1} \leq e_{2}+e_{3}+2, \quad e_{2} \leq 2 e_{3}+2, \quad e_{1} \geq e_{2} \geq e_{3}, \quad e_{1}+e_{2}+e_{3}=g-3
$$

then there is a tetragonal curve $C=\left(C, g_{4}^{1}\right)$ of genus g such that $\mathcal{O}\left(g_{4}^{1}\right)^{\otimes e_{3}+2}$ is birationally very ample and $e_{1}=e_{1}\left(g_{4}^{1}\right), e_{2}=e_{2}\left(g_{4}^{1}\right), e_{3}=e_{3}\left(g_{4}^{1}\right)$.

Theorem 3. Let $C=\left(C, g_{4}^{1}\right)$ be a tetragonal curve of genus g with scrollar invariants e_{1}, e_{2}, e_{3}. If $\mathcal{O}\left(g_{4}^{1}\right)^{\otimes e_{3}+2}$ is not birationally very ample, then there exists a curve $C=\left(C_{1}, h_{2}^{1}\right)$ of genus $e_{3}+1$ with a pencil of degree 2 and a map $\pi: C \rightarrow C_{1}$ of degree 2 such that $g_{4}^{1}=\pi^{*}\left(h_{2}^{1}\right)$.

Hence we have the following result.
Corollary 1. Let e_{1}, e_{2}, e_{3} and $g \geq 5$ be integers. Then there exists a tetragonal curve $C=\left(C, g_{4}^{1}\right)$ of genus g such that $e_{1}=e_{1}\left(g_{4}^{1}\right), e_{2}=e_{2}\left(g_{4}^{1}\right), e_{3}=$ $e_{3}\left(g_{4}^{1}\right)$ if and only if

$$
e_{1} \leq e_{2}+e_{3}+2, \quad e_{1} \geq e_{2} \geq e_{3}, \quad e_{1}+e_{2}+e_{3}=g-3
$$

We now assume that C is not elliptic-hyperelliptic. For $g=5$, we have the following result. Let $C \hookrightarrow \mathbb{P}^{4}$ be the canonical embedding. Let $\delta \cong \mathbb{P}^{2}$ be the linear system of quadrics in \mathbb{P}^{4} containing C, Γ is the locus of quadrics of rank ≤ 4 and Γ^{\prime} is the locus of quadrics of rank ≤ 3. We know the following:

Proposition 1. If C is a tetragonal curve, then a general $Q \in \delta$ is non-singular.

By Proposition 1, we have that $\Gamma \subset \mathbb{P}^{2}$ is a plane curve of degree 5 . Let $\mathcal{L} \in W_{4}^{1}(C)$ and let $Q_{\mathcal{L}}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}\left(e_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(e_{2}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(e_{3}\right)\right) \subset \mathbb{P}^{4}$, where $e_{i}=e_{i}(\mathcal{L})$. As $Q_{\mathcal{L}}$ is contained in Γ (see E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris [1] p. 240 Theorem 2.1), we have the morphism

$$
\phi: W_{4}^{1}(C) \rightarrow \Gamma
$$

given by

$$
\phi(\mathcal{L})=Q_{\mathcal{L}} .
$$

Then we know the following Theorem:

Theorem 4. $\left(W_{4}^{1}(C)\right)_{\text {sing }}=\phi^{-1}\left(\Gamma^{\prime}\right)=\left\{\mathcal{L} \mid \mathcal{L} \in W_{4}^{1}(C), \mathcal{L}^{\otimes 2} \cong \omega_{C}\right\}$.
As a corollary of Theorem 4, we have the following:
Corollary 2. Let C be a tetragonal curve of genus 5. If $W_{4}^{1}(C)$ is non-singular, then any $g_{4}^{1} \in W_{4}^{1}(C)$ has same e_{1}, e_{2}, e_{3}.

We now assume that C is a tetragonal curve C of genus 6 which is not elliptic-hyperelliptic. Then we know the following results. Let \mathcal{L} be a tetragonal linear system (therefore \mathcal{L} is a base-point-free linear system) on C. Then the line bundle $\omega_{C} \otimes \mathcal{L}^{\otimes-1}$ defines a base-point-free linear system of degree 6 and of projective dimension 2 on C because if $\omega_{C} \otimes \mathcal{L}^{\otimes-1}$ has a base point, then $\omega_{C} \otimes \mathcal{L}^{\otimes-1}$ defines a map $\phi: C \rightarrow C_{0} \subset \mathbb{P}^{2}$ such that $\operatorname{deg}(\phi) \operatorname{deg}\left(C_{0}\right) \leq 5$. If $\operatorname{deg}(\phi) \geq 2$, then C is a trigonal curve or a hyperelliptic curve. Therefore C has a singular plane curve model of degree ≤ 5. Hence C has a trigonal linear system or a hyperelliptic linear system because C_{0} must have a singular point and the lines in \mathbb{P}^{2} which pass through one of the singular points of C_{0} induces a trigonal linear system or a hyperelliptic linear system. This is a contradiction. So $\omega_{C} \otimes \mathcal{L}^{\otimes-1}$ defines a base-point-free linear system. As we assume that C is not an elliptic-hyperelliptic curve, therefore $\operatorname{deg}(\phi)=1$. So C has a singular plane curve model C_{0} of degree 6 , therefore the arithmetic genus $p_{a}\left(C_{0}\right)=10$. As C is not trigonal and not hyperelliptic, every singular point of C_{0} is multiplicity 2 . So C_{0} has just 4 singular points (including infinitely near singular points).

Proposition 2. Every member of $W_{4}^{1}(C)$ is given by a cut out of the lines in \mathbb{P}^{2} which pass through one of the singular points of C_{0} or is given by a cut out of conics in \mathbb{P}^{2} which pass through 4 singular points (singular points of C_{0} and its infinitely near singular points of C_{0}).

Proof. See Griffiths, Harris [7] p. 210.
Let $g_{4}^{1}, k_{4}^{1} \in W_{4}^{1}(C)$ and let C_{1} be the singular plane curve model defined by $\left|K_{C}-g_{4}^{1}\right|$. Assume that k_{4}^{1} is given by a cut out of conics which pass through 4 singular points. Then we consider a singular plane curve model defined by $\left|K_{C}-k_{4}^{1}\right|$ and let h_{4}^{1} be a tetragonal linear system given by a cut out of the lines. We consider a singular plain curve model defined by $\left|K_{C}-h_{4}^{1}\right|$. Then k_{4}^{1} is given by a cut out of the lines. So we may assume that $k_{4}^{1} \in W_{4}^{1}(C)$ is given by a cut out of the lines. Let $P \in \operatorname{Sing}\left(C_{1}\right)$ be a singular point corresponds to k_{4}^{1}. By the definition of $\left(e_{1}, e_{2}, e_{3}\right)$, we have the following proposition.

Proposition 3. The following conditions are equivalent:

1) $g_{4}^{1} \in W_{4}^{1}(C)$ is a non-reduced point
2) g_{4}^{1} is type $(2,1,0)$.
3) P is a 2-fold node or a 2-fold cusp.

So we have the following theorem:
Theorem 5. Let C be of genus 6. If $W_{4}^{1}(C)$ is reduced of dimension 0, then every g_{4}^{1} is of type $(1,1,1)$.

The following result is given by the adjunction formula on $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
Lemma 1 (Riemann). Let C be a Riemann surface of genus g, let f_{1}, f_{2} be a meromorphic function on C of $\operatorname{deg}\left(f_{1}\right)=d_{1}, \operatorname{deg}\left(f_{2}\right)=d_{2}$ and $k(C)=k\left(f_{1}, f_{2}\right)$. Then $g \leq\left(d_{1}-1\right)\left(d_{2}-1\right)$.

By Lemma 1, we have the following result.
Theorem 6. Assume that C is a tetragonal curve and it is not an elliptic-hyperelliptic curve of genus g. If $g \geq 10$, then C has only one g_{4}^{1}.

Proof. We assume that $\#\left(W_{4}^{1}(C)\right) \geq 2$. Then we can take distinct tetragonal (therefore base-point-free) linear systems g_{4}^{1}, h_{4}^{1} on C. Let $\phi: C \rightarrow$ $\mathbb{P}^{1} \times \mathbb{P}^{1}$ be defined by $\phi=\left(g_{4}^{1}, h_{4}^{1}\right)$. Then $g_{4}^{1}=p_{1} \cdot \phi$ and $h_{4}^{1}=p_{2} \cdot \phi$ where p_{1} and p_{2} are projections. Therefore $\operatorname{deg} \phi=1,2$ or 4 . Let $C_{0}=\phi(C)$. If $\operatorname{deg} \phi=4$, then C_{0} is a rational curve so $g_{4}^{1}=h_{4}^{1}$. If $\operatorname{deg} \phi=2$, then C_{0} is linearly equivalent to $2 l+2 m$ where $l=\mathrm{pt} \times \mathbb{P}^{1}$ and $m=\mathbb{P}^{1} \times \mathrm{pt}$. Therefore C_{0} is a rational curve or an elliptic curve by the adjunction formula. Therefore we have that $\operatorname{deg}(\phi)=1$. Therefore we prove Theorem 6 by Lemma 1.

The following theorem is found in E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris [1] (see p. 189 (4.2) Proposition).

Theorem 7. Let $\mathcal{L} \in W_{d}^{r}(C) \backslash W_{d}^{r+1}(C)$. Then the tangent space $T_{\mathcal{L}}\left(W_{d}^{r}(C)\right)$ is isomorphic to $\left(\operatorname{im} \mu_{0}\right)^{\perp} \subset H^{1}\left(C, \mathcal{O}_{C}\right)$ where $\mu: \Gamma(C, \mathcal{L}) \otimes \Gamma\left(C, \omega_{C} \otimes\right.$ $\left.\mathcal{L}^{-1}\right) \rightarrow \Gamma\left(C, \omega_{C}\right)$ is the cup product map and $\left(\operatorname{im} \mu_{0}\right)^{\perp}$ denotes the complement space of $\operatorname{im} \mu_{0} \subset \Gamma\left(C, \omega_{C}\right)$.

The following is also found in E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris [1] (see p. 191 (5.1) Theorem and p. 193 (5.2) Theorem).

Theorem 8 (Martens-Mumford). If $g \geq 3,2 \leq d \leq g-1$ and $0<2 r \leq d$, then $\operatorname{dim} W_{d}^{r}(C) \leq d-2 r$. If C is a non-hyperelliptic curve and $d \leq g-2$, then $\operatorname{dim} W_{d}^{r}(C) \leq d-2 r-1$ and if there is a component $X \subset W_{d}^{r}(C)$ such that $\operatorname{dim} X=d-2 r-1$, then C is either trigonal, elliptic-hyperelliptic or smooth plane quintic.
2. The proof of Main Theorem. We now prove Theorem A. By Proposition 3, we may assume that C is a non-singular curve of genus $g=7$ or 8 . We have already assumed that C is a tetragonal curve i.e. neither hyperelliptic nor trigonal and admits a tetragonal (base-point-free) linear system g_{4}^{1}. Moreover we may assume that C is not an elliptic-hyperelliptic curve. Let $g_{4}^{1}, h_{4}^{1} \in W_{4}^{1}(C)$
be such that $g_{4}^{1} \neq h_{4}^{1}$. Let $\rho=\left(g_{4}^{1}, h_{4}^{1}\right): C \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$. As C is not an elliptichyperelliptic curve, so ρ is a birational morphism to its image. And every singular point of $\rho(C)$ has multiplicity 2 because $\rho(C) \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}$ is of degree 8 and C is neither hyperelliptic, nor trigonal and nor elliptic-hyperelliptic, i.e. if $\rho(C)$ has a singular point P such that $\operatorname{mult}_{P}(\rho(C)) \geq 3$, then we have a singular plane curve model of degree ≤ 5 and such curve is hyperelliptic or trigonal or elliptichyperelliptic. Let $l=\mathrm{pt} \times \mathbb{P}^{1}$ and $m=\mathbb{P}^{1} \times \mathrm{pt}$ and let $C_{0}=\rho(C)$. Take one singular point $P \in C_{0}$ and take $l_{1} \ni P$ and $m_{1} \ni P$ such that $l \sim l_{1}$ and $m \sim m_{1}$ where \sim means a linear equivalence. We consider a blowing-up $\pi_{1}: T_{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ at P. Let l_{0} be a proper transform of l_{1}, let m_{0} be a proper transform of m_{1}, let F_{0} be the exceptional divisor and let \tilde{C} be a proper transform of C_{0}. We first assume that $g=7$. Then \tilde{C} has one singular point Q. So we consider a blowing-up $\pi_{2}: T_{2} \rightarrow T_{1}$ at Q, let $S=T_{2}, \pi=\pi_{1} \cdot \pi_{2}$, let $E_{1}=$ the total transform of $l_{0}, E_{2}=$ the total transform of m_{0} and $E_{3}=$ the exceptional divisor of π_{2} and let $L=\pi_{2}^{*}\left(F_{0}+l_{0}+m_{0}\right)$. Let ϕ be the morphism defined by the complete linear system $|L|$. By the definition of S, the proper transform of C_{0} in S is C and $C \sim 6 L-2 E_{1}-2 E_{2}-2 E_{3}$. Moreover $C_{1}=\phi(C)$ is a (singular) plane curve model of C such that $\operatorname{deg}\left(C_{1}\right)=6$ and $\phi: C \rightarrow C_{1} \subset \mathbb{P}^{2}$ is a normalization map. By elementary arguments, we have that g_{4}^{1} is given by a cut out of the lines which pass through one of the singular point of $C_{1} \subset \mathbb{P}^{2}$ because this linear system corresponds to the linear system $\left|L-E_{1}\right|$. As $K_{C}-g_{4}^{1} \sim$ $K_{S}+C-\left(L-E_{1}\right)\left|C, K_{C}-g_{4}^{1} \sim K_{S}+C-\left(L-E_{1}\right)\right| C \sim 2 L-E_{2}-E_{3} \mid C$ and $\operatorname{dim}\left|K_{C}-g_{4}^{1}\right|=\operatorname{dim}\left|2 L-E_{2}-E_{3}\right|=3$. Hence $\left|K_{C}-g_{4}^{1}\right|$ is birationally very ample but not very ample because $L-E_{1}-E_{2}$ contracts to one point, so $\left|K_{C}-g_{4}^{1}-\left(L-E_{1}-E_{2} \mid C\right)\right|$ gives $\phi: C \rightarrow \mathbb{P}^{2}$ and $\phi(C)$ is a (singular) plane curve of C such that $\operatorname{deg}(\phi(C))=6$. We put $D=L-E_{1}-E_{2} \mid C$. Let $k_{4}^{1} \in W_{4}^{1}(C)$ be such that $g_{4}^{1} \neq k_{4}^{1}$. Then $\operatorname{dim}\left|g_{4}^{1}+k_{4}^{1}\right|=3$. Hence $\operatorname{dim}\left|K_{C}-g_{4}^{1}-k_{4}^{1}\right|=1$. Therefore $\operatorname{dim}\left|K_{C}-g_{4}^{1}-k_{4}^{1}-D\right|=0$ by the above. This implies that every $k_{4}^{1} \in W_{4}^{1}(C)$ such that $k_{4}^{1} \neq g_{4}^{1}$ is given by a cut out of the lines which pass through one of a singular points of $\phi(C)$. Now we assume that $g=8$. We put $S=T_{1}$ and $\pi=\pi_{1}$, let $E_{1}=m_{0}, E_{2}=l_{0}$ and let $L=F_{0}+l_{0}+m_{0}$. Let ϕ be the morphism defined by the complete linear system $|L|$. By the definition of S, the proper transform of C_{0} in S is C and $C \sim 6 L-2 E_{1}-2 E_{2}$. Moreover $C_{1}=\phi(C)$ is also a (singular) degree 6 plane curve model of C and $\phi: C \rightarrow C_{1} \subset \mathbb{P}^{2}$ is a normalization map and we have that g_{4}^{1} is given by a cut out of the lines which pass through one of the singular point of $C_{1} \subset \mathbb{P}^{2}$ because this linear system corresponds to the linear system $\left|L-E_{1}\right|$. As $K_{C}-g_{4}^{1} \sim K_{S}+C-\left(L-E_{1}\right) \mid C$, $K_{C}-g_{4}^{1} \sim K_{S}+C-\left(L-E_{1}\right)\left|C \sim 2 L-E_{2}\right| C$ and $\operatorname{dim}\left|K_{C}-g_{4}^{1}\right|=\operatorname{dim}\left|2 L-E_{2}\right|=$ 4. Hence $\left|K_{C}-g_{4}^{1}\right|$ is birationally very ample but not very ample because E_{1} contracts to one point, so $\left|K_{C}-g_{4}^{1}-\left(E_{1} \mid C\right)\right|$ gives a birational morphism $C \rightarrow \mathbb{P}^{3}$ because C is not hyperelliptic, not trigonal and not elliptic-hyperelliptic. As
$K_{C}-g_{4}^{1}-\left(E_{1} \mid C\right) \sim 2 L-E_{1}-E_{2}|C, \operatorname{dim}| K_{C}-g_{4}^{1}-\left(E_{1} \mid C\right)|=\operatorname{dim}| 2 L-E_{1}-E_{2} \mid=3$ and $L-E_{1}-E_{2}$ is contracted to one point by the linear system $\left|2 L-E_{1}-E_{2}\right|$, $C \rightarrow \mathbb{P}^{3}$ is not very ample. Therefore we have a morphism $\phi: C \rightarrow \mathbb{P}^{2}$ and $\phi(C)$ is a (singular) plane curve of C such that $\operatorname{deg}(\phi(C))=6$. We put $D=$ $L-E_{1}-E_{2} \mid C$. Let $k_{4}^{1} \in W_{4}^{1}(C)$ such that $g_{4}^{1} \neq k_{4}^{1}$. Then $\operatorname{dim}\left|g_{4}^{1}+k_{4}^{1}\right|=3$. Hence $\operatorname{dim}\left|K_{C}-g_{4}^{1}-k_{4}^{1}\right|=2$. Therefore $\operatorname{dim}\left|K_{C}-g_{4}^{1}-k_{4}^{1}-D\right|=0$ by the above. This implies that every $k_{4}^{1} \in W_{4}^{1}(C)$ such that $k_{4}^{1} \neq g_{4}^{1}$ is given by a cut out of the lines which pass through one of a singular points of $\phi(C)$.

We now prove the following lemma:
Lemma 2. Let $C \rightarrow \phi(C) \subset \mathbb{P}^{2}$ be a singular plane curve model of C constructed as above. Let $P \in \phi(C) \subset \mathbb{P}^{2}$ be a singular point and let k_{4}^{1} be a tetragonal linear system given by a cut out of the lines which pass through P. Then $\left(e_{1}, e_{2}, e_{3}\right)=(2,1,1),(2,2,0)$ or $(3,1,0)$ if $g=7$ and $\left(e_{1}, e_{2}, e_{3}\right)=(3,1,1)$ or $(2,2,1)$ if $g=8$. And $k_{4}^{1} \in W_{4}^{1}(C)$ is reduced point if and only if P is ordinary node or ordinary cusp. Moreover P is ordinary node or ordinary cusp if and only if $\left(e_{1}\left(k_{4}^{1}\right), e_{2}\left(k_{4}^{1}\right), e_{3}\left(k_{4}^{1}\right)\right)=(2,1,1)$ if $g=7$ and $\left(e_{1}\left(k_{4}^{1}\right), e_{2}\left(k_{4}^{1}\right), e_{3}\left(k_{4}^{1}\right)\right)=(2,2,1)$ if $g=8 . P$ is 2-fold node or 2-fold cusp if and only if $\left(e_{1}\left(k_{4}^{1}\right), e_{2}\left(k_{4}^{1}\right), e_{3}\left(k_{4}^{1}\right)\right)=(2,2,0)$ if $g=7,\left(e_{1}\left(k_{4}^{1}\right), e_{2}\left(k_{4}^{1}\right), e_{3}\left(k_{4}^{1}\right)\right)=(3,1,1)$ if $g=8 . P$ is 3-fold node or 3-fold cusp if and only if $\left(e_{1}\left(k_{4}^{1}\right), e_{2}\left(k_{4}^{1}\right), e_{3}\left(k_{4}^{1}\right)\right)=(3,1,0)$ if $g=7$.

Proof. Let $e_{i}=e_{i}\left(k_{4}^{1}\right)(\mathrm{i}=1,2,3)$. We first assume that $g=7$. By Corollary 1 , the possibilities are $\left(e_{1}, e_{2}, e_{3}\right)=(2,2,0),(3,1,0),(2,1,1)$. By Theorem 8 , we have that $\operatorname{dim} W_{4}^{1}(C)=0$. Therefore $k_{4}^{1} \in W_{4}^{1}(C)$ is reduced point if and only if k_{4}^{1} is of type $(2,1,1)$ by Theorem 7 . Hence we only have to prove that $\operatorname{dim} \Gamma\left(C, \mathcal{O}\left(2 k_{4}^{1}\right)\right)=3$ if and only if P is ordinary node or ordinary cusp. Let $\psi=\psi_{1} \psi_{2} \psi_{3}$ where $\psi_{1}: S_{1} \rightarrow \mathbb{P}^{2}$ is a blowing-up at $P_{0}=P \in \mathbb{P}^{2}, \psi_{2}: S_{2} \rightarrow S_{1}$ is a blowing-up at $P_{1} \in S_{1}$ and $\psi_{3}: S \rightarrow S_{2}$ is a blowing-up at $P_{2} \in S_{2}$ such that $F_{1}=\left(\psi_{2} \psi_{3}\right)^{*}\left(F_{1}^{\prime}\right), F_{2}=\psi_{3}^{*}\left(F_{2}^{\prime}\right)$ where F_{1}^{\prime} is the exceptional divisor of ψ_{1}, F_{2}^{\prime} is the exceptional divisor of ψ_{1} and F_{3} is the exceptional divisor of ψ_{3}. As $k_{4}^{1}=L-F_{1} \mid C$, so we have

$$
0 \rightarrow \mathcal{O}\left(2 L-2 F_{1}-C\right) \rightarrow \mathcal{O}\left(2 L-2 F_{1}\right) \rightarrow \mathcal{O}_{C}\left(2 k_{4}^{1}\right) \rightarrow 0
$$

and $2 L-2 F_{1}-C \sim-4 L+2 F_{2}+2 F_{3}$ because $C \sim 6 L-2 F_{1}-2 F_{2}-2 F_{3}$. As $4 L-2 F_{2}-2 F_{3}$ is linearly equivalent to some effective divisor, we have $h^{0}(S, \mathcal{O}(2 L-$ $\left.\left.2 F_{1}-C\right)\right)=0$. By Serre's duality, $h^{2}\left(S, \mathcal{O}\left(2 L-2 F_{1}-C\right)\right)=h^{0}\left(S, \mathcal{O}\left(L+F_{1}-\right.\right.$ $\left.F_{2}-F_{3}\right)$). By Definition A, P is an ordinary node or an ordinary cusp if and only if $P_{1} \notin F_{1}^{\prime}, P$ is a 2 -fold node or a 2 -fold cusp if and only if $P_{1} \in F_{1}^{\prime}$ but $P_{2} \notin \psi_{2}^{*} F_{1}^{\prime}$ and P is a 3 -fold node or a 3-fold cusp if and only if $P_{1} \in F_{1}^{\prime}$ and $P_{2} \in \psi_{2}^{*} F_{1}^{\prime}$. Hence we have that P is an ordinary node or ordinary cusp if and only if $h^{0}\left(S_{1}, \mathcal{O}\left(L+F_{1}-F_{2}-F_{3}\right)\right)=1$ and P is an r-fold node or an r-fold cusp $(r=2,3)$ if and only if $h^{0}\left(S_{1}, \mathcal{O}\left(L+F_{1}-F_{2}-F_{3}\right)\right)=2$. As $h^{0}\left(S, \mathcal{O}\left(2 L-2 F_{1}\right)\right)=3$
and $h^{2}\left(S, \mathcal{O}\left(2 L-2 F_{1}\right)\right)=h^{0}\left(S, \mathcal{O}\left(-5 L+3 F_{1}+F_{2}+F_{3}\right)\right)=0$ (by Seerre's duality and $5 L-3 F_{1}-F_{2}-F_{3}$ is linearly equivalent to an effective divisor), we have $h^{1}\left(S, \mathcal{O}\left(2 L-2 F_{1}\right)\right)=0$ by Riemann-Roch's Theorem (see Hartshorne [9] p. 362 Theorem 1.6). Therefore P is an ordinary node or an ordinary cusp if and only if $\left(e_{1}, e_{2}, e_{3}\right)=(2,1,1)$ and P is an r-fold node or an r-fold cusp $(r=2,3)$ if and only if $\left(e_{1}, e_{2}, e_{3}\right)=(3,1,0),(2,2,0)$. By the same calculation, we have that $\left(e_{1}, e_{2}, e_{3}\right)=(3,1,0)$ if and only if $h^{2}\left(S, \mathcal{O}\left(3 L-3 F_{1}-C\right)\right)=$ $h^{0}\left(S, \mathcal{O}\left(2 F_{1}-F_{2}-F_{3}\right)\right)=1$. Hence $\left(e_{1}, e_{2}, e_{3}\right)=(3,1,0)$ if and only if P is a 3 -fold node or a 3 -fold cusp. We now assume that $g=8$. By Corollary 1, the possibilities are $\left(e_{1}, e_{2}, e_{3}\right)=(3,2,0),(3,1,1),(2,2,1) . \quad$ As $\operatorname{dim} W_{4}^{1}(C)=0$. Therefore $k_{4}^{1} \in W_{4}^{1}(C)$ is reduced point if and only if k_{4}^{1} is of type $(2,2,1)$ or $(3,1,1)$ by Theorem 7 . And $\operatorname{dim} \Gamma\left(C, \mathcal{O}\left(2 k_{4}^{1}\right)\right)=3$ if and only if P is an ordinary node or an ordinary cusp. So we first prove that $\operatorname{dim} \Gamma\left(C, \mathcal{O}\left(2 k_{4}^{1}\right)\right)=3$ if and only if k_{4}^{1} is of type $(2,2,1)$. Let $\psi=\psi_{1} \psi_{2}$ where $\psi_{1}: S_{1} \rightarrow \mathbb{P}^{2}$ is a blowing-up at $P_{0}=P \in \mathbb{P}^{2}, \psi_{2}: S_{2} \rightarrow S_{1}$ is a blowing-up at $P_{1} \in S_{1}$ such that $F_{1}=\psi_{2}^{*}\left(F_{1}^{\prime}\right)$ where F_{1}^{\prime} is the exceptional divisor of ψ_{1}, F_{2} is the exceptional divisor of ψ_{1}. As $k_{4}^{1}=L-F_{1} \mid C$, so we have

$$
0 \rightarrow \mathcal{O}\left(3 L-3 F_{1}-C\right) \rightarrow \mathcal{O}\left(3 L-3 F_{1}\right) \rightarrow \mathcal{O}_{C}\left(3 k_{4}^{1}\right) \rightarrow 0
$$

and $3 L-3 F_{1}-C \sim-3 L-F_{1}+2 F_{2}$ because $C \sim 6 L-2 F_{1}-2 F_{2}$. We have $h^{0}\left(S, \mathcal{O}\left(3 L-3 F_{1}-C\right)\right)=0$ and by Serre's duality, $h^{2}\left(S, \mathcal{O}\left(3 L-3 F_{1}-C\right)\right)=$ $h^{0}\left(S, \mathcal{O}\left(2 F_{1}-F_{2}\right)\right)$. As P is an ordinary node or an ordinary cusp, $h^{0}\left(S, \mathcal{O}\left(2 F_{1}-\right.\right.$ $\left.\left.F_{2}\right)\right)=0$. Therefore we have that $h^{1}\left(S, \mathcal{O}\left(3 L-3 F_{1}-C\right)\right)=1$. As $h^{0}(S, \mathcal{O}(3 L-$ $\left.\left.3 F_{1}\right)\right)=4$ and $h^{2}\left(S, \mathcal{O}\left(3 L-3 F_{1}\right)\right)=h^{0}\left(S, \mathcal{O}\left(-6 L+4 F_{1}+F_{2}\right)\right)=0$, we have $h^{1}\left(S, \mathcal{O}\left(3 L-3 F_{1}\right)\right)=0$ by Riemann-Roch's Theorem. Therefore we have that $\operatorname{dim} \Gamma\left(C, \mathcal{O}\left(3 k_{4}^{1}\right)\right)=5$. Hence k_{4}^{1} is of type $(2,2,1)$. And $\left(e_{1}, e_{2}, e_{3}\right)=(3,2,0)$ if and only if P is a 2 -fold node or a 2 -fold cusp by the same calculation.

Proof of Corollary A. We now prove Corollary A. By Theorem 6, we may assume that C is a non-singular curve of genus $g=7,8$ or 9 . We have already assumed that C is a tetragonal curve i.e. neither hyperelliptic nor trigonal and admits a tetragonal (base-point-free) linear system g_{4}^{1}. Moreover we assume that C is not an elliptic-hyperelliptic curve. If there is only one g_{4}^{1} on C, there is nothing to prove. So we may assume that there are $g_{4}^{1}, h_{4}^{1} \in W_{4}^{1}(C)$ such that $g_{4}^{1} \neq h_{4}^{1}$. If $g=7$ or 8 , then Corollary A holds by Theorem A. Therefore the remaining case is $g=9$ case. But in this case, if $\# W_{4}^{1}(C) \geq 2$, then we have an embedding $C \hookrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$. In this case one easily proves that $h^{0}\left(C, \mathcal{O}\left(K_{C}-3 g_{4}^{1}\right)\right)=h^{0}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(-l+2 m)\right)=0$, thus the invariants of g_{4}^{1} are $(2,2,2)$. Therefore the e-numbers of any $k_{4}^{1} \in W_{4}^{1}(C)$ are the same and equal to $(2,2,2)$. This proves Corollary A.

REFERENCES

[1] E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris. Geometry of Algebraic Curves I, Springer-Verlag, 1985.
[2] M. Coppens. The Weierstrass gap sequence of the total ramification points of trigonal curve of \mathbb{P}^{1}. Indag. Math. 47 (1985), 245-270.
[3] M. Coppens. The Weierstrass gap sequence of the ordinary ramification points of trigonal curve of \mathbb{P}^{1}; Existence of a kind of Weierstrass gap sequence. J. Pure Appl. Algebra 43 (1986), 11-25.
[4] D. Eisenbud, J. Harris. Limit linear series: Basic Theory. Invent. Math. 85 (1986) 337-371.
[5] H. M. Farkas, I. Kra. Riemann Surfaces. Springer-Verlag, 1980.
[6] J. D. Fay. Theta Functions on Riemann Surfaces. Lecture Note in Mathematics, vol. 332, Springer-Verlag, 1973.
[7] P. Griffiths, J. Harris. Principles of Algebraic Geometry. Wiley Interscience, 1978.
[8] R. C. Gunning. On the gonality ring of Riemann surfaces, preprint.
[9] R. Hartshorne. Algebraic Geometry. Springer-Verlag, 1974.
[10] T. Kato, A. Ohbuchi. Very ampleness of multiple of tetragonal linear systems. Comm. Algebra 21, (12) (1993), 4587-4597.
[11] J. Komeda. The Weierstrass gap sequences of certain ramification points of tetragonal coverings of \mathbb{P}^{1}. Research Rep. of Ikutoku Tech. Univ. B-12 (1988), 185-191.
[12] A. Maroni. Le serie lineari speciali sulle curve trigonali. Ann. di Mat. 25 (1946), 341-353.
[13] R. Miranda. Triple covers in algebraic geometry. Amer. J. Math. 107 (1985), 1123-1158.
[14] D. Mumford. Prym varieties I. Contribution to Analysis, Acad. Press, (1974), 325-355.
[15] R. Pardini. Abelian covers in algebraic geometry. J. Reine Angew. Math. 417 (1991), 191-213.
[16] F.-O. Schreyer. Syzygies of Canonical Curves and Special Linear Series. Math. Ann. 275, (1986) 105-137.

Faculty of Integrated Arts and Sciences
Tokushima University
Tokushima, 770 Japan
e-mail: ohbuchi@ias.tokushima-u.ac.jp

[^0]: 1991 Mathematics Subject Classification: 14H45, 14H10, 14C20
 Key words: curve theory, algebraic geometry

